首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The frequently observed parallelism between rifts and the preexisting orogenic fabric of continents suggests that the inherited tectonic fabric of the lithosphere influences the rupture of continents. We propose that the existence of a pervasive fabric in the lithospheric mantle induces an anisotropic strength in the lithosphere, that guides the propagation of continental rifts. Subcrustal mantle mechanical anisotropy is supported by (i) the anisotropic strength of olivine, (ii) an ubiquitous tectonic fabric in exposed mantle rocks, and (iii) measurements of seismic and electrical anisotropy. During major episodes of continent assembly, a pervasive deformation of the lithosphere induces a lattice-preferred orientation of olivine in mantle rocks. Later on, this crystallographic fabric is ‘frozen-in’ and represents the main source of shear wave splitting. This olivine fabric may entail a mechanical anisotropy in the lithospheric mantle. During subsequent tectonic events, especially during rifting, mechanical anisotropy may control the tectonic behaviour of the lithosphere  相似文献   

2.
Shear-wave splitting measurements from local and teleseismic earthquakes are used to investigate the seismic anisotropy in the upper mantle beneath the Rwenzori region of the East African Rift system. At most stations, shear-wave splitting parameters obtained from individual earthquakes exhibit only minor variations with backazimuth. We therefore employ a joint inversion of SKS waveforms to derive hypothetical one-layer parameters. The corresponding fast polarizations are generally rift parallel and the average delay time is about 1 s. Shear phases from local events within the crust are characterized by an average delay time of 0.04 s. Delay times from local mantle earthquakes are in the range of 0.2 s. This observation suggests that the dominant source region for seismic anisotropy beneath the rift is located within the mantle. We use finite-frequency waveform modeling to test different models of anisotropy within the lithosphere/asthenosphere system of the rift. The results show that the rift-parallel fast polarizations are consistent with horizontal transverse isotropy (HTI anisotropy) caused by rift-parallel magmatic intrusions or lenses located within the lithospheric mantle—as it would be expected during the early stages of continental rifting. Furthermore, the short-scale spatial variations in the fast polarizations observed in the southern part of the study area can be explained by effects due to sedimentary basins of low isotropic velocity in combination with a shift in the orientation of anisotropic fabrics in the upper mantle. A uniform anisotropic layer in relation to large-scale asthenospheric mantle flow is less consistent with the observed splitting parameters.  相似文献   

3.
The Indo–Asian continental collision is known to have had a great impact on crustal deformation in south-central Asia, but its effects on the sublithospheric mantle remain uncertain. Studies of seismic anisotropy and volcanism have suggested that the collision may have driven significant lateral mantle flow under the Asian continent, similar to the observed lateral extrusion of Asian crustal blocks. Here we present supporting evidence from P-wave travel time seismic tomography and numerical modeling. The tomography shows continuous low-velocity asthenospheric mantle structures extending from the Tibetan plateau to eastern China, consistent with the notion of a collision-driven lateral mantle extrusion. Numerical simulations suggest that, at the presence of a low-viscosity asthenosphere, continued mass injection under the Indo–Asian collision zone over the past 50 My could have driven significant lateral extrusion of the asthenospheric mantle, leading to diffuse asthenospheric upwelling, rifting, and widespread Cenozoic volcanism in eastern China.  相似文献   

4.
The presence of two regional seismic networks in southeastern France provides us high-quality data to investigate upper mantle flow by measuring the splitting of teleseismic shear waves induced by seismic anisotropy. The 10 three-component and broadband stations installed in Corsica, Provence, and western Alps efficiently complete the geographic coverage of anisotropy measurements performed in southern France using temporary experiments deployed on geodynamic targets such as the Pyrenees and the Massif Central. Teleseismic shear waves (mainly SKS and SKKS) are used to determine the splitting parameters: the fast polarization direction and the delay time. Delay times ranging between 1.0 and 1.5 s have been observed at most sites, but some larger delay times, above 2.0 s, have been observed at some stations, such as in northern Alps or Corsica, suggesting the presence of high strain zones in the upper mantle. The azimuths of the fast split shear waves define a simple and smooth pattern, trending homogeneously WNW–ESE in the Nice area and progressively rotating to NW–SE and to NS for stations located further North in the Alps. This pattern is in continuity with the measurements performed in the southern Massif Central and could be related to a large asthenospheric flow induced by the rotation of the Corsica–Sardinia lithospheric block and the retreat of the Apenninic slab. We show that seismic anisotropy nicely maps the route of the slab from the initial rifting phase along the Gulf of Lion (30–22 Ma) to the drifting of the Corsica–Sardinia lithospheric block accompanied by the creation of new oceanic lithosphere in the Liguro–Provençal basin (22–17 Ma). In the external and internal Alps, the pattern of the azimuth of the fast split waves follows the bend of the alpine arc. We propose that the mantle flow beneath this area could be influenced or perhaps controlled by the Alpine deep penetrative structures and that the Alpine lithospheric roots may have deflected part of the horizontal asthenospheric flow around its southernmost tip.  相似文献   

5.
岩石圈地幔结构及其对中国大型盆地的演化意义   总被引:5,自引:1,他引:4  
Pn波是通过莫霍面下方的上地幔顶部的地震波.由于Pn波的速度随温度和物质成分而变化, 以及Pn波各向异性可以反映地幔形变的历史.因此Pn波的速度以及各向异性成为探索岩石圈结构的重要工具.中国岩石圈地幔的Pn速度的特征是很高速的异常区和很低速的异常区呈镶嵌状出现, 反映了地质结构的不均匀性.西部大型盆地(塔里木、准噶尔、吐哈、柴达木和四川盆地) 具有较高的Pn速度和较弱的各向异性, 反映出这些盆地的岩石圈是冷的和坚硬的, 其变形较小.大面积的华北地区, 在太古代的基底下具有明显的Pn波低速度.研究结果表明与这些地区裂谷、岩石圈减薄和地幔上涌区相一致.Pn波各向异性与在最新(和目前正在进行) 的大规模变形期间, 岩石圈地幔沿NNE向右旋简单剪切相一致.华北的金矿藏以及华北和松辽盆地的石油储藏的位置明显地与该区的低Pn波速度区相吻合, 表明该区金属成矿和油储的形成与中、新生代以来在岩石圈地幔中的热活动, 以及壳幔之间的相互作用过程密切相关.   相似文献   

6.
N. I. Filatova 《Petrology》2008,16(5):448-467
The paper presents data on pull-apart (synchronous with strike-slip faulting) extensional structures formed in relation to Indo-Eurasian collision and including continental marginal rifts in East Asia and adjacent marginal sea basins. The evolution of Cenozoic pull-apart basins (developing synchronously with strike-slip faulting) in the western surroundings of the Pacific ocean corresponds to a basaltoid sequence in which the onset of rifting and the stage of maximum extension are marked by the first and last members of this sequence that have, respectively, calc-alkaline and tholeiitic depleted composition. The predominance of intermediate members with mixed isotopic-geochemical signatures testifies to the interaction of diverse magmatic melts. The opening of pull-apart basins (including those of marginal sea) was associated with magmatism whose sources were localized, judging from geochemical indicators, in the modified continental lithospheric mantle and depleted asthenosphere. The sources in the lithospheric mantle that was affected by long-lasting metasomatic recycling in the geological past dominated during the initial stages of continental extension and gave way to depleted asthenospheric sources. This model is consistent with the deep structure of the territories: extensional basins correspond to asthenospheric upwelling, with the ascent of asthenospheric diapirs positively correlated with the intensity of extension of the continental lithosphere and the degree of depletion of the accumulated basaltoids. The discovery of widespread calc-alkaline rocks (which are genetically related to the ancient metasomatized lithospheric mantle) in zones of continental rifting and marginal basins of the strike-slip fault nature significantly broadens the compositional range of volcanics typical of extensional geodynamic environments. At the same time, this testifies to the polygeodynamic nature of calc-alkaline volcanics, which can accumulate without any relations with coeval subduction zones.  相似文献   

7.
朱涛  马小溪 《地学前缘》2021,28(2):284-295
在已有模型的基础上,考虑岩石圈厚度和软流层横向黏度的变化,本文建立了更接近地球实际情形的地幔对流模型,然后重新推测了导致云南地区剪切波各向异性的软流层源的深度。结果表明:岩石圈厚度和软流层横向黏度变化对云南地区的软流层各向异性源的深度及软流层的变形程度和机制具有重要影响;软流层各向异性对云南西南部区域、东部区域北纬26°N以南和四川盆地及其西缘的剪切波分裂具有明显的贡献,它们分别位于90~180、170~330和200~320 km深度;在云南西南部区域和东部区域北纬26°N以南,导致剪切波分裂的软流层可能处于大剪切变形状态,主要受地幔流动方向/流动平面模式控制,而四川盆地及其西缘的则处于小剪切变形状态,主要受应变模式的控制。  相似文献   

8.
The source of hotspot volcanism lies in metasomatized regions of the continental mantle proximal to ancient sutures and failed rifts. Such regions are prone to melting under hotcell conditions on continental rifting, and to erosion into the deeper mantle by asthenospheric flow. In opening basins, rifting parallel to such sutures or failed rifts delaminates and cycles continental mantle into the MORB source. Rifting at some angle to a suture or failed rift generates a hotspot track by preferential melting of the metasomatized mantle as it is cycled toward the rift axis. Continental mantle eroded into the asthenosphere becomes displaced from the continent by net westward drift of the lithosphere relative to the deep mantle to give rise to hotspot volcanism in long-lived ocean basins.  相似文献   

9.
中国边缘海域及其邻区的岩石层结构与构造分析   总被引:3,自引:0,他引:3  
利用中国边缘海域近年的地震层析成像结果,根据速度异常和各向异性分析东海、黄海和南海北部的岩石层结构和构造,讨论中朝块体和扬子块体在黄海内部的拼合边界(黄海东部断裂带)、东海陆架盆地上地幔异常与岩石层形成演化、南海北部地壳底部高速层的成因及地幔活动等问题。分析表明,黄海东部与朝鲜半岛之间存在一个深部构造界限(大致对应于黄海东部断裂带),分界两侧Pn波速度各向异性存在明显差异,反映不同构造应力和断裂剪切运动作用下的岩石层地幔变形特征。东海陆架下方的低速异常揭示了张裂盆地形成时期的地幔活动痕迹,表明中、新生代期间发生过地幔上涌并造成岩石层减薄,菲律宾海板块向西俯冲引发的地幔活动对东海陆架岩石层的形成、演化产生明显的影响。南海北部岩石层厚度较大并且温度相对偏低,地幔异常仅限于局部地区,估计南海北部大陆边缘的地壳底部高速层形成于张裂发生之前,或者是地壳形成时期壳幔分异时的产物。南海中央海盆的扩张不仅导致地壳拉张,软流层物质上涌,而且也造成岩石层地幔减薄甚至缺失。  相似文献   

10.
The origin of the Baikal rift zone (BRZ) has been debated between the advocates of passive and active rifting since the 1970s. A re-assessment of the relevant geological and geophysical data from Russian and international literature questions the concept of broad asthenospheric upwelling beneath the rift zone that has been the cornerstone of many “active rifting” models. Results of a large number of early and recent studies favour the role of far-field forces in the opening and development of the BRZ. This study emphasises the data obtained through studies of peridotite and pyroxenite xenoliths brought to the surface by alkali basaltic magmas in southern Siberia and central Mongolia. These xenoliths are direct samples of the upper mantle in the vicinity of the BRZ. Of particular importance are suites of garnet-bearing xenoliths that have been used to construct PT- composition lithospheric cross-sections in the region for the depth range of 35–80 km.Xenolith studies have shown fundamental differences in the composition and thermal regime between the lithospheric mantle beneath the ancient Siberian platform (sampled by kimberlites) and beneath younger mobile belts south of the platform. The uppermost mantle in southern Siberia and central Mongolia is much hotter at similar levels than the mantle in the Siberian craton and also has significantly higher contents of ‘basaltic’ major elements (Ca, Al, Na) and iron, higher Fe/Si and Fe/Mg. The combination of the moderately high geothermal gradient and the fertile compositions in the off-cratonic mantle appears to be a determining factor controlling differences in sub-Moho seismic velocities relative to the Siberian craton. Chemical and isotopic compositions of the off-cratonic xenoliths indicate small-scale and regional mantle heterogeneities attributed to various partial melting and enrichment events, consistent with long-term evolution in the lithospheric mantle. Age estimates of mantle events based on Os–Sr–Nd isotopic data can be correlated with major regional stages of crustal formation and may indicate long-term crust–mantle coupling. The ratios of 143/144Nd in many LREE-depleted xenoliths are higher than those in MORB or OIB source regions and are not consistent with a recent origin from asthenospheric mantle.Mantle xenoliths nearest to the rift basins (30–50 km south of southern Lake Baikal) show no unequivocal evidence for strong heating, unusual stress and deformation, solid state flow, magmatic activity or partial melting that could be indicative of an asthenospheric intrusion right below the Moho. Comparisons between xenoliths from older and younger volcanic rocks east of Lake Baikal, together with observations on phase transformations and mineral zoning in individual xenoliths, have indicated recent heating in portions of the lithospheric mantle that may be related to localised magmatic activity or small-scale ascent of deep mantle material. Overall, the petrographic, PT, chemical and isotopic constraints from mantle xenoliths appear to be consistent with recent geophysical studies, which found no evidence for a large-scale asthenospheric upwarp beneath the rift, and lend support to passive rifting mechanism for the BRZ.  相似文献   

11.
南北构造带北段位于青藏高原东北缘及其向北东方向扩展的区域,其岩石圈变形特征对于探讨青藏高原东北缘变形机制及其扩展范围具有非常关键的意义。地震波各向异性能很好地反映上地幔的变形特征。因此,本文对布设在南北构造带北段的流动地震台站记录的远震波形资料进行S波分裂研究,获得了研究区上地幔各向异性图像以及该区岩石圈地幔的变形特征信息。S波分裂研究结果表明,研究区地震波各向异性来自于上地幔,区内不同构造单元上地幔各向异性方向不尽相同。快波方向分布显示,青藏高原东北缘,鄂尔多斯西缘以及贺兰构造带北段的快波方向主要表现为NW-SE向,与前人在银川地堑和贺兰构造带中、北部得到的NW-SE向的上地幔各向异性方向一致,显示这些地区岩石圈地幔变形一致,该结果表明青藏高原东北缘向北东方向扩展的影响范围已到达贺兰构造带北段。阿拉善地块内部快波方向显示为NE-SW向,与阿拉善地块北部存在的北东向展布的晚古生代岩浆岩方向一致,表明该NE-SW向的快波方向可能代表地是“化石”各向异性,是晚古生代阿拉善地块受到古亚洲洋闭合作用的结果。此外,鄂尔多斯地块内也存在NE-SW向的各向异性方向,与区内中-晚侏罗世存在的NE-SW向逆冲推覆构造方向一致,因此该各向异性方向也代表了“化石”各向异性,是鄂尔多斯地块受到古特提斯构造域的块体碰撞、古太平洋板块北西向俯冲以及西伯利亚板块向南俯冲共同作用的结果。  相似文献   

12.
杨文采 《地质论评》2014,60(5):945-961
本篇讨论大陆岩石圈拆沉、伸展与裂解作用过程。由于大陆岩石圈厚度大而且很不均匀,产生裂谷的机制比较复杂。大陆碰撞远程效应的触发,岩石圈拆沉,以及板块运动的不规则性和地球应力场方向转折,都可能产生岩石圈断裂和大陆裂谷。岩石圈拆沉为在重力作用下"去陆根"的作用过程,演化过程可分为大陆根拆离、地壳伸展和岩石圈地幔整体破裂三个阶段。大陆碰撞带、俯冲的大陆和大洋板块、克拉通区域岩石圈,都可能产生岩石圈拆沉。大陆岩石圈调查表明,拉张区可见地壳伸展、岩石圈拆离、软流圈上拱和热沉降;它们是大陆岩石圈伸展与裂解早期的主要表现。从初始拉张的盆岭省到成熟的张裂省,拆离后地壳伸展成复式地堑,下地壳幔源玄武岩浆侵位,断裂带贯通并切穿整个岩石圈,表明地壳伸展进入成熟阶段。中国东北松辽盆地和西欧北海盆地曾处于成熟的张裂省。岩石圈破裂为岩浆侵位提供了阻力很小的通道网。岩浆侵位作用伴随岩石圈破裂和热流体上涌,成熟的张裂省可发展成大陆裂谷。多数的大陆裂谷带并没有发展成威尔逊裂谷带和洋中脊,普通的大陆裂谷要演化为威尔逊裂谷带,必须有来自软流圈的长期和持续的热流和玄武质岩浆的供应。威尔逊裂谷带岩石圈地幔和软流圈为地震低速带,其根源可能与来自地幔底部的地幔热羽流有关。  相似文献   

13.
《地学前缘(英文版)》2020,11(5):1635-1649
A compilation of 178 more precise ages on 10 potential Large Igneous Provinces(LIPs) across southern Africa,is compared to Earth's supercontinental cycles,where 5 more prominent LIP-events all formed during the assembly of supercontinents,rather than during breakup.This temporal bias is confirmed by a focused review of field relationships,where these syn-assembly LIPs formed behind active continental arcs;whereas,the remaining postassembly-and likely breakup-related-LIPs never share such associations.Exploring the possibility of two radically different LIP-types,only the two younger breakup events(the Karoo LIP and Gannakouriep Suite) produced basalts with more enriched asthenospheric OIB-signatures;whereas,all assembly LIPs produced basalts with stronger lithospheric,as well as more or less primitive asthenospheric,signatures.A counterintuitive observation of Precambrian breakup LIPs outcropping as smaller fragments that are more peripherally located along craton margins,compared to assembly LIPs as well as the Phanerozoic Karoo breakup LIP,is explained by different preservation potentials during subsequent supercontinental cycles.Thus,further accentuating radical differences between(1) breakup LIPs,preferentially intruding along what evolves to become volcanic rifted margins that are more susceptible to deformation within subsequent orogens,and(2) assembly LIPs,typically emplaced along backarc rifts within more protected cratonic interiors.A conditioned duality is proposed,where assembly LIPs are primarily sustained by thermal blanketing(as well as local arc hydration and rifting) below assembling supercontinents and breakup LIPs more typically form above impinging mantle plumes.Such a duality is further related to an overall dynamic Earth model whereby predominantly supercontinent-orientated ocean lithospheric subduction establishes/revitalizes large low shear velocity provinces(LLSVPs) during assembly LIP-activity,and heating of such LLSVPs by the Earth's core subsequently leads to a derivation of mantle plumes during supercontinental breakup.  相似文献   

14.
Petit 《地学学报》1998,10(3):160-169
To better understand how active deformation localizes within a continental plate in response to extensional and transtensional tectonics, a combined analysis of high-quality gravity (Bouguer anomaly) and seismicity data is presented consisting of about 35000 earthquakes recorded in the Baikal Rift Zone. This approach allows imaging of deformation patterns from the surface down to the Moho. A comparison is made with heat flow variations in order to assess the importance of lithospheric rheology in the style of extensional deformation. Three different rift sectors can be identified. The southwestern rift sector is characterized by strong gravity and topography contrasts marked by two major crustal faults and diffuse seismicity. Heat flow shows locally elevated values, correlated with recent volcanism and negative seismic P-velocity anomalies. Based on earthquake fault plane solutions and on previous stress field inversions, it is proposed that strain decoupling may occur in this area in response to wrench-compressional stress regime imposed by the India–Asia collision. The central sector is characterized by two major seismic belts; the southernmost one corresponds to a single, steeply dipping fault accommodating oblique extension; in the centre of lake Baikal, a second seismic belt is associated with several dip-slip faults and subcrustal thinning at the rift axis in response to orthogonal extension. The northern rift sector is characterized by a wide, low Bouguer anomaly which corresponds to a broad, high topographic dome and seismic belts and swarms. This topography can be explained by lithospheric buoyancy forces possibly linked to anomalous upper mantle. At a more detailed scale, no clear correlation appears between the surficial fault pattern and the gravity signal. As in other continental rifts, it appears that the lithospheric rheology influences extensional basins morphology. However, in the Baikal rift, the inherited structural fabric combined with stress field variations results in oblique rifting tectonics which seem to control the geometry of southern and northeastern rift basins.  相似文献   

15.
运用现代构造解析理论和方法,对新疆可可托海—四川简阳人工地震测深剖面与天然地震面波层析成像进行构造解析基础上,综合地质学、深源岩石包体构造岩石学和地球化学以及其他地球物理学标志等多学科综合研究显示,高速块体或幔块构造的几何结构型式是控制该区岩石圈构造格局和岩石圈表层构造变形基本条件之一。本文建立起该地学断面地壳及岩石圈与软流圈速度结构模型和物质组成结构模型,划分出岩石圈3种几何结构模式:克拉通陆根状结构、造山带楔状结构和高原陆根状结构,以及岩石圈二类构造演化类型:克拉通型岩石圈和增厚型岩石圈。在系统论述断面地壳及岩石圈结构构造类型特征基础上,探讨了该断面软流圈结构特征,岩石圈与软流圈相互作用及其地幔动力学模式。  相似文献   

16.
Rifts and passive margins often develop along old suture zones where colliding continents merged during earlier phases of the Wilson cycle. For example, the North Atlantic formed after continental break-up along sutures formed during the Caledonian and Variscan orogenies. Even though such tectonic inheritance is generally appreciated, causative physical mechanisms that affect the localization and evolution of rifts and passive margins are not well understood.We use thermo-mechanical modeling to assess the role of orogenic structures during rifting and continental breakup. Such inherited structures include: 1) Thickened crust, 2) eclogitized oceanic crust emplaced in the mantle lithosphere, and 3) mantle wedge of hydrated peridotite (serpentinite).Our models indicate that the presence of inherited structures not only defines the location of rifting upon extension, but also imposes a control on their structural and magmatic evolution. For example, rifts developing in thin initial crust can preserve large amounts of orogenic serpentinite. This facilitates rapid continental breakup, exhumation of hydrated mantle prior to the onset of magmatism. On the contrary, rifts in thicker crust develop more focused thinning in the mantle lithosphere rather than in the crust, and continental breakup is therefore preceded by magmatism. This implies that whether passive margins become magma-poor or magma-rich, respectively, is a function of pre-rift orogenic properties.The models show that structures of orogenic eclogite and hydrated mantle are partially preserved during rifting and are emplaced either at the base of the thinned crust or within the lithospheric mantle as dipping structures. The former provides an alternative interpretation of numerous observations of ‘lower crustal bodies’ which are often regarded as igneous bodies. The latter is consistent with dipping sub-Moho reflectors often observed in passive margins.  相似文献   

17.
The Baikal rift zone: the effect of mantle plumes on older structure   总被引:8,自引:0,他引:8  
The main chain of SW–NE-striking Cenozoic half-grabens of the Baikal rift zone (BRZ) follows the frontal parts of Early Paleozoic thrusts, which have northwestern and northern vergency. Most of the large rift half-grabens are bounded by normal faults at the northwestern and northern sides. We suggest that the rift basins were formed as a result of transformation of ancient thrusts into normal listric faults during Cenozoic extension.Seismic velocities in the uppermost mantle beneath the whole rift zone are less than those in the mantle beneath the platform. This suggests thinning of the lithosphere under the rift zone by asthenosphere upwarp. The geometry of this upwarp and the southeastward spread of its material control the crustal extension in the rift zone. This NW–SE extension cannot be blocked by SW–NE compression generated by pressure from the Indian lithospheric block against Central Asia.The geochemical and isotopic data from Late Cenozoic volcanics suggest that the hot material in the asthenospheric upwarp is probably provided by mantle plumes. To distinguish and locate these plumes, we use regional isostatic gravity anomalies, calculated under the assumption that topography is only partially compensated by Moho depth variations. Variations of the lithosphere–asthenosphere discontinuity depth play a significant role in isostatic compensation. We construct three-dimensional gravity models of the plume tails. The results of this analysis of the gravity field are in agreement with the seismic data: the group velocities of long-period Rayleigh waves are reduced in the areas where most of the recognized plumes are located, and azimuthal seismic anisotropy shows that these plumes influence the flow directions in the mantle above their tails.The Baikal rift formation, like the Kenya, Rio Grande, and Rhine continental rifts [Achauer, U., Granet, M., 1997. Complexity of continental rifts as revealed by seismic tomography and gravity modeling. In: Jacob, A.W.B., Delvaux, D., Khan, M.A. (Eds.), Lithosphere Structure, Evolution and Sedimentation in Continental Rifts. Proceedings of the IGCP 400 Meeting, Dublin, March 20–22, 1997. Institute of Advanced Studies, Dublin, pp. 161–171], is controlled by the three following factors: (i) mantle plumes, (ii) older (prerift) linear lithosphere structures favorably positioned relative to the plumes, and (iii) favorable orientation of the far-field forces.  相似文献   

18.
华北东部中生代晚期-新生代软流圈上涌与岩石圈减薄   总被引:37,自引:3,他引:34  
现今的地幔是由软流圈地幔(热的,主元素饱满、微量元素亏损的,塑性流变性质的)、古老岩石圈地幔(地幔1,冷的,主元素贫瘠、微量元素富集的,刚性的,以方辉橄榄岩为代表)以及现今的岩石圈地幔(地幔2,主元素饱满、微量元素亏损,以二辉橄榄岩为代表,可能包括多时期形成的)组成。古老岩石圈地幔与地幔2样品的共存、100~4·3Ma在地幔内部持续发生的古老岩石圈与软流圈的相互作用以及上述作用的时空不均一性,都表明了岩石圈减薄是软流圈呈“蘑菇云状”大规模上涌的结果。上述事件发生于100Ma以后。软流圈来源的玄武岩大范围喷发并伴随了岩石圈的强烈拉伸是事件发生的主要标志,岩石圈减薄是一个深部地质过程,不像是突发事件。  相似文献   

19.
天然地震S波和大地电磁测深给出了两种不同的藏北岩石圈厚度模型,两种测量结果的地质含义至今还不十分清楚。通过对地表高程与地壳厚度回归关系的研究,以回归直线的斜率和截距作为地壳和岩石圈地幔平均密度取值的约束,并考虑相变因素对软流圈密度的影响,采用均衡理论对藏北岩石圈厚度进行了计算。计算结果表明,在可能的软流圈温度取值范围内藏北岩石圈的平均厚度约为106~120km,地壳增厚前的岩石圈平均厚度约80km。藏北新生代火山作用和岩浆起源-分凝深度分析表明,藏北现今岩石圈厚度主要受金云母脱水深度所控制。增厚前岩石圈地幔底部温度高于橄榄岩湿固相线温度,并受闪石和金云母高压脱水作用的影响。加厚岩石圈地幔因其底部不断发生脱水低程度熔融而进入软流圈小尺度对流体系,使岩石圈加厚过程中伴随有底部的脉动减薄作用。  相似文献   

20.
青藏高原东部及其邻区力学耦合的岩石圈变形模式   总被引:1,自引:0,他引:1  
根据青藏高原东部及其邻区布设的143个宽频带固定和流动地震台站的远震记录的SKS波分裂分析获得了各台站的快波偏振方向和快慢波之间的时间延迟。SKS分裂分析结果总体上反映了高原东部的上地幔物质流动方向,即高原内部表现为环绕喜马拉雅东构造结的顺时针旋转。在造山运动过程中有关岩石圈地壳和地幔力学耦合的造山变形方式,用从GPS和第四纪断裂滑动速率数据确定的地面变形场和由地震波各向异性数据推断的地幔变形场联合分析来定量求得。在青藏高原东部和云南、四川等地区新近快速增加的GPS和SKS波分裂观测数据,提供了对青藏高原岩石圈地幔实际变形方式的检验。这些新的数据不仅加强了高原内部力学耦合岩石圈的证据,而且也解释了高原外部相同的耦合特征。文中引入简单剪切变形和纯剪切变形的概念,用于解释高原内外不同的耦合变形特征。青藏高原和周围区域力学耦合岩石圈的垂直连贯变形有两个方面的大陆动力学含义:第一,岩石圈垂直强度剖面被一个重要的条件所约束,即要求与重力势能变化相关的应力能够从地壳传递到地幔;第二,青藏高原各向异性的空间变化反映了一个岩石圈变形的大尺度模式,以及从高原内部的简单剪切变形向高原外部的纯剪切变形的过渡带。文中提出的力学耦合岩石圈变形模型与当前已有的多种造山运动变形模型具有不同的变形含义,因此,地幔变形在青藏高原隆升过程中起主要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号