首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sorption of Ni(II) onto chlorite surfaces was studied as a function of pH (5–10), ionic strength (0.01–0.5 M) and Ni concentration (10−8–10−6 M) in an Ar atmosphere using batch sorption with radioactive 63Ni as tracer. Such studies are important since Ni(II) is one of the major activation products in spent nuclear fuel and sorption data on minerals such as chlorite are lacking. The sorption of Ni(II) onto chlorite was dependent on pH but not ionic strength, which indicates that the process primarily comprises sorption by surface complexation. The maximum sorption was at pH ∼ 8 (Kd = ∼10−3 cm3/g). Desorption studies over a period of 1–2 weeks involving replacement of the aqueous solution indicated a low degree of desorption. The acid–base properties of the chlorite mineral were determined by titration and described using a non-electrostatic surface complexation model in FITEQL. A 2-pK NEM model and three surface complexes, Chl_OHNi2+, Chl_OHNi(OH)+ and Chl_OHNi(OH)2, gave the best fit to the sorption results using FITEQL. The high Kd values and low degree of desorption observed indicate that under expected groundwater conditions, a large fraction of Ni(II) that is potentially leachable from spent nuclear fuel may be prevented from migrating by sorption onto chlorite surfaces.  相似文献   

2.
This work is devoted to characterization of zinc interaction in aqueous solution with two marine planktonic (Thalassiosira weissflogii = TW, Skeletonema costatum = SC) and two freshwater periphytic species (Achnanthidium minutissimum = AMIN, Navicula minima = NMIN) by combining adsorption and electrophoretic measurements with surface complexation modeling and by assessing Zn isotopes fractionation during both long term uptake and short term adsorption on diatom cells and their frustules. Reversible adsorption experiments were performed at 25 and 5 °C as a function of exposure time (5 min to 140 h), pH (2 to 10), zinc concentration in solution (10 nM to 1 mM), ionic strength (I = 0.001 to 1.0 M) and the presence of light. While the shape of pH-dependent adsorption edge is almost the same for all four species, the constant-pH adsorption isotherm and maximal Zn binding capacities differ by an order of magnitude. The extent of adsorption increases with temperature from 5 to 25 °C and does not depend on light intensity. Zinc adsorption decreases with increase of ionic strength suggesting competition with sodium for surface sites. Cell number-normalized concentrations of sorbed zinc on whole cells and their silica frustules demonstrated only weak contribution of the latter (10-20%) to overall zinc binding by diatom cell wall. Measurements of electrophoretic mobilities (μ) revealed negative diatoms surface potential in the full range of zinc concentrations investigated (0.15-760 μmol/L), however, the absolute value of μ decreases at [Zn] > 15 μmol/L suggesting a change in surface speciation. These observations allowed us to construct a surface complexation model for Zn binding by diatom surfaces that postulates the constant capacitance of the electric double layer and considers Zn complexation with carboxylate and silanol groups. Thermodynamic and structural parameters of this model are based on previous acid-base titration and spectroscopic results and allow quantitative reproduction of all adsorption experiments. Although Zn adsorption constants on carboxylate groups are almost the same, Zn surface adsorption capacities are very different among diatom species which is related to the systematic differences in their cell wall composition and thickness. Measurements of Zn isotopic composition (66Zn/(64Zn)) performed using a multicollector ICP MS demonstrated that irreversible incorporation of Zn in cultured diatom cells produces enrichment in heavy isotope compared to growth media (Δ66Zn(solid-solution) = 0.27 ± 0.05, 0.08 ± 0.05, 0.21 ± 0.05, and 0.19 ± 0.05‰ for TW, SC, NMIN, and AMIN species, respectively). Accordingly, an enrichment of cells in heavy isotopes (Δ66Zn(solid-solution) = 0.43 ± 0.1 and 0.27 ± 0.1‰ for NMIN and AMIN, respectively) is observed following short-term Zn sorption on freshwater cells in nutrient media at pH ∼ 7.8. Finally, diatoms frustules are enriched in heavy isotopes compared to solution during Zn adsorption on silica shells at pH ∼ 5.5 (Δ66Zn(solid-solution) = 0.35 ± 0.10‰). Measured isotopes fractionation can be related to the structure and stability of Zn complexes formed and they provide a firm basis for using Zn isotopes for biogeochemical tracing.  相似文献   

3.
Detailed field sampling and analyses and laboratory-based diffusion-cell experiments were used in conjunction with 3-D reactive transport modeling (MODFLOW and MT3D99) to quantify the fate and long-term (10 ka) transport of As in the Rabbit Lake In-pit Tailings Management Facility (RLITMF), northern Saskatchewan, Canada. The RLITMF (300 m × 425 m × 90 m thick) was engineered to ensure solute transport within the RLITMF is dominated by diffusion. Concentrations of As in the tailings pore fluids ranged from 0.24 to 140 mg/L (n = 43). Arsenic speciation analyses indicate 90% of this arsenic exists as As5+. This observation is supported by pH–Eh measurements of pore fluids (n = 135). Geochemical analyses yielded a strong inverse correlation between the Fe/As molar ratio in the tailings solids and the corresponding concentration of dissolved As, which is attributed to the adsorption of As to secondary 2-line ferrihydrite present in the tailings. Diffusion-cell testing yielded values for the effective diffusion coefficient, sorption coefficient, and effective porosity of As in the tailings of 4.5 × 10−10 m2/s, 2–4 cm3/g and 0.36, respectively. Reactive transport simulations using the field and laboratory data show adsorption of As to the tailings and diffusive transport of dissolved As in the tailings should reduce the source term concentration of As to between 40% and 70% of the initial concentrations over the 10 ka simulation period. Based on these simulations, the As concentrations in the regional groundwater, 50 m down gradient of the tailings facility, should be maintained at background concentrations of 0.001 mg/L over the 10 ka period. These findings suggest the engineered in-pit disposal of U mine tailings can provide long-term protection for the local groundwater regime from As contamination.  相似文献   

4.
Soil and water samples were collected from farmsteads and provincial towns across the provinces of La Pampa and San Juan in Argentina. Inductively coupled plasma mass spectrometry was used for the determination of iodine in water following addition of TMAH to 1% v/v and soils extracted with 5% TMAH. Iodine in agricultural soils was in the range of 1.3–20.9 mg/kg in La Pampa located in central Argentina and 0.1–10.5 mg/kg in San Juan located in the northwest Andean region of Argentina, compared to a worldwide mean of 2.6 mg/kg. Mean selenium concentrations for soils from both provinces were 0.3 mg/kg, compared to a worldwide mean of 0.4 mg/kg. The majority of soils were slightly alkaline at pH 6.7 to 8.8. The organic content of soils in La Pampa was 2.5–5.9% and in San Juan 0.1–2.3%, whilst, mobile water extractable soil-iodine was 1–18% for La Pampa and 2–42% for San Juan. No simple relationship observed for pH and organic content, but mobile iodine (%) was highest when organic content was low, higher for lower total iodine concentrations and generally highest at pH > 7.5. Water drawn for drinking or irrigation of a variety of crops and pasture was found to range from 52 to 395 µg/L iodine and 0.8 to 21.3 µg/L selenium in La Pampa and 16–95 µg/L iodine and 0.6 to 8.2 µg/L selenium in San Juan. The water samples were all slightly alkaline between pH 8 and 10. Water–iodine concentrations were highest at pH 7.8 to 8.8 and in groundwaters positively correlated with conductivity. Raw water entering water treatment works in La Pampa was reduced in iodine content from approximately 50 µg/L in raw water to 1 µg/L in treated drinking water, similar to levels observed in regions experiencing iodine deficiency.  相似文献   

5.
The Langmuir and Freundlich adsorption isotherm equations were used to model Cs sorption in 6 Welsh soils. The pH (in water), of the soils ranged from 3.5 to 6.5, and the estimated organic matter (determined by loss-on-ignition) ranged from 4.8% to 46%. According to the Langmuir adsorption isotherm, highest sorption maxima,b, were displayed by the loams at 102–204 mg kg−1, compared with organic soils at 37–86 mg kg−1. Subsoil horizons (15–30 cm depth) did not always display higher sorption maxima than their topsoil (0–15 cm depth) counterparts. Where an improved fit to the Freundlich model was found over the Langmuir model, it was assumed that either concurrent desorption of other species, or bond-energy heterogeneity in the substrate, were significant for these soils.  相似文献   

6.
Strontium-90 is a beta emitting radionuclide produced during nuclear fission, and is a problem contaminant at many nuclear facilities. Transport of 90Sr in groundwaters is primarily controlled by sorption reactions with aquifer sediments. The extent of sorption is controlled by the geochemistry of the groundwater and sediment mineralogy. Here, batch sorption experiments were used to examine the sorption behaviour of 90Sr in sediment–water systems representative of the UK Sellafield nuclear site based on groundwater and contaminant fluid compositions. In experiments with low ionic strength groundwaters (<0.01 mol L−1), pH variation is the main control on sorption. The sorption edge for 90Sr was observed between pH 4 and 6 with maximum sorption occurring (Kd ∼ 103 L kg−1) at pH 6–8. At ionic strengths above 10 mmol L−1, and at pH values between 6 and 8, cation exchange processes reduced 90Sr uptake to the sediment. This exchange process explains the lower 90Sr sorption (Kd ∼ 40 L kg−1) in the presence of artificial Magnox tank liquor (IS = 29 mmol L−1). Strontium K-edge EXAFS spectra collected from sediments incubated with Sr2+ in either HCO3-buffered groundwater or artificial Magnox tank liquor, revealed a coordination environment of ∼9 O atoms at 2.58–2.61 Å after 10 days. This is equivalent to the Sr2+ hydration sphere for the aqueous ion and indicates that Sr occurs primarily in outer sphere sorption complexes. No change was observed in the Sr sorption environment with EXAFS analysis after 365 days incubation. Sequential extractions performed on sediments after 365 days also found that ∼80% of solid associated 90Sr was exchangeable with 1 M MgCl2 in all experiments. These results suggest that over long periods, 90Sr in contaminated sediments will remain primarily in weakly bound surface complexes. Therefore, if groundwater ionic strength increases (e.g. by saline intrusion related to sea level rise or by design during site remediation) then substantial remobilisation of 90Sr is to be expected.  相似文献   

7.
Due to their potential retention capacity, clay minerals have been proposed for use in the engineered barriers for the storage of high-level radioactive actinides in deep geological waste repositories. However, there is still a lack of data on the sorption of actinides in clays in conditions simulating those of the repositories. The present article examines the sorption of two lanthanides (actinide analogues) in a set of smectitic clays (FEBEX bentonite, MX80 bentonite, hectorite, saponite, Otay montmorillonite, and Texas montmorillonite). Distribution coefficients (Kd) were determined in two media: water and 0.02 mol L−1 Ca, the latter representing the cement leachates that may modify the chemical composition of the water in contact with the clay. The Kd values of the lanthanides used in the experiments (La and Lu) varied greatly (25-50 000 L kg−1) depending on the ionic medium (higher values in water than in the Ca medium), the initial lanthanide concentration (up to three orders of magnitude decrease inversely with lanthanide concentration), and the examined clay (up to one order of magnitude for the same lanthanide and sorption medium). Freundlich and Langmuir isotherms were used to fit sorption data to allow comparison of the sorption parameters among smectites. The model based on the two-site Langmuir isotherms provided the best fit of the sorption data, confirming the existence of sorption sites with different binding energies. The sites with higher sorption affinity were about 6% of the total sorption capacity in the water medium, and up to 17% in the Ca medium, although in this latter site sorption selectivity was lower. The wide range of Kd values obtained regarding the factors examined indicated that the retention properties of the clays should also be considered when selecting a suitable clay for engineered barriers.  相似文献   

8.
The sorption of Np(V) and Np(IV) onto kaolinite has been studied in the absence and presence of humic acid (HA) in a series of batch equilibrium experiments under different experimental conditions: [Np]0: 1.0 × 10-6 or 1.0 × 10-5 M, [HA]0: 0 or 50 mg/L, I: 0.01 or 0.1 M NaClO4, solid to liquid ratio: 4 g/L, pH: 6–11, anaerobic or aerobic conditions, without or with carbonate. The results showed that the Np(V) sorption onto kaolinite is affected by solution pH, ionic strength, Np concentration, presence of carbonate and HA. In the absence of carbonate, the Np(V) uptake increased with pH up to ∼96% at pH 11. HA further increased the Np(V) sorption between pH 6 and 9 but decreased the Np(V) sorption between pH 9 and 11. In the presence of carbonate, the Np(V) sorption increased with pH and reached a maximum of 54% between pH 8.5 and 9. At higher pH values, the Np(V) sorption decreased due to the presence of dissolved neptunyl carbonate species with a higher negative charge that were not sorbed onto the kaolinite surface which is negatively charged in this pH range. HA again decreased the Np(V) uptake in the near-neutral to alkaline pH range due to formation of aqueous neptunyl humate complexes. The decrease of the initial Np(V) concentration from 1.0 × 10−5 M to 1.0 × 10−6 M led to a shift of the Np(V) adsorption edge to lower pH values. A higher ionic strength increased the Np(V) uptake onto kaolinite in the presence of carbonate but had no effect on Np(V) uptake in the absence of carbonate.  相似文献   

9.
This study aimed to evaluate boron (B) adsorption and the capacity of a surface complexation model for simulating this process in calcareous soils. Ten surface soils were collected from different land use areas in Hamedan, Western Iran, to characterize B sorption by soils. The mean B adsorbed by the sample soils varied from 8.9 to 32.8 %. Two empirical models including linear and Freundlich equations fitted well to the experimental data. The linear distribution (K d) values varied from 1.32 to 6.86 L kg?1, while the parameters of Freundlich equation including n and K Fr ranged from 1.16 to 1.33 and 3.31–16.81, respectively. The comparison of two empirical models indicated that B adsorption followed a nonlinear pattern. The soil organic matter had positive correlations with Freundlich and linear distribution coefficients. However, empirical models were not suitable for explaining the mechanism of B adsorption, so a surface complexation model was used to simulate and predict the B adsorption process. B adsorption modeling was conducted using Visual MINTEQ and PHREEQC, based on the assemblage of major surface components (hydrous ferric oxides, aluminum hydroxides, calcium carbonate, and humic acids). B adsorption was successfully modeled by surface complexation. The significant contribution of organic matter to B complexes was resulted from both experimental data and mechanistic modeling.  相似文献   

10.
This study was designed to survey the reservoir sediment properties, assess the phosphorus (P) sorption isotherm, and analyze the relationship between sediment properties and sorption parameters. Physicochemical analysis indicated that sediment from the FUSHI reservoir in Zhejiang Province, China, has similar physical and chemical properties and has been contaminated by P. Sorption isotherm experiments showed that the sorption process could be described by Langmuir and Freundlich models. The parameters of Q max (Phosphorus sorption maximum) and K (Freundlich adsorption isotherm constant) ranged from 618.98 to 825.70?mg?kg?1 and 114.18 to 170.74?l?kg?1, respectively. EPC0 (zero P equilibrium concentration) ranged from 0.14 to 0.24?mg?l?1, more than the total P concentration in the water of the reservoir. Thus, the reservoir sediment releases P into the water and acts as a ??P resource??. The clay, Feo, Alt, and Fet?+?Alt content were the main active components in P sorption. Q max had a highly significant positive relationship with some properties and could be estimated by a combination of these.  相似文献   

11.
Indigofera melanadenia and Tephrosia longipes plant species, collected from Cu–Ni mining area, were evaluated for accumulation of Cu and Ni. The total and bioavailable concentrations of Cu and Ni in the host soils were also determined. Flame Atomic Absorption Spectrometry was used for all metal determinations. The total and bioavailable concentrations of Cu in the soils were in the range 900–9000 μg/g and 200–2000 μg/g respectively. For Ni, the total and bioavailable concentrations were in the range 900–2000 μg/g and ∼ 40–100 μg/g respectively. The concentrations of Cu and Ni in the leaves of I. melanadenia were higher than in the roots with a range 80–130 μg/g in the leaves and 20–80 μg/g in the roots for Cu and a range of 150–200 μg/g in the leaves and 20–60 μg/g in the roots for Ni. Concentration of Cu in T. longipes was in the range of 37–240 μg/g and 150–200 μg/g in the leaves and roots respectively while the concentration of Ni was 80–140 μg/g in the leaves and 25–100 μg/g in the roots. Results indicate that both species have a potential for accumulating Cu and Ni. Translocation factor, a ratio of shoots to roots metal concentration, was used to evaluate the translocation properties of the plants from roots to shoots. Translocation factors of the plants were ≥ 1 suggesting efficient translocation of metals from roots to shoots.  相似文献   

12.
The potential use of the immobilized microalgae (in Ca-alginate) of Chlamydomonas reinhardtii to remove Hg(II), Cd(II) and Pb(II) ions from aqueous solutions was evaluated using bare Ca-alginate bead as a control system. Ca-alginate beads containing immobilized microalgae were incubated for the uniform growth at 22 °C for 5 days. Effects of pH, temperature, initial concentration of metal ions and biosorbent dosages on the adsorption of Hg(II), Cd(II) and Pb(II) ions were studied. Adsorption of Hg(II), Cd(II) and Pb(II) ions on the immobilized microalgae showed highest values at around pH 5.0 to 6.0. The adsorption equilibrium was represented with Langmuir and Freundlich adsorption isotherms. The adsorption of these ions on the immobilized microalgae followed second-order kinetics and equilibrium was established in about 60 min. The temperature change in the range of 5–40 °C did not affect the adsorption capacities of the immobilized microalgae. The immobilized-algal systems can be regenerated using 2 M NaCl for Hg(II), Cd(II) and Pb(II) ions.  相似文献   

13.
The purpose of the present work is to extend our knowledge of metal–cyanobacteria interactions and to contribute to the database on adsorption parameters of aquatic microorganisms with respect to metal pollutants. To this end, the surface properties of the cyanobacteria (Gloeocapsa sp. f-6gl) were studied using potentiometric acid–base titration methods and ATR-FTIR (attenuated total reflection infrared) spectroscopy. The electrophoretic mobility of viable cells was measured as a function of pH and ionic strength (0.01 and 0.1 M). Surface titrations at 0.01–1.0 M NaCl were performed using limited residence time reactors (discontinuous titration) with analysis of Ca, Mg and dissolved organic C for each titration point in order to account for alkali-earth metal–proton exchange and cell degradation, respectively. Results demonstrate that the cell-wall bound Ca and Mg from the culture media contribute to the total proton uptake via surface ion-exchange reactions. This has been explicitly taken into account for net proton balance calculations. Adsorption of Zn, Cd, Pb and Cu was studied at 25 °C in 0.01 M NaNO3 as a function of pH and metal concentration. The proportion of adsorbed metal increases as a function of culture age with cells of 44 days old having the largest adsorption capacities. A competitive Langmuir sorption isotherm in conjunction with a linear programming method (LPM) was used to fit experimental data and assess the number of surface sites and adsorption reaction constants involved in the binding of metals to the cyanobacteria surface. These observations allowed the determination of the identity and concentration of the major surface functional groups (carboxylate, amine, phosphoryl/phosphodiester and hydroxyl) responsible for the amphoteric behavior of cyanobacterial cell surfaces in aqueous solutions and for metal adsorption. Results of this work should allow better optimizing of metal bioremediation/biosequestration processes as they help to define the most efficient range of pH, cell biomass and duration of exposure necessary for controlled metal adsorption on cyanobacteria cultures. It follows from comparison of adsorption model parameters between different bacteria that technological application of cyanobacteria in wastewater bioremediation can be as efficient as other biological sorbents.  相似文献   

14.
Biofilm-embedded Mn oxides exert important controls on trace metal cycling in aquatic and soil environments. The speciation and mobility of Zn in particular has been linked to Mn oxides found in streams, wetlands, soils, and aquifers. We investigated the mechanisms of Zn sorption to a biogenic Mn oxide within a biofilm produced by model soil and freshwater MnII-oxidizing bacteria Pseudomonas putida. The biogenic Mn oxide is a c-disordered birnessite with hexagonal layer symmetry. Zinc adsorption isotherm and Zn and Mn K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy experiments were conducted at pH 6.9 to characterize Zn sorption to this biogenic Mn oxide, and to determine whether the bioorganic components of the biofilm affect metal sorption properties. The EXAFS data were analyzed by spectral fitting, principal component analysis, and linear least-squares fitting with reference spectra. Zinc speciation was found to change as Zn loading to the biosorbent [bacterial cells, extracellular polymeric substances (EPS), and biogenic Mn oxide] increased. At low Zn loading (0.13 ± 0.04 mol Zn kg−1 biosorbent), Zn was sorbed to crystallographically well-defined sites on the biogenic oxide layers in tetrahedral coordination to structural O atoms. The fit to the EXAFS spectrum was consistent with Zn sorption above and below the MnIV vacancy sites of the oxide layers. As Zn loading increased to 0.72 ± 0.04 mol Zn kg−1 biosorbent, Zn was also detected in octahedral coordination to these sites. Overall, our results indicate that the biofilm did not intervene in Zn sorption by the Mn-oxide because sorption to the organic material was observed only after all Mn vacancy sites were capped by Zn. The organic functional groups present in the biofilm contributed significantly to Zn removal from solution when Zn concentrations exceeded the sorption capacity of the biooxide. At the highest Zn loading studied, 1.50 ± 0.36 mol Zn kg−1 biosorbent, the proportion of total Zn sorption attributed to bioorganic material was 38 mol%. The maximum Zn loading to the biogenic oxide that we observed was 4.1 mol Zn kg−1 biogenic Mn oxide, corresponding to 0.37 ± 0.02 mol Zn mol−1 Mn. This loading is in excellent agreement with previous estimates of the content of cation vacancies in the biogenic oxide. The results of this study improve our knowledge of Zn speciation in natural systems and are consistent with those of Zn speciation in mineral soil fractions and ferromanganese nodules where the Mn oxides present are possibly biogenic.  相似文献   

15.
Phosphate sorption and desorption experiments were conducted with four ferruginous soils (alfisols) of Eastern India, in view of the low native phosphate concentrations in tropical Indian soils. From the P-isotherm curve, standard P requirement (SPR) of the soils was determined. Phosphate sorption data were fitted to both Langmuir and Freundlich equations and mean sorption maximum values obtained for the different soil series were in the decreasing order as Matimahal > Anandapur > Mrigindih > Kashipur. The fraction of added P sorbed followed the same trend as SPR, P sorption maximum (Pmax), phosphate affinity constant (K), maximum phosphate buffering capacity (MPBC), Freundlich constant K′ and phosphate desorption values. Phosphate sorption maximum was significantly correlated with MPBC, Freundlich 1/n, SPR, clay and different forms of Fe and Al. The value of K (bonding energy) was significantly correlated with MPBC, Freundlich K′ and pyrophosphate extractable Fe and Al. The MPBC was significantly correlated with Freundlich K′, Freundlich constant 1/n, clay, oxalate and dithionite extractable, amorphous and crystalline form of Fe and Al. Freundlich K′ was significantly correlated with Freundlich 1/n, pHwater, clay, dithionite extractable and crystalline form of Fe and Al. The results suggested that the soils having higher amount of extractable and reactive Fe and Al shared higher P sorbtion capacity and such soils may need higher levels of P application  相似文献   

16.
In this study a series of CH4 adsorption experiments on clay-rich rocks were conducted at 35 °C, 50 °C and 65 °C and at CH4 pressure up to 15 MPa under dry conditions. The clay-dominated rock samples used are fresh samples from quarries and mines. Samples are individually dominated by montmorillonite, kaolinite, illite, chlorite, and interstratified illite/smectite. The experimental results show that clay mineral type greatly affects CH4 sorption capacity under the experimental conditions. In terms of relative CH4 sorption capacity: montmorillonite ? illite/smectite mixed layer > kaolinite > chlorite > illite. Physisorption is the dominant process for CH4 absorption on clay minerals, as a result, there is a linear correlation between CH4 sorption capacity and BET surface area in these clay-mineral dominated rocks. The abundance of micro-mesopores in the size range of a few to a few 10 s of nanometers in montmorillonite clay and illite–smectite interstratified clay results in large BET surface area values for these mineral species.  相似文献   

17.
Although widely investigated in relation to acid mine drainage systems at pH > 1.0, we know little about the impact of sulfuric acid (H2SO4) on the geochemistry and mineralogy of clays at pH < 1.0 (including negative pH values). Thus, laboratory batch experiments were conducted on three mixed clay samples with different mass ratios of phyllosilicates (smectite, illite, and kaolinite) to investigate the impact of H2SO4 from pH 1.0 to −3.0 for exposure periods of 14, 90, 180, and 365 days. Si and Al K- and L2,3-edge X-ray absorption near edge structure (XANES) spectroscopy were employed on these samples to determine the chemical and structural changes that occur during acidic dissolution of phyllosilicates that cannot be distinguished using X-ray diffraction analyses. A series of silicate, phyllosilicate, and Al-bearing standard compounds were also studied to provide an explanation for the observed changes in the clay samples. The Si XANES results indicated the preferential dissolution of the phyllosilicates (pH ? 1.0, t ? 14 d), the persistence of quartz even at pH ? −3.0 and t ? 365 d, and the formation of an amorphous silica-like phase that was confined to the surface layer of the altered clay samples at pH ? 0.0 and t ? 90 d). Al XANES results demonstrated dissolution of Al-octahedral layers (pH ? 1.0, t ? 14 d), the persistence of four-fold relative to six-fold coordinated Al, and the precipitation of an Al-SO4-rich phase (pH ? −1.0, t ? 90 d). An existing conceptual model of phyllosilicate dissolution under extremely acidic conditions was modified to include the results of this study.  相似文献   

18.
Batch uptake experiments and X-ray element mapping and spectroscopic techniques were used to investigate As(V) (arsenate) uptake mechanisms by calcite, including adsorption and coprecipitation. Batch sorption experiments in calcite-equilibrated suspensions (pH 8.3; PCO2 = 10−3.5 atm) reveal rapid initial sorption to calcite, with sorption rate gradually decreasing with time as available sorption sites decrease. An As(V)-calcite sorption isotherm determined after 24 h equilibration exhibits Langmuir-like behavior up to As concentrations of 300 μM. Maximum distribution coefficient values (Kd), derived from a best fit to a Langmuir model, are ∼190 L kg−1.Calcite single crystals grown in the presence of As(V) show well-developed rhombohedral morphology with characteristic growth hillocks on surfaces at low As(V) concentrations (?5 μM), but habit modification is evident at As(V) concentrations ?30 μM in the form of macrostep development preferentially on the − vicinal surfaces of growth hillocks. Micro-X-ray fluorescence element mapping of surfaces shows preferential incorporation of As in the − vicinal faces relative to + vicinals. EXAFS fit results for both adsorption and coprecipitation samples confirm that As occurs in the 5+ oxidation state in tetrahedral coordination with oxygen, i.e., as arsenate. For adsorption samples, As(V) forms inner-sphere surface complexes via corner-sharing with Ca octahedra. As(V) coprecipitated with calcite substitutes in carbonate sites but with As off-centered, as indicated by two Ca shells, and with likely disruption of local structure. The results indicate that As(V) interacts strongly with the calcite surface, similar to often-cited analog phosphate, and uptake can occur via both adsorption and coprecipitation reactions. Therefore, calcite may be effective for partial removal of dissolved arsenate from aquatic and soil systems.  相似文献   

19.
Various sorption phenomena, such as aging, hysteresis and irreversible sorption, can cause differences between contaminant (ad)sorption and desorption behavior and lead to apparent sorption ‘asymmetry’. We evaluate the relevance of these characteristics for neptunium(V) (Np(V)) sorption/desorption on goethite using a 34-day flow-cell experiment and kinetic modeling. Based on experimental results, the Np(V) desorption rate is much slower than the (ad)sorption rate, and appears to decrease over the course of the experiment. The best model fit with a minimum number of fitting parameters was achieved with a multi-reaction model including (1) an equilibrium Freundlich site (site 1), (2) a kinetically-controlled, consecutive, first-order site (site 2), and (3) a parameter ψ2,de, which characterizes the desorption rate on site 2 based on a concept related to transition state theory (TST). This approach allows us to link differences in adsorption and desorption kinetics to changes in overall reaction pathways, without assuming different adsorption and desorption affinities (hysteresis) or irreversible sorption behavior a priori. Using modeling as a heuristic tool, we determined that aging processes are relevant. However, hysteresis and irreversible sorption behavior can be neglected within the time-frame (desorption over 32 days) and chemical solution conditions evaluated in the flow-cell experiment. In this system, desorption reactions are very slow, but they are not irreversible. Hence, our data do not justify an assumption of irreversible Np(V) sorption to goethite in transport models, which effectively limits the relevance of colloid-facilitated Np(V) transport to near-field environments. However, slow Np(V) desorption behavior may also lead to a continuous contaminant source term when metals are sorbed to bulk mineral phases. Additional long-term experiments are recommended to definitely rule out irreversible Np(V) sorption behavior at very low surface loadings and environmentally-relevant time-scales.  相似文献   

20.
Temporal variations in the concentration and N isotopic ratios of inorganic N (NH4– and NO3–N) as affected by the soil temperature regime together with the input of bird excreta were analyzed in a sedentary soil under a dense colony (1.6 nests/m2) of breeding Black-tailed Gulls (Laruscrassirostris: a ground-nesting seabird). Surface soil samples were taken monthly from mid-March to late July 2005 from Kabushima Island, Hachinohe, northeastern Japan. The spatial concentration of inorganic N in the soils varied considerably on all sampling dates. There may be a statistically significant trend, showing increased NH4–N content from settlement up to early June when the input of fecal N attains its maximum, and then decreases towards the end of breeding activity (early August). Abundant NO3–N was observed in all soils, particularly in the later stage of breeding (up to 3800 mg-N/kg dry soil), refuting earlier claims that nitrification is unimportant in the soils. δ15N values of NH4 in the soils showed unusually high values up to +51‰, reflecting N isotope fractionation due to volatilization of NH3 during the mineralization. Mean δ15N values of the monthly collected totals of NH4 and NO3 were not significantly different at the 5% level based on ANOVA and significant differences were observed only among the three means of NO3–N collected in mid-March (settlement of colony: δ15N = −0.2 ± 3.5‰) and late July (later stages of breeding: δ15N = +22.1 ± 7.0‰, +23.3 ± 7.8‰) at the 1% and 5% levels by t-test, respectively. Such an observation of significantly increased δ15N values for NO3–N in soils from the fledgling stage indicates the integration of denitrification coupled with nitrification under a limited supply of fecal N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号