首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Drought disaster management entails not only understanding meteorological drought as a natural hazard but also evaluating the adverse societal impacts related to the economy and human lives. For the purpose of quantifying the drought severity from the perspective of society drought, a drought index, namely “Society Drought Severity Index” (SDSI), was put forward to analyze the drought in Yunnan Province of China. In SDSI for Yunnan, the drought severity was represented by the weighted discrepancy between the “appropriate” water needs and the total available water resources, inspired by the established Palmer Drought Severity Index (PDSI). Technically, the trend in historical water consumption records in agricultural, industrial, and domestic sectors was applied to represent the appropriate water needs; an apparent “runoff” was used to represent the available water resource in Yunnan. The SDSI of Yunnan revealed a trend toward increasing drought severity, which resulted from a combination of meteorological changes and water needs escalation. Moreover, the spatial center of the 2010 drought in Yunnan based on SDSI was different from that identified by PDSI, which exactly reflected the influence of water needs on drought severity. The SDSI was deemed to be a beneficial tool for drought disaster management and drought risk governance.  相似文献   

2.
Drought has been a recurring feature of the arid and semi-arid areas of Nigeria. This paper reviews the extent, severity, and consequences of drought and desertification in Nigeria with particular emphasis on the northern part of the country. The haphazard manner in which these environmental hazards have been tackled is examined and a systematic approach for the formulation of a national policy is proposed. It is recommended that a detailed formulation and implementation of the proposed policy plan is imperative to mitigate the often devastating impacts of drought and desertification in the very prone areas of Nigeria. Until such is done, some areas of Nigeria will always be vulnerable to the whims of an inevitable climatic hazard of drought and associated land degradation in the form of desertification.  相似文献   

3.
Drought is one of the most detrimental natural disasters. Studying the changing characteristics of drought is obviously of great importance to achieve the sustainable use of water resources at river basin scales. In this paper, the satellite-based Vegetation Condition Index (VCI) and Vegetation Health Index (VH) were firstly calculated by using NDVI and brightness of the Global Vegetation Index dataset derived from Advance Very High Resolution Radiometer for China in growing seasons over 1982–2005. Then, the long-term VCI and VH data were employed to study the variation of droughts in the ten basins covering the whole country. The linear trend of each pixel showed that most parts of China were getting wetter in growing seasons, and the drought areas defined by the number of drought pixels have decreased in most basins. The increasing trend of basin averaged values of VCI and VH also indicates the whole country was generally getting wetter. At last, to better understand the two remote sensing drought indices, the response of the growing-season VCI and VH was compared to that of the Palmer Drought Severity Index and 6-month Standard Precipitation Index. Significant spatial variability of the relationship between the VCI, VH, and the station-based meteorological drought indices was shown, and some more closely related areas were found. The study will be useful for water resources management for each basin in the future.  相似文献   

4.
Drought risk assessment using remote sensing and GIS techniques   总被引:1,自引:0,他引:1  
Beginning with a discussion of drought definitions, this review paper attempts to provide a review of fundamental concepts of drought, classification of droughts, drought indices, and the role of remote sensing and geographic information systems for drought evaluation. Owing to the rise in water demand and looming climate change, recent years have witnessed much focus on global drought scenarios. As a natural hazard, drought is best characterized by multiple climatological and hydrological parameters. An understanding of the relationships between these two sets of parameters is necessary to develop measures for mitigating the impacts of droughts. Droughts are recognized as an environmental disaster and have attracted the attention of environmentalists, ecologists, hydrologists, meteorologists, geologists, and agricultural scientists. Temperatures; high winds; low relative humidity; and timing and characteristics of rains, including distribution of rainy days during crop growing seasons, intensity, and duration of rain, and onset and termination, play a significant role in the occurrence of droughts. In contrast to aridity, which is a permanent feature of climate and is restricted to low rainfall areas, a drought is a temporary aberration. Often, there is confusion between a heat wave and a drought, and the distinction is emphasized between heat wave and drought, noting that a typical time scale associated with a heat wave is on the order of a week, while a drought may persist for months or even years. The combination of a heat wave and a drought has dire socio-economic consequences. Drought risk is a product of a region’s exposure to the natural hazard and its vulnerability to extended periods of water shortage. If nations and regions are to make progress in reducing the serious consequences of drought, they must improve their understanding of the hazard and the factors that influence vulnerability. It is critical for drought-prone regions to better understand their drought climatology (i.e., the probability of drought at different levels of intensity and duration) and establish comprehensive and integrated drought information system that incorporates climate, soil, and water supply factors such as precipitation, temperature, soil moisture, snow pack, reservoir and lake levels, ground water levels, and stream flow. All drought-prone nations should develop national drought policies and preparedness plans that place emphasis on risk management rather than following the traditional approach of crisis management, where the emphasis is on reactive, emergency response measures. Crisis management decreases self-reliance and increases dependence on government and donors.  相似文献   

5.
Hazard analysis is the first step in any disaster management activity. Drought is a serious environmental hazard strongly limiting the agricultural production in the tropical countries like India. A comprehensive drought hazard map is useful for multiple perspectives such as agriculture, environment and hydrology. In this study, daily rainfall data of the Climate Prediction Centre during the south-west monsoon season (June–September) of 12 years, over India was analysed. Based on rainfall and rainy days, six indicators of drought were generated which were then synthesized into a composite index of drought hazard for every 10 × 10 km pixel. The weights for the composite index were generated through variance approach. The index has effectively captured the spatial variations in meteorological drought across India by showing a typical pattern with increasing hazardous area from east to west. The drought hazard map also shows considerable agreement with the climate classification map and the drought proneness map reported by other studies. Thus, the current study presents a simple and novel approach for drought hazard analysis, using the routinely available geospatial rainfall data products. The methodology can be extended to other geographies and disasters too. Use of time series data of longer period would improve the reliability of the composite drought hazard index.  相似文献   

6.
Drought is a natural phenomenon which occurs in different climate regimes. In the present study, hydrological drought of the Roud Zard basin has been investigated based on run theory. Daily runoff data of Mashin hydrometery station during 1970 to 2012 was assessed using 70 % of mean daily runoff as threshold level. Results showed that the maximum drought duration of 309 days occurred in 1998 and 1999 and max drought deficit of 117.217 million cubic meters per second in 1983 with 275 days duration. Time series of the annual maxima values of duration and volume deficit showed similar trend of increase and decreasing. Burr statistical distribution, as the most suitable one fitted to the drought duration data, forecasted 339 days duration for drought event with 20 years return period and generalized extreme value forecasted 37.9 million cubic meters of deficit volume for this return period. Severity-duration-frequency (SDF) curves were prepared, classifying drought durations to four intervals and fitting statistical distribution to each. Resulted SDF curves showed that, in each period, increase of duration resulted in increased value of the volume deficit with a non-linear trend, though predicted drought volume with 20 years return period was 2.1 million cubic meters for 1 to 10 days duration, 6.9 for 11 to 30 days, 34.5 for 31 to 120 days, and 79.1 for more than 120 days duration drought event. Drought deficit volume increasing rate was also different in each class of duration interval. Drought SDF curves derived in this study can be used to quantify water deficit for natural stream and reservoir. SDFs could also be extended to allow for drought regional frequency analysis to be used in ungauged sites.  相似文献   

7.
基于甘肃省黄土高原区33个气象站1962-2010年气象资料, 利用综合气象干旱指数(CI)对其近50 a的干旱频率和平均持续时间的空间分布、 干旱强度趋势变化和极端干旱事件频次进行了分析, 此基础上应用基于分型理论的R/S方法对干旱强度未来变化趋势进行了预测. 结果表明: 甘肃省黄土高原区干旱发生频率和多年平均持续天数在兰州-靖远一带和庆阳北部属于高值区, 而岷县、 渭源一带属于低值区; 106° E以西"临洮-通渭-天水"一带和庆阳东南部是干旱变幅最大的地方. 20世纪90年代以来, 干旱强度增大的较快, 四季均呈现出干旱强度变大的趋势, 其中春、 秋季干旱强度加剧的趋势明显, 夏季近10 a都处于非常严重的干旱状态, 但未通过0.01的显著性检验; 20世纪60年代至今, 极端干旱事件发生频次快速增多. 四季干旱强度Hurst指数H 均大于0.5, 同时分维数D 均小于1.5, 因此, 未来一段时间干旱强度仍然保持与过去相一致的变化趋势. 研究结果可为相关部门制定相应抗旱对策提供科学依据.  相似文献   

8.
Zhu  Bangyan  Chu  Zhengwei  Shen  Fei  Tang  Wei  Wang  Bin  Wang  Xiao 《Natural Hazards》2019,99(1):379-389

Droughts are hindrances to economic and social developments in many parts of the world, especially in developing nations like Kenya. In North Eastern Kenya (NEK), drought is very prevalent. The communities in the region are mainly dependent on animal farming, and drought occurrence leads to great socioeconomic setback. Drought indices used in most studies consider rainfall as the only parameter for assessing drought occurrences. This study analyzes drought in NEK using the Standardized Precipitation Index (SPI) and the Combined Drought Index (CDI) using rainfall and temperature values and Normalized Difference Vegetation Index values for the period 1980–2010. The results of the two indices show significant correlation. However, CDI is preferred in the analysis of the drought compared to the SPI as it gives drought in more detail, showing extreme, severe, moderate and mild. The study recommends the use of the two methods independently since they give similar results and further recommends trial in other parts of the country affected by drought.

  相似文献   

9.
Assessment of physical vulnerability to agricultural drought in China   总被引:1,自引:0,他引:1  
Food security has drawn great attention from both researchers and practitioners in recent years. Global warming and its resultant extreme drought events have become a great challenge to crop production and food price stability. This study aimed to establish a preliminary theoretical methodology and an operational approach for assessing the physical vulnerability of two wheat varieties (“Yongliang #4” and “Wenmai #6”) to agricultural drought using Environmental Policy Integrated Climate model (EPIC). Drought hazard index was set up based on output variables of the EPIC water stress (WS), including the magnitude and duration of WS during the crop-growing period. The physical vulnerability curves of two wheat varieties to drought were calculated by the simulated drought hazard indexes and loss ratios. And the curve’s effect on drought disaster risk was defined as A, B and C sections, respectively. Our analysis results showed that (a) physical vulnerability curves varied between two wheat varieties, which were determined by genetic parameters of crops; (b) compared with spring wheat “Yongliang 4#” winter wheat “Wenmai 6#” was less vulnerable to drought under the same drought hazard intensity scenario; (c) the wheat physical vulnerability curve to drought hazard displayed a S shape, suggesting a drought intensity–dependent magnifying or reducing effect of the physical vulnerability on drought disasters; (d) the reducing effect was mainly in the low-value area of vulnerability curve, whereas the magnifying effect was in the middle-value area, and the farming-pastoral zone and the Qinling Mountain–Huaihe River zone formed important spatial division belts.  相似文献   

10.
Drought is an extreme event in hydrologic cycle. The occurrences of drought events usually feature determinacy and randomness. With the increasing impact of climate change and anthropogenic activities, drought happens in more areas with higher frequency, and now it threatens the water and ecology security in river basin. Drought is firstly a resource issue, and with its development, it transforms into a disaster issue. From the perspective of the water resources system, the Dongliao River Basin, which has high frequency of drought occurrence, was studied to propose the connotation and the quantitative evaluation method of generalized drought. The driving factors of natural climate variability (NCV), anthropogenic climate change (ACC), underlying condition change and hydraulic engineering regulation (HER) can alter the impacts of drought events. The influencing time of NCV, ACC and HER was decided, respectively, and generalized drought risk maps were drawn. Finally, water emergency dispatch, water demand compression and water diversion were proposed to cope with the generalized drought risk.  相似文献   

11.
植被状况指数的改进及在西北干旱监测中的应用   总被引:8,自引:0,他引:8  
郭铌  管晓丹 《地球科学进展》2007,22(11):1160-1176
干旱是全球分布最广、发生频率最高、持续时间最长、影响范围最大、造成的经济损失最为严重的一种自然灾害,干旱也是所有自然灾害中影响因子最为复杂、人类了解最少、监测最为困难的一种自然灾害,干旱监测是世界性的难题。干旱可以发生在任何气候带上,但干旱、半干旱地区是全球干旱灾害发生最频繁的地区。干旱发生特征和规律因地区的不同会有很大的差异,不同地区对干旱监测方法不同。目前,世界各国干旱监测主要利用基于气象、水文、农业和卫星遥感等观测资料建立的各种干旱指数开展,已经有150多种干旱指数。植被状况指数VCI是应用最为广泛的一种卫星监测干旱的指数,研究和业务应用结果表明,VCI对全球各地的干旱均有较好的反映,已经应用在美国国家大气海洋局(NOAA)日常干旱监测业务中,中国国家卫星气象中心干旱卫星遥感监测服务产品也是以VCI为基础。 我国干旱半干旱地区主要分布在新疆、甘肃、青海、陕西、宁夏以及内蒙古自治区的中西部,这里降水少且不稳定,降水变率大,是中国干旱发生频率最高的地区。干旱严重制约着当地经济发展和人类生活质量的提高,使本身非常脆弱的生态环境趋于恶化。为了了解条件植被指数VCI对西北地区不同气候区干旱的监测能力,以上述6省(区)为研究区,利用1982—2003年22年NDVI数据,计算了研究区域22年来逐月的VCI,对比分析了不同气候区VCI与降水距平的关系。结果表明,VCI在空间和时间上较好地反映了西北大部分气候干旱发生、发展和空间分布,是干旱监测的较好指标,但在干旱和极端干旱地区,VCI经常出现异常偏高现象,不能反映干旱气候区常年干旱的基本特点。通过对西北不同生态系统之间NDVI特点和各生态系统间NDVI年变化及其年际变化规律的研究,设计了VCI改进方案,提出了改进的条件植被指数RVCI。通过对22年来逐月RVCI与VCI的对比,RVCI客观地反映了干旱气候区常年干旱特点,较VCI有显著改进。   相似文献   

12.
Palmer干旱指数在淮河流域的修正及应用   总被引:3,自引:0,他引:3  
Palmer指数是目前研究区域干旱时应用最广泛的指数之一,但由于其空间适用性比较强,所以在应用已修正的Palmer指数描述淮河流域干旱等级和持续时间时和实际情况有较大差异,因此有必要做进一步订正。利用淮河流域开封、信阳、巢湖站1961—2009年逐日降水和气温等常规观测资料,根据1965年Palmer指数原理,在200...  相似文献   

13.
Malik  Anurag  Kumar  Anil  Kisi  Ozgur  Khan  Najeebullah  Salih  Sinan Q.  Yaseen  Zaher Mundher 《Natural Hazards》2021,105(2):1643-1662
Natural Hazards - Drought is a complex natural disaster that adversely affects human life and the ecosystem. A variety of drought indexes are available for monitoring meteorological drought events....  相似文献   

14.
This study presents a methodology for risk analysis, assessment, combination, and regionalization of integrated drought and waterlogging disasters in Anhui Province, which is supported by geographical information systems (GIS) and technique of natural disaster risk assessment from the viewpoints of climatology, geography, disaster science, environmental science, and so on. Along with the global warming, the occurrences of water-related disasters become more frequent and serious. It is necessary to determine the mode of spatial distribution of water-related disaster risk. Based on the principle of natural disaster risk, natural conditions, and socioeconomic situation, drought and waterlogging disaster risk index, which combined hazard, exposure, vulnerability, and restorability, was developed by using combined weights, entropy, and fuzzy comprehensive evaluation method. Drought and waterlogging disaster risk zoning map was made out by using GIS spatial analysis technique and gridding GIS technique. It was used for comparing the relative risk of economic and life losses in different grids of Anhui Province. It can also be used to compare the situation of different levels of drought and waterlogging disaster combination risk in a similar place. The result shows that the northwestern and central parts of Anhui Province possess higher risk, while the southwestern and northeastern parts possess lower risk. The information obtained from statistical offices and remote sensing data in relation to results compiled were statistically evaluated. The results obtained from this study are specifically intended to support local and national governmental agencies on water-related disaster management.  相似文献   

15.
Drought is a normal, recurrent feature of climate that affects virtually all countries to some degree. The number of drought-induced natural disasters has grown significantly since the 1960s, largely as a result of increasing vulnerability to extended periods of precipitation deficiency rather than because of an increase in the frequency of meteorological droughts. This increase in drought-induced natural disasters has resulted in a considerable growth of interest in drought mitigation and preparedness worldwide. The purpose of a national preparedness plan is to reduce societal vulnerability to drought through the adoption of preventive, anticipatory policies and programs. This paper describes a ten-step planning process that nations can follow to develop a drought preparedness plan. This process, originally developed in 1987, has been the basis of discussions at training seminars on drought preparedness for developing nations in Africa, Asia, and Latin America. It has also been adopted, with appropriate modifications, by state or provincial governments and by municipalities. The process is intended to be flexible so that governments can add, delete, or modify the suggested steps, as necessary.Published as Paper No. 10946, Journal Series, Nebraska Agricultural Research Division. The work reported here was conducted under Nebraska Agricultural Research Division Project 27-007. This material is based in part upon work supported by the National Science Foundation under Grant ATM-8704050.  相似文献   

16.
David King 《Natural Hazards》2008,47(3):497-508
The concept of a natural hazard is a human construct. It is the interaction with human communities and settlements that defines a natural phenomenon as a natural hazard. Thus the end point of hazard mitigation and hazard vulnerability assessment must involve an attempt to reduce, or mitigate, the impact of the natural hazard on human communities. The responsibility to mitigate hazard impact falls primarily upon governments and closely connected non-government and private institutional agencies. In particular, it is most often local government that takes the responsibility for safeguarding its own communities, infrastructure and people. Hazard vulnerability of specific local communities is best assessed by the local government or council, which then faces the responsibility to translate that assessment into community education and infrastructural safeguards for hazard mitigation. This paper illustrates the process of local government engagement in hazard mitigation in Australia, through the Natural Disaster Risk Management Studies, as a first step towards natural disaster reduction.  相似文献   

17.
Drought is a distinct agroclimatological hazard with far reaching consequences upon crop production. Among them, famines are regarded the most serious effects of climatological drought. Although there is no doubt about the principally valid relationship between drought and production losses it seems more problematic how this relationship can be proved statistically. In this paper annual rainfall data and production figures of the three major crops of Sri Lanka, rice (paddy), tea and rubber, are correlated, but only partially a true relationship between dry years and production losses could be observed. Reason for this may be the moderate degree of annual drought. From the results shown, the question arises how agricultural drought can be defined and how the climatic effects upon crop production can be studied satisfactorily.  相似文献   

18.
Characteristics of meteorological drought in Bangladesh   总被引:3,自引:3,他引:0  
Meteorological drought events occur in Bangladesh are diagnosed using monthly rainfall and mean air temperature from the surface observations and Regional Climate Model (RegCM) by calculating Standardized Precipitation Index (SPI) and Palmer Drought Severity Index (PDSI) for the period 1961?C1990. The historical records of drought event obtained from the Bangladesh Bureau of Statistics and International Disaster Database are used to verify the SPI and PDSI detected events. The SPI and monthly PDSI are obtained for 27 station data across Bangladesh as well as for two subregions over the country. Result based on the observed data shows that regional information is better in drought diagnosis compared to the point information. The regional analysis is able to detect about 80?% of the drought events occurred during the study period. Frequency of moderate drought is higher for all over the country. The SPI calculated from RegCM rainfall shows that the detection of moderate drought events is 10, 7, and 21?% overestimated for 1-, 3-, and 6-month length, respectively, compared to using of observed data. For extreme drought cases, detection is overestimated (underestimated) by 25?% (79?%) for 1-month (6-month) length. The PDSI results for model and observed data are nearly same to SPI calculations. Model monthly PDSI result is overestimated (underestimated) by 29?% (50?%) for moderate (severe) drought events with reference to the observed PDSI. Hence, RegCM output may be useful to detect 3?C6-month (monthly to seasonal) length moderate drought events over a heavy rainfall region likely Bangladesh.  相似文献   

19.
Drought is one of the most important natural hazards in Iran. It is especially more prevalent in arid and hyper arid regions where there are serious limitations in regard to providing sufficient water resources. On the other hand, drought modeling and particularly its prediction can play important role in water resources management under conditions of lack of sufficient water resources. Therefore, in this study, drought prediction in a hyper arid location of Iran (Ardakan region) has been surveyed based on the abilities of artificial neural. Standardized Precipitation Index (SPI) in different time scales (3, 6, 9, 12, and 24 monthly time series) computed based on the data gathered from four rain gauge stations. After evaluation and testing of different artificial neural networks (ANN) structures, gradient descent back propagation (traingd) network showed higher abilities than others. Then, the predictions of SPI time series with different monthly lag times (1:12 months) were tested. Generally, drought prediction by ANNs in the Ardakan region has shown considerable results with the correlation coefficient (R) more than 0.79 and in the most cases and it rises more than 0.90, which indicates the ANN’s ability of drought prediction.  相似文献   

20.
Climatological drought in Nigeria   总被引:1,自引:0,他引:1  
In this paper, the definitions of drought are reviewed and evaluated for Nigeria. Drought in Nigeria is thought of as a purely climatological or meteorological phenomenon, that is, a temporary abnormal rainfall deficiency over the country, the result of some unfavourable meteorological conditions such as persistent widespread subsistence and the absence or weakness in the atmospheric rain-generating systems during the rainfall season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号