首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 725 毫秒
1.
Reliable estimates of Holocene temperatures are important for understanding past climate dynamics, the response of biota to climate change, and validating climate models. Chironomids in lake sediment cores are used widely to quantify past summer temperatures, for which high-latitude and/or high-altitude lakes, remote from human influence, are usually considered appropriate. Temperature inferences from lowland lakes are likely influenced by other variables, specifically eutrophication and industrial pollution, but their reliability has never been tested. We used a Norwegian chironomid-based transfer function (r 2 = 0.91; RMSEP = 1.01 °C) to infer mean July air temperature over the last 200 years, using chironomid assemblages in a core collected from a polluted, nutrient-enriched lake at Speke Hall, Liverpool, England. The chironomid-inferred temperatures correlate significantly with the local instrumental temperature record and follow long-term national temperature trends. These results show that chironomids can be used to produce reliable estimates of past mean July air temperature, even when other variables have also influenced the composition of the chironomid community. These findings underline the value of chironomids as sensitive and reliable quantitative proxies for summer temperature.  相似文献   

2.
Floodplain lakes are rarely analysed for fossil chironomids and usually not incorporated in modern chironomid-climate calibration datasets because of the potential complex hydrological processes that could result from flooding of the lakes. In order to investigate this potential influence of river inundations on fossil chironomid assemblages, 13 regularly inundated lakes and 20 lakes isolated from riverine influence were sampled and their surface sediments analysed for subfossil chironomid assemblages. The physical and chemical settings of all lakes were similar, although the variation in the environmental variables was higher in the lakes isolated from riverine influence. Chironomid concentration and taxon richness show significant differences between the two classes of lakes, and the variation in these variables is best explained by loss-on-ignition of the sediments (LOI). Relative chironomid abundances show some differences between the two groups of lakes, with several chironomid taxa occurring preferentially in one of the two lake-types. The variability in chironomid assemblages is also best explained by LOI. Application of a chironomid-temperature inference model shows that both types of lakes reconstruct July air temperatures that are equal to, or slightly underestimating, the measured temperature of the region. We conclude that, although there are some differences between the chironomid assemblages of floodplain lakes and of isolated lakes, these differences do not have a major effect on chironomid-based temperature reconstruction.  相似文献   

3.
Water depth is an important environmental variable that explains a significant portion of the variation in the chironomid fauna of shallow lakes. We developed site-specific and local chironomid water-depth inference models using 26 and 104 surface-sediment samples, respectively, from seven kettlehole lakes in the Plymouth Aquifer, southeast Massachusetts, USA. Our site-specific model spans a depth gradient of 5.6?m, has an $ {\text{r}}_{\text{jack}}^{2} $ of 0.90, root mean square error of prediction (RMSEP) of 0.5?m and maximum bias of 0.7?m. Our local model has a depth gradient of 11.7?m, an $ {\text{r}}_{\text{jack}}^{2} $ of 0.71, RMSEP of 1.6?m and maximum bias of 2.9?m. Principal coordinates of neighbourhood matrices (PCNM) analysis showed that there is no influence of spatial autocorrelation on the site-specific model, but PCNM variables explained a significant amount of variance (4.8%) in the local model. This variance, however, is unique from the variance explained by water depth. We applied the inference models to a Holocene chironomid record from Crooked Pond, a site for which multiple, independent palaeohydrological reconstructions are available. The chironomid-based reconstructions are remarkably similar and show stable water depths of ~5?m, interrupted by a 2-m decrease between 4,200 and 3,200?cal a BP. Sedimentological evidence of water level fluctuations at Crooked Pond, obtained using the so-called Digerfeldt approach, also shows a drop in water depths around that time. The period of reconstructed lower water levels coincides with the abrupt decline in moisture-dependent hemlock in this region, providing further evidence for this major palaeohydrological event. The site-specific model has the best performance statistics, but the high percent abundance of fossil taxa from the long core that are absent or rare in the training set makes the site-specific reconstruction unreliable for the period before 4,400?cal a BP. The fossil taxa are well represented in the local model, making it the preferred inference model. The strong similarity between the chironomid-based reconstructions and the independent palaeohydrological records highlights the potential for using chironomid-based inference models to determine past lake depths at sites where temperature was not an influencing factor.  相似文献   

4.
Surface lake sediment was recovered from 57 lakes along an elevation gradient in the central, eastern Sierra Nevada of California. The surface sediment was analysed for subfossil chironomid remains in order to assess the modern distribution of chironomids in the region. The lakes sampled for the calibration dataset were between 2.0 and 40.0 m in depth, spanned an altitudinal gradient of 1360 m and a surface water temperature gradient of approximately 14 °C. Redundancy analysis (RDA) identified that five of the measured environmental variables – surface water temperature, elevation, depth, strontium, particulate organic carbon – accounted for a statistically significant amount of the variance in chironomid community composition. Quantitative transfer functions, based on weighted-averaging (WA), partial least squares (PLS) and weighted-averaging partial least squares (WA-PLS), were developed to estimate surface water temperature from the chironomid assemblages. The best model was a WA model with classical deshrinking, which had a relatively high coefficient of determination (r2 = 0.73), low root mean square error of prediction (RMSEP = 1.2 °C) and a low maximum bias (0.90 °C). The results from this study suggest that robust quantitative estimates of past surface water temperature can be derived from the application of these models to fossil chironomid assemblages preserved in late-Quaternary lake sediment in this region.  相似文献   

5.
Freshwater midges, consisting of Chironomidae, Chaoboridae and Ceratopogonidae, were assessed as a biological proxy for palaeoclimate in eastern Beringia. The northwest North American training set consists of midge assemblages and data for 17 environmental variables collected from 145 lakes in Alaska, British Columbia, Yukon, Northwest Territories, and the Canadian Arctic Islands. Canonical correspondence analyses (CCA) revealed that mean July air temperature, lake depth, arctic tundra vegetation, alpine tundra vegetation, pH, dissolved organic carbon, lichen woodland vegetation and surface area contributed significantly to explaining midge distribution. Weighted averaging partial least squares (WA-PLS) was used to develop midge inference models for mean July air temperature (r boot2 = 0.818, RMSEP = 1.46°C), and transformed depth (ln (x+1); r boot2 = 0.38, and RMSEP = 0.58).  相似文献   

6.
The resolution achievable for chironomid identifications has increased in recent years because of significant improvements in taxonomic literature. However, high taxonomic resolution requires more training for analysts. Furthermore, with greater taxonomic resolution, misidentifications and the number of rare, poorly represented taxa in chironomid calibration datasets may increase. We assessed the effects of various levels of taxonomic resolution on the performance of chironomid-based temperature inference models (transfer functions) and temperature reconstruction. A calibration dataset consisting of chironomid assemblage and temperature data from 100 lakes was examined at four levels of taxonomic detail. The coarsest taxonomic resolution primarily represented identifications to genus or suprageneric level. At the highest level of taxonomic resolution, identification to genus level was possible for 37% of taxa, and identification below genus was possible for 60% of taxa. Transfer functions were obtained using Weighted Averaging (WA) and Weighted Averaging-Partial Least Squares (WA-PLS) regression. Cross-validated performance statistics, such as the root mean square error of prediction (RMSEP) and the coefficient of determination (r 2) between inferred and observed values improved considerably from the lowest taxonomic resolution level (WA: RMSEP 1.91°C, r 2 0.78; WA-PLS: RMSEP 1.59°C, r 2 0.86) to the highest taxonomic resolution level (WA: RMSEP 1.66°C, r 2 0.84; WA-PLS: RMSEP 1.41°C, r 2 0.89). Reconstructed July air temperatures during the Lateglacial period based on fossil chironomid assemblages from Hijkermeer (The Netherlands) were similar for all levels of taxonomic resolution, except the coarsest level. At the coarsest taxonomic level, reconstruction failed to infer one of the known Lateglacial cold episodes in the record. Also, the difference in reconstructed values based on lowest and highest taxonomic resolutions exceeded sample-specific estimated standard errors of prediction in several instances. Our results suggest that chironomid-based transfer functions at the highest taxonomic resolution outperform models based on lower-resolution calibration data. However, transfer functions of intermediate taxonomic resolution produced results very similar to models based on high-resolution taxonomic data. In studies that include analysts with different levels of expertise, inference models based on intermediate taxonomic resolution, therefore, might provide an alternative to transfer functions of maximum taxonomic detail in order to ensure taxonomic consistency between calibration datasets and down-core records produced by different analysts.  相似文献   

7.
Reconstructing climate change quantitatively over millennial timescales is crucial for understanding the processes that affect the climate system. One of the best methods for producing high resolution, low error, quantitative summer air temperature reconstructions is through chironomid analyses. We analysed over 50 lakes from NW and W Iceland covering a range of environmental gradients in order to test whether the distribution of the Icelandic chironomid fauna was driven by summer temperature, or whether other environmental factors were more dominant. A range of analyses showed the main environmental controls on chironomid communities to be substrate (identified through loss-on-ignition and carbon content) and mean July air temperature, although other factors such as lake depth and lake area were also important. The nature of the Icelandic landscape, with numerous volcanic centres (many of which are covered by ice caps) that produce large quantities of ash, means that relative lake carbon content and summer air temperature do not co-vary, as they often do in other chironomid datasets within the Arctic as well as more temperate environments. As the chironomid–environment relationships are thus different in Iceland compared to other chironomid training sets, we suggest that using an Icelandic model is most appropriate for reconstructing past environmental change from fossil Icelandic datasets. Analogue matching of Icelandic fossil chironomid datasets with the Icelandic training set and another European chironomid training set support this assertion. Analyses of a range of chironomid-inferred temperature transfer functions suggest the best to be a two component WA-PLS model with r 2 jack = 0.66 and RMSEP = 1.095°C. Using this model, chironomid-inferred temperature reconstructions of early Holocene Icelandic sequences show the magnitude of temperature change compared to contemporary temperatures to be similar to other NW European chironomid sequences, suggesting that the predictive power of the model is good.  相似文献   

8.
A suite of surface sediment samples from three Icelandic lakes was analysed for subfossil chironomid head capsules, and a quantitative July air temperature inference model was applied to the data to investigate whether there was significant variability among samples taken from a lake. Ordination and simple regression methods were used to analyse the relationships between environmental and sedimentological variables and the chironomid assemblages and inferred temperature data. Substrate was the most important influence on the chironomid assemblages and inferred temperatures, while water depth at the sampling location had no relationship with the chironomid-inferred temperatures. Within-lake variability of the chironomid assemblages and their inferred temperatures, however, were not significant statistically, suggesting that in lakes of western and northwest Iceland within-lake sampling location has no effect on the data obtained, and therefore on training set samples.  相似文献   

9.
Small, shallow, temperate lakes are predominant landscape features in North America, however, little is known about their long-term ecosystem dynamics, and few data exist on the chironomid fauna they harbor. Using multivariate analyses, we defined relationships between sub-fossil chironomid assemblage composition and environmental variables in 26 shallow lakes of northeastern USA and quantified how differences in taxonomic resolution affect transfer function model performance. Using redundancy analysis, we found that chironomid assemblages are best explained by turbidity, dissolved inorganic carbon and drainage basin/lake area ratio. Turbidity explained the greatest proportion of variance found in the chironomid assemblage (10.4%), followed by total nitrogen. Through ordination analyses and an analysis of similarity, we found that macrophyte density was also a significant predictor of chironomid assemblages. We used partial least squares analysis to develop a robust model for quantitative reconstruction of turbidity, with r jack2 = 0.62. When using a more coarsely resolved taxonomic dataset, we found that model performance statistics were weaker, suggesting the need for fine-resolution taxonomy. Overall, our findings highlight the importance of variables related to lake trophic state in structuring chironomid assemblages in shallow, temperate lakes and provide tools for inferring past ecological changes in these ecosystems.  相似文献   

10.
A 72-lake diatom training set was developed for the Irish Ecoregion to examine the response of surface sediment diatom assemblages to measured environmental variables. A variety of multivariate data analyses was used to investigate environmental and biological data structure and their inter-relationships. Of the variables used in determining a typology for lakes in the Irish Ecoregion, alkalinity was the only one found to have a significant effect on diatom assemblages. A total of 602 diatom taxa were identified, with 233 recorded at three or more sites with abundances ≥1%. Generally diatom data displayed a high degree of heterogeneity at the species level and non-linear ecological responses. Both pH and total phosphorus (TP) (in the ranges of 5.1–8.5 and 4.0–142.3 μg l−1 respectively) were shown to be the most significant variables in determining the surface sediment diatom assemblages. The calibration models for pH and TP were developed using the weighted averaging (WA) method; data manipulation showed strong influences on model performances. The optima WA models based on 70 lakes produced a jack-knifed coefficient of determination (r 2 jack) of 0.89 with a root mean squared error (RMSEP) of 0.32 for pH and r 2 jack of 0.74 and RMSEP of 0.21 (log10 μg l−1) for TP. Both models showed strong performances in comparison with existing models for Ireland and elsewhere. Application of the pH and TP transfer functions developed here will enable the generation of quantitative water quality data from the expanding number of palaeolimnological records available for the Irish Ecoregion, and thus facilitate the use of palaeolimnological approaches in the reconstruction of past lake water quality, ecological assessment and restoration.  相似文献   

11.
The impact of recent natural and human-induced environmental change on chironomid faunas on Svalbard has been investigated. The modern chironomid fauna was studied from surface-sediment samples collected from 23 lakes in western Svalbard. A total of 18 taxa was found, of which three had not been recorded previously from Svalbard. The influence of water chemistry and physical variables on the distribution and abundance of the modern chironomid assemblages was investigated using correspondence analysis and multiple regression. The chironomid assemblages fall into four groups, which are primarily influenced by pH, nutrient concentrations, water temperature, and water depth. Sediment cores were taken from three lakes to investigate changes in chironomid assemblages over the last 700 years. At two of the sites there is evidence for a response to regional climatic change occurring about 200 years ago and may have been associated with the ‘Little Ice Age’. At the third site there is a response to local catchment changes, probably brought about, initially, by the establishment of a human settlement close to the lake 70 years ago, and subsequently, as a result of the abandonment of this settlement in 1988.  相似文献   

12.
We used multivariate statistical techniques to analyse the distributions of surface sediment chironomid assemblages with respect to surface-water temperature, and an additional set of 27 environmental variables, in 30 freshwater lakes of northern Fennoscandia. Our study transect spans boreal coniferous forest to subarctic tundra and includes a steep temperature gradient. Canonical correspondence analysis (CCA) with forward selection and associated Monte Carlo permutation tests revealed that there were statistically significant (P<0.05) relationships between chironomid distributions and two environmental variables, namely lakewater temperature and maximum lake depth. A constrained CCA with temperature as the only predictor variable suggested that the relationship between lakewater temperature and chironomid composition was sufficiently robust for developing a weighted-averaging (WA) based quantitative inference model that will allow palaeotemperature reconstructions using subfossil chironomid remains preserved in lake sediments.  相似文献   

13.
This study uses the Holocene lake sediment of Lake ?ū?i (Latvia, Vidzeme Heights) for environmental reconstruction with multi-proxy records including lithology, computerised axial tomography scan, grain-size analysis, geochemistry, diatoms and macrofossils, supported by AMS radiocarbon dating. Numerical analyses (PCA; CONISS) reveal three main phases in the development of the lake. Response to the Lateglacial–Holocene transition in Lake ?ū?i took place around 11,300 cal. BP. Organogenic sedimentation started with distinctive 5-cm-thick peat layer and was followed by lacustrine sedimentation of carbonaceous gyttja. Several findings of the peat layer with similar dated age and position at different absolute altitudes indicate that lake basin was formed by glaciokarstic processes. In the Early Holocene (until around 8,500 cal. BP), the lake was shallow and holomictic, surrounded by unstable catchment with erosion and inflow events. Predominance of diatom species of Cyclotella and Tabellaria, large numbers of respiratory horns of phantom midge pupae (Chaoboridae), high Fe/Mn ratio, as well as the presence of laminated sediments indicates the transition to a dimictic and oligo-mesotrophic lake conditions with high water level, anoxia in the near-bottom and stable catchment in the Middle Holocene (8,500–2,000 cal. BP). This contrasts with many hydrologically sensitive lakes in Northern and Eastern Europe in which the water level fell several meters during this period. During the Late Holocene (from 2,000 cal. BP to the present), the lithological and biotic variables reveal major changes, such as the increase in erosion (coarser grain-size fraction) and eutrophication [diatoms Aulacoseira ambigua (Grun.) Sim., Stephanodiscus spp., Cyclostephanos dubius (Fricke) Round]. Characteristics of lake-catchment system during the Late Holocene reflect anthropogenic signal superimposed on the natural forcing factors. To date, the Late Quaternary palaeolimnological reconstructions using lake sediment has been limited in the Baltic region. Therefore, findings from Lake ?ū?i provide important information about environmental and climatic changes that took place in this part of Eastern Europe. This study shows that the relative importance of climate and local factors has varied over the time and it is essential to consider the lake basin topography, catchment size and land cover as potential dominant forcing factors for changes in sedimentary signal.  相似文献   

14.
Multivariate numerical analyses (DCA, CCA) were used to study the distribution of chironomids from surface sediments of 100 lakes spanning broad ecoclimatic conditions in northern Swedish Lapland. The study sites range from boreal forest to alpine tundra and are located in a region of relatively low human impact. Of the 19 environmental variables measured, ordination by CCA identified mean July air temperature as one of the most significant variables explaining the distribution and the abundance of chironomids. Lossonignition (LOI), maximum lake depth and mean January air temperature also accounted for significant variation in chironomid assemblages. A quantitative transfer function was created to estimate mean July air temperature from sedimentary chironomid assemblages using weightedaveraging partial least squares regression (WAPLS). The coefficient of determination was relatively high (r2 = 0.65) with root mean squared error of prediction (RMSEP, based on jack-knifing) of 1.13 °C and maximum bias of 2.1 °C, indicating that chironomids can provide useful quantitative estimates of past changes in mean July air temperature. The paper focuses mainly on the relationship between chironomid composition and July air temperature, but the relationship to LOI and depth are also discussed.  相似文献   

15.
Twenty-four lakes on Svalbard were sampled for palaeolimnological studies and are described in terms of their geographical location, catchment characteristics, water chemistry, and flora. No sediment could be retrieved from one of the lakes. There is a close correlation, as detected by redundancy analysis, between lake-water chemistry and catchment variables, particularly bedrock geology and geographical location for 23 lakes. The flora of the lake catchments is statistically related, as shown by canonical correspondence analysis, to bedrock geology, climate (geographical location), and nutrient status (bird impact). Modern pollen assemblages from eleven lakes contain 2–25% far-distance extra-regional pollen. The modern local and regional pollen depositions are dominated by Oxyria digyna, Poaceae, Saxifraga, Salix, and Brassicaceae pollen.  相似文献   

16.
Chironomids have been used extensively for reconstructing past temperatures from the late glacial chronozone but far less work has focused on their use as temperature proxies throughout the Holocene, and little work has been undertaken within the UK. Northern England does have many detailed palaeoclimate records, although the majority of these are reconstructions from ombrotrophic peat bogs, which yield a combined temperature and precipitation proxy record. A lake sediment core from Talkin Tarn, dating back 6000 years, was therefore analysed for chironomid remains in an attempt to produce a Holocene temperature reconstruction. Although chironomids have been shown to respond to air temperature by many modern training sets, it is also known that they can respond to other environmental factors. Pollen and loss-on-ignition analyses were therefore undertaken to ascertain whether the lake had been subjected to major environmental changes. Some anthropogenic changes in land use were detected, which may have affected the lake water chemistry and sediments, but they seem to have had little direct impact on the chironomid fauna for the majority of the record. Part of the geology of the catchment is limestone, which suggests that the lake may be buffered against any changes in pH. A chironomid-inferred mean July temperature transfer function from a Norwegian training set was applied to the chironomid data and produced a reconstruction with significant fluctuations throughout the later Holocene, which were associated with cold and warm stenotherms within the assemblages. The uppermost chironomid sample from the lake core (less than 100 years old) has a reconstructed temperature of 14.6 °C (± sample-specific error of 1.18 °C), which compares well with the contemporary mean July average of 14.8 °C. It is therefore concluded that chironomids can be used to reconstruct Holocene temperature, provided the site is well-buffered in relation to pH changes and can be shown not to have been influenced to any great extent by anthropogenic disturbance.  相似文献   

17.
Fossil assemblages of chironomid larvae (non-biting midges) preserved in lake sediments are well-established paleothermometers in north-temperate and boreal regions, but their potential for temperature reconstruction in tropical regions has never before been assessed. In this study, we surveyed sub-fossil chironomid assemblages in the surface sediments of 65 lakes and permanent pools in southwestern Uganda (including the Rwenzori Mountains) and central and southern Kenya (including Mount Kenya) to document the modern distribution of African chironomid communities along the regional temperature gradient covered by lakes situated between 489 and 4,575 m above sea level (a.s.l). We then combined these faunal data with linked Surface-Water Temperature (SWTemp: range 2.1–28.1°C) and Mean Annual Air Temperature (MATemp: range 1.1–24.9°C) data to develop inference models for quantitative paleotemperature reconstruction. Here we compare and discuss the performance of models based on different numerical techniques [weighted-averaging (WA), weighted-averaging partial-least-squares (WA-PLS) and a weighted modern analogue technique (WMAT)], and on subsets of lakes with varying gradient lengths of temperature and other environmental variables. All inference models calibrated against MATemp have a high coefficient of determination ( r\textjack2 r_{\text{jack}}^{2}  = 0.81–0.97), low maximum bias (0.84–2.59°C), and low root-mean-squared error of prediction (RMSEP = 0.61–1.50°C). The statistical power of SWTemp models is generally weaker ( r\textjack2 r_{\text{jack}}^{2}  = 0.77–0.95; maximum bias 1.55–3.73°C; RMSEP = 1.39–1.98°C), likely because the surface-water temperature data are spot measurements failing to catch significant daily and seasonal variation. Models based on calibration over the full temperature gradient suffer slightly from the limited number of study sites at intermediate elevation (2,000–3,000 m), and from the presence of morphologically indistinguishable but ecologically distinct taxa. Calibration confined to high-elevation sites (>3,000 m) has poorer error statistics, but is less susceptible to biogeographical and taxonomic complexities. Our results compare favourably with chironomid-based temperature inferences in temperate regions, indicating that chironomid-based temperature reconstruction in tropical Africa can be achieved.  相似文献   

18.
Previous studies have shown chironomids to be excellent indicators of environmental change and training sets have been developed in order to allow these changes to be reconstructed quantitatively from subfossil sequences. Here we present the results of an investigation into the relationships between surface sediment subfossil chironomid distribution and lake environmental variables from 42 lakes on the Tibetan Plateau. Canonical correspondence analysis (CCA) revealed that of the 11 measured environmental variables, salinity (measured as total dissolved solids TDS) was most important, accounting for 10.5% of the variance in the chironomid data. This variable was significant enough to allow the development of quantitative inference models. A range of TDS inference models were developed using Weighted Averaging (WA), Partial Least Squares (PLS), Weighted Averaging–Partial Least Squares (WA–PLS), Maximum Likelihood (ML), Modern Analogues Technique (MAT) and Modern Analogues Techniques weighted by similarity (WMAT). Evaluation of the site data indicated that four lakes were major outliers, and after omitting these from the training set the models produced jack-knifed coefficients of determination (r 2) between 0.60 and 0.80, and root-mean-squared errors of prediction (RMSEP) between 0.29 and 0.44 log10 TDS. The best performing model was the two-component WA–PLS model with r 2 jack = 0.80 and RMSEPjack = 0.29 log10 TDS. The model results were similar to other chironomid-salinity models developed in different regions, and they also showed similar ecological groupings along the salinity gradient with respect to freshwater/salinity thresholds and community diversity. These results therefore indicate that similar processes may be controlling chironomid distribution across salinity gradients irrespective of biogeographical constraints. The performance of the transfer functions illustrates that chironomid assemblages from the Tibetan Plateau lakes are clearly sensitive indicators of salinity. The models will therefore allow the quantification of long-term records of past water salinity for lacustrine sites across the Tibetan Plateau, which has important implications for future hydrological research in the region.  相似文献   

19.
Diatom, chrysophyte cyst, benthic cladocera, planktonic cladocera, and chironomid assemblages were studied in the surface sediments of 68 small lakes along an altitudinal gradient from 300 to 2350 m in Switzerland. In addition, 43 environmental variables relating to the physical limnology, geography, catchment characteristics, climate, and water chemistry were recorded or measured for each lake. The explanatory power of each of these predictor variables for the different biological data-sets was estimated by a series of canonical correspondence analyses (CCA) and the statistical significance of each model was assessed by Monte Carlo permutation tests. A minimal set of environmental variables was found for each biological data-set by a forward-selection procedure within CCA. The unique, independent explanatory power of each set of environmental variables was estimated by a series of CCAs and partial CCAs. Inference models or transfer functions for mean summer (June, July, August) air temperature were developed for each biological data-set using weighted-averaging partial least squares or partial least squares. The final transfer functions, after data screening, have root mean squared errors of prediction, as assessed by leave-one-out cross-validation, of 1.37 °C (chironomids), 1.60 °C (benthic cladocera), 1.62 °C (diatoms), 1.77 °C (planktonic cladocera), and 2.23 °C (chrysophyte cysts).  相似文献   

20.
The relationships between diatoms (Bacillariophyceae) in surface sediments of lakes and summer air temperature, pH and total organic carbon concentration (TOC) were explored along a steep climatic gradient in northern Sweden to provide a tool to infer past climate conditions from sediment cores. The study sites are in an area with low human impact and range from boreal forest to alpine tundra. Canonical correspondence analysis (CCA) constrained to mean July air temperature and pH clearly showed that diatom community composition was different between lakes situated in conifer-, mountain birch- and alpine-vegetation zones. As a consequence, diatoms and multivariate ordination methods can be used to infer past changes in treeline position and dominant forest type. Quantitative inference models were developed to estimate mean July air temperature, pH and TOC from sedimentary diatom assemblages using weighted averaging (WA) and weighted averaging partial least squares (WA-PLS) regression. Relationships between diatoms and mean July air temperature were independent of lake-water pH, TOC, alkalinity and maximum depth. The results demonstrated that diatoms in lake sediments can provide useful and independent quantitative information for estimating past changes in mean July air temperature (R2 jack = 0.62, RMSEP = 0.86 °C; R2 and root mean squared error of prediction (RMSEP) based on jack-knifing), pH (R2 jack = 0.61, RMSEP = 0.30) and TOC (R2 jack = 0.49, RMSEP = 1.33 mg l-1). The paper focuses mainly on the relationship between diatom community composition and mean July air temperature, but the relationships to pH and TOC are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号