首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The seasonal variation of neutron emissions from Mars in different spectral intervals measured by the HEND neutron detector for the entire Martian year are analyzed. Based on these data, the spatial variations of the neutron emissions from the planet are globally mapped as a function of season, and the dynamics of seasonal variation of neutron fluxes with different energies is analyzed in detail. No differences were found between seasonal regimes of neutron fluxes in different energy ranges in the southern hemisphere of Mars, while the regime of fast neutrons (with higher energies) during the northern winter strongly differs from that during the southern winter. In winter (L s = 270°–330°), the fast neutron fluxes are noticeably reduced in the northern hemisphere (along with the consecutive thickening of the seasonal cap of solid carbon dioxide). This provides evidence of a temporary increase in the water content in the effective layer of neutron generation. According to the obtained estimates, the observed reduction of the flux of fast neutrons in the effective layer corresponds to an increase in the water abundance of up to 5% in the seasonal polar cap (70°–90°N), about 3% at mid-latitudes, and from 1.5 to 2% at low latitudes. The freezing out of atmospheric water at the planetary surface (at middle and high latitudes) and the hydration of salt minerals composing the Martian soil are considered as the main processes responsible for the temporary increase in the water content in the soil and upper layer of the seasonal polar cap. The meridional atmospheric transport of water vapor from the summer southern to the winter northern hemisphere within the Hadley circulation cell is a basic process that delivers water to the subsurface soil layer and ensures the observed scale of the seasonal increase in water abundance. In the summer northern hemisphere, the similar Hadley circulation cell transports mainly dry air masses to the winter southern hemisphere. The point is that the water vapor becomes saturated at lower heights during aphelion, and the bulk of the atmospheric water mass is captured in the near-equatorial cloudy belt and, thus, is only weakly transferred to the southern hemisphere. This phenomenon, known as the Clancy effect, was suggested by Clancy et al. (1996) as a basic mechanism for the explanation of the interhemispheric asymmetry of water storage in permanent polar caps. The asymmetry of seasonal meridional circulation of the Martian atmosphere seems to be another factor determining the asymmetry of the seasonal water redistribution in the “atmosphere-regolith-seasonal polar caps” system, found in the peculiarities of the seasonal regime of the neutron emission of Mars.  相似文献   

2.
Temporal variations of the Martian ozone density profile at high latitudes have been calculated for an entire Martian year, taking into account the seasonal and diurnal variations in temperature, water vapor and solar radiation. A new technique facilitates the long-term model calculations, including diurnal variations. The result is in better agreement with MARINER 9 observations of the time and magnitude of the seasonal maximum than is the result of the previous seasonal model calculated for the diurnally averaged temperature, water vapor and solar radiation. The large scatter of the MARINER 9 data may be partly experimental, but the effect of surface condition, including the water vapor variability and the surface chemistry, may explain some of the dispersion of the observed data. The predicted diurnal variation is substantial except near solstices, and the nighttime total column density is generally larger than the daytime value. The magnitude of the day-and-night difference and the shape of the diurnal variation change markedly with season. The opposite temporal variation is predicted for ozone density between the upper and lower regions. The model predicts the production of a ozone layer at 35–50 km, which is consistent with observations at low latitudes by MARS-5. The observed ozone density may be explained, if the atmospheric temperature is as low as ~ 140 K or if the atmosphere is subsaturated. Effects of the simultaneous existence of an aerosol layer, also observed by MARS-5, are briefly discussed.  相似文献   

3.
Helium in the Earth's thermosphere traces the dynamical systems that redistribute energy and mass. Measurements of the global helium distribution in the thermosphere, using Atmosphere Explorer satellite C. (AE-C), show a gradual seasonal change in the number density of helium for all latitudes. The enhancement in helium over the winter pole (the helium bulge) changes in magnitude slowly as seasons progress. The bulge builds and recedes following the progression of winter North to South and back again. This progression of the winter helium enhancement is presented in this paper using latitudinal profiles of helium number density for each month during the year. The absolute magnitude of the winter helium enhancement in the auroral regions is affected by auroral heating at low altitudes. The reduction in the winter helium bulge at low altitudes shown in AE-C data can be traced to this localized heating. The gradual variation in helium concentration measured at many latitudes for all seasons of the year implies that global thermospheric wind systems change gradually with the seasons.  相似文献   

4.
L. Trafton 《Icarus》1984,58(2):312-324
Triton's seasons differ materially from those of Pluto owing to four important differences in the governing physics: First, the obliquity of Triton is significantly less than Pluto's obliquity. Second, Triton's inclined orbit precesses rapidly about Neptune so that a complicated seasonal variation in the latitude of the Sun occurs for Triton. Third, Neptune's orbit is much more circular than Pluto's orbit so that the sunlight intercepted by Triton's disk does not vary seasonally. Finally, Triton's atmosphere cannot be saturated at the lower latitudes so that the mass of the atmosphere is controlled by the temperature of the high-latitude ices or liquids (polar caps), as for CO2 on Mars. The consequences of Triton's entire surface being covered with volatile substances have been examined. It is found that the circularity of Neptune's orbit then implies that Triton would have hardly any seasonal variation at all in surface temperature or atmospheric bulk, in spite of the complicated precessional effects of Triton's orbit. The only seasonal effect would be the migration of surface ices and liquids. This scenario is ruled out because it implies a column CH4 abundance much higher than that observed and because it quickly depletes the lower latitudes of volatiles. It is concluded that Triton's most volatile surface substances are probably relegated to latitudes higher than 35° and probably form polar caps. The temperature of the polar caps should be nearly equal, even during midwinter/midsummer when the insolation of the summer pole is greatest. If the summer pole completely sublimates during one of the “major” summers, Triton's atmosphere may begin to freeze out over the winter caps. It is therefore expected that Triton's atmosphere undergoes large and complex seasonal variations. Triton is currently approaching a “maximum southern summer”, and over the remainder of this century, a dramatic increase in CH4 abundance above the current upper limit of 1 m-Am may be witnessed.  相似文献   

5.
The photodissociation of oxygen in the lower thermosphere is evaluated to obtain its global average value and the hemispheric imbalance. The observed concentrations of atomic oxygen do not reflect this imbalance in production due to the effect of seasonal wind patterns redistributing the atomic oxygen. The wind system necessary to compensate for the imbalance in solar thermal input into the lower thermosphere is found to transport an amount of atomic oxygen sufficient to compensate for the hemispheric imbalance in production. Ionospheric data indicate a winter enhancement in atomic oxygen concentration; to produce this, a higher degree of oxygen dissociation than that normally accepted (i.e. higher than an atomic to molecular oxygen ratio of unity at 120 km) is needed. The concept that the concentrations of atomic oxygen observed over the winter polar region are maintained by transport from lower latitudes requires that eddy diffusion coefficients derived from vertical transport at low latitudes (ignoring horizontal transport) be reduced by about 25 per cent.  相似文献   

6.
The monthly median virtual height (hF) of the F-region was studied for a period of 6 years (1980–1985) from sunspot maximum to minimum, using data from 11 ionosonde stations in the Japanese-Australian longitudinal sector, in an invariant latitude range: 37°N to 54°S. The night-time maximum in the median height progressively decreases equatorwards, particularly in the local winter and spring, while a reverse weak tendency is observed in summer. The median height reaches peak in both hemispheres from 1 to 2 years after sunspot maximum then decreases towards sunspot minimum. A second diurnal maximum in hF, preceded by a well-defined minimum, was consistently observed over the solar cycle close to the sunrise time at the F-region, mainly at low invariant latitudes (9–20°). The second maximum has a distinct seasonal variation, being most pronounced in winter and diminishing in summer. It is envisaged that the second peak in hF is associated with the wave disturbance generated by the supersonic motion of the sunrise terminator. Possible effects of the background height variations on the propagation of the magnetic storm-induced travelling ionospheric disturbances are discussed.  相似文献   

7.
Mariner 9 images and all Viking orbiter images through July 1979 were searched for cloud forms. A computer-accessible catalog was assembled, consisting of a classification of cloud type (lee wav wave, for example) and properties (directionality, wavelength, for example). Lee wave directionality shows a pattern and seasonal variation at high latitudes which is consistent with predictions of theoretical modeling. Fog and haze occurrence shows no obvious correlation with water abundance or any other simple causal factor. Lee waves are rare at equatorial latitudes. Plumes (probably dust) occur preferentially at locations where strong boundary layer convection is expected.  相似文献   

8.
The time evolution of atmospheric dust at high southern latitudes on Mars has been determined using observations of the south seasonal cap acquired in the near infrared (1-2.65 μm) by OMEGA/Mars Express in 2005. Observations at different solar zenith angles and one EPF sequence demonstrate that the reflectance in the 2.64 μm saturated absorption band of the surface CO2 ice is mainly due to the light scattered by aerosols above most places of the seasonal cap. We have mapped the total optical depth of dust aerosols in the near-IR above the south seasonal cap of Mars from mid-spring to early summer with a time resolution ranging from one day to one week and a spatial resolution of a few kilometers. The optical depth above the south perennial cap is determined on a longer time range covering southern spring and summer. A constant set of optical properties of dust aerosols is consistent with OMEGA observations during the analyzed period. Strong variations of the optical depth are observed over small horizontal and temporal scales, corresponding in part to moving dust clouds. The late summer peak in dust opacity observed by Opportunity in 2005 propagated to the south pole contrarily to that observed in mid spring. This may be linked to evidence for dust scavenging by water ice-rich clouds circulating at high southern latitudes at this season.  相似文献   

9.
A.E. Potter  R.M. Killen 《Icarus》2006,181(1):1-12
We observed the Mercury sodium exosphere during the period 1997-2003, collecting images of planetary sodium emission covering the full range of true anomaly angles with only a few small gaps. The distribution of sodium emission over the surface was generally non-uniform and changeable. When the dawn terminator was in view, the terminator was generally brighter than the limb, as expected for evaporation of condensed sodium at the dawn terminator. Also, the excess emission reached its largest values when radiation acceleration reached one or the other of its two maxima, as expected for the effect of radiation acceleration on sodium distribution. When the dusk terminator was in view, the limb was generally brighter than the terminator. The difference was larger than would be expected for a uniform sodium exosphere, suggesting that there is a deficit of sodium near the dusk terminator. There was no apparent effect of radiation acceleration on the ratio, which might be the result of a very large deficit of sodium near the dusk terminator. For the northern and southern hemispheres, excess sodium was observed about a third of the time in one or the other hemisphere, appearing at random intervals of true anomaly and longitude. The random nature of these occurrences suggests an external cause, one not correlated with any characteristic of the planetary orbit or planetary geochemistry. We suggest that the northern or southern excess sodium events are the result of solar weather, whereby solar particles are precipitated to the surface at high latitudes, and produce localized sources of sodium. IMF configurations for which solar particles can precipitate to high latitudes on the surface occur about 30% of the time, in general agreement with the observed frequency of north or south excess emission. Near periods of maximum radiation acceleration, some images displayed two peaks of sodium emission, one peak at high northern latitudes, the other at high southern latitudes. One possible cause could be the accumulation of sodium near the terminator, pushed there by radiation acceleration.  相似文献   

10.
In this paper we review and interpret the values of upper-atmosphere rotation rate (zonal winds) obtained by analysing satellite orbits determined from observations. The history of the method is briefly reviewed, the basic principles are explained, objections to the method are answered, and three examples are given. Existing analyses of the atmospheric rotation rate A are critically reviewed, and, after rejecting some and revising others, we are left with 85 values. These are divided according to local time and season, to give the variation of A with height in nine situations—namely morning, evening and average local time, for summer, winter and average season. These observational results indicate that the value of Λ (in rev/day), averaged over both local time and season, increases from 1.0 at 125 km to 1.22 at 325 km and then decreases to 1.0 at 430 km and 0.82 at 600 km. The value of Λ is higher in the evening (18–24 h), with a maximum value (near 1.4) corresponding to a West-to-East wind of 150 m s?1 at heights near 300 km. The value of Λ is lower in the morning (06–12 h), with East-to-West winds of order 50 m s?1 at heights of 200–400 km. There is also a consistent seasonal variation, the values of Λ being on average 0.15 higher in winter and 0.1 lower in summer than the average seasonal value. No significant variation with solar activity is found, but there is a slight tendency for a greater rotation rate at lower latitudes for heights above 300 km. Unexpectedly, the values for the 1960s are found to be significantly higher than those for the 1970s. Finally, these observational values are compared with the theoretical global model of Fuller-Rowell and Rees: there is complete agreement on the trends, though there are some differences in the mean values.  相似文献   

11.
L. Montabone  S.R. Lewis  D.P. Hinson 《Icarus》2006,185(1):113-132
We describe an assimilation of thermal profiles below about 40 km altitude and total dust opacities into a general circulation model (GCM) of the martian atmosphere. The data were provided by the Thermal Emission Spectrometer (TES) on board the Mars Global Surveyor (MGS) spacecraft. The results of the assimilation are verified against an independent source of contemporaneous data represented by radio occultation measurements with an ultra-stable radio oscillator, also aboard MGS. This paper describes a comparison between temperature profiles retrieved by the radio occultation experiments and the corresponding profiles given by both an independent, carefully tuned GCM simulation and by an assimilation of TES observations performed over the period of time from middle, northern summer in martian year 24, corresponding to May 1999, until late, northern spring in martian year 27, corresponding to August 2004. This study shows that the assimilation of TES measurements improves the overall agreement between radio occultation observations and the GCM analysis, in particular below 20 km altitude, where the radio occultation measurements are known to be most accurate. Discrepancies still remain, mostly during the global dust storm of year 2001 and at latitudes around 60° N in northern winter-early spring. These are the periods of time and locations, however, for which discrepancies between TES and radio occultation profiles are also shown to be the largest. Finally, a further direct validation is performed, comparing stationary waves at selected latitudes and time of year. Apart from biases at high latitudes in winter time, data assimilation is able to represent the correct wave behaviour, which is one major objective for martian assimilation.  相似文献   

12.
In recent years with the advancement in satellite based navigational applications, study of Total Electron Content (TEC) has gained significant importance. It is well known that due to dynamical behaviour of equatorial and low latitude ionosphere, the levels of ionization is relatively high herein. The sustained decrease in solar extreme ultraviolet radiations during the current minimum is greater than any in recent history. This gives us the opportunity to study the observations of global positioning system total electron content (GPS-TEC) dual frequency signals from the GPS satellites continuously recorded at Trivandrum (an equatorial station) and Delhi (a low latitude station) during the extremely low solar activity period from January 2007 to June 2009. This study illustrates the diurnal, seasonal and annual variations of TEC during the extended solar minimum period. This study also investigates the behaviour of daytime ionosphere around spring and autumn equinoxes at low solar activity period. The results clearly reveal the presence of equinoctial asymmetry which is more pronounced at equatorial station Trivandrum. The diurnal variation of TEC shows a short-lived day minimum which occurs between 0500 to 0600 LT at both the stations. Delhi TEC values show its steep increase and reach at its peak value between 1200 and 1400 LT, while at the equator the peak is broad and occurs around 1600 LT. Further, the daily maximum TEC ranges from about 5 to 40 TEC units at Trivandrum and about 10 to 40 TEC units at Delhi, which correspond to range delay variations of about 1 to 8 m at the GPS L1 frequency of 1.575 GHz. The Maximum values of TEC were observed during spring equinox rather than autumn equinox, showing presence of semi annual variation at both the locations. The minimum values of TEC were observed during the summer solstice at Trivandrum indicating the presence of winter anomaly at equatorial region while Delhi TEC values were minimum during winter solstice showing absence of winter anomaly. Also the TEC values at both the locations have been decreasing since 2007 onwards exhibit good positive correlation with solar activity.  相似文献   

13.
Tetsuya Tokano 《Icarus》2003,164(1):50-78
In an effort to test and to understand the global hydrogen distribution in the shallow subsurface of Mars retrieved by the Mars Odyssey gamma-ray spectrometer, the present state and movement of water are investigated by a coupled global subsurface-atmosphere water cycle model. It was found that the observed global subsurface hydrogen distribution is largely consistent with the modeled global water cycle, so a large fraction of hydrogen is likely to exist as water, at low and mid latitudes in the form of adsorbed water. Under the present climate the water content in the shallow subsurface becomes higher in the northern hemisphere than in the southern hemisphere as a result of global water cycle, regardless of the initial water distribution in the soil or adsorptive capacity. The higher annual maximum soil temperature in the south, stronger net northward transport of atmospheric water vapor, and the emission of vapor from the northern residual polar cap in northern summer contribute to this hemispheric asymmetry. The generally higher adsorptive capacity of clay minerals in the northern plains may further increase this bias. The longitudinal inhomogeneity is caused by several factors, such as thermal inertia, adsorptive capacity, and atmospheric surface pressure. The water abundance is locally high in low thermal inertia regions (e.g., Arabia Terra) and at deep places where the surface pressure is high (e.g., Hellas); it is low in soil with a low adsorptive capacity (e.g., Tharsis) and high thermal inertia regions (e.g., Solis Planum). Most of the soil humidity near the surface at low and mid latitudes may originate from the atmosphere. The model implies that the upper soil layer should be largely ice-free because otherwise an excessive sublimation and vapor emission into the atmosphere in warm seasons would violate the observational constraints. Moreover, the more uniform latitudinal variation of the observed hydrogen abundance near the surface compared to that of deeper layers is indicative of the presence of adsorbed water instead of ground ice because the adsorbed water content does not as steeply depend on latitude as the ground ice stability. Concerning the regolith mineralogy, montmorillonite can much better account for the observed water cycle than palagonite. While the presence of permanent ground ice appears likely in the polar region below a thin layer, large seasonal cycle of phase change between pore ice and adsorbed water may be possible. Regolith adsorption/desorption is neither negligible nor crucial for the seasonal atmospheric water cycle, but the surface-atmosphere coupling is a major prerequisite for the long-term evolution of subsurface water distribution.  相似文献   

14.
Thomson (incoherent) scatter radar measurements of F-region electron densities and temperatures were made approximately twice per month throughout 1966 and 1967 at Millstone Hill for periods of 24 hr. Owing to the increase in sunspot activity the results display a rich variety of different types of behaviour. Geomagnetically quiet days tended to follow patterns observed near sunspot minimum. Thus in winter there is typically a marked diurnal variation in electron density with a peak near noon and often a smaller secondary maximum between 02 and 04 EST. In summer there is less day-to-night variation and the peak density is encountered near ground sunset. Usually hmaxF2 is higher in summer than winter and the layer thickness is larger also.Some magnetically disturbed days follow a distinct pattern in which Nmax and hmax are normal during the first day of the storm until afternoon when they both increase to very high values. There is then a corresponding decrease in electron temperature. During the night the electron temperature often reaches abnormally high values, providing evidence of nocturnal heating. On the following day Nmax and hmax are abnormally low.During 1967 instances in which the trough of low electron density moved south to occupy a position over Millstone became frequent. The electron temperature rose to particularly high values on these occasions. These morphological features are discussed in terms of current theoretical ideas. The results are also employed to derive seasonal variations of electron temperature and protonospheric heat flux. It is shown that since 1964 the protonospheric heat flux has been larger in winter than summer and displays a clear sunspot cycle variation.  相似文献   

15.
Observations of X-ray bright points (XBP) over a six-month interval in 1973 show significant variations in both the number density of XBP as a function of heliographic longitude and in the full Sun average number of XBP from one rotation to the next. The observed increases in XBP emergence are estimated to be quivalent to several large active regions emerging per day for several months. The number of XBP emerging at high latitudes also varies, in phase with the low latitude variation and reaches a maximum approximately simultaneous with a major outbreak of active regions. The quantity of magnetic flux emerging in the form of XBP at high latitudes alone is estimated to be as large as the contribution from all active regions.Harvard College Observatory/Smithsonian Astrophysical Observatory.  相似文献   

16.
Retrievals performed on Cassini Composite Infrared Spectrometer data obtained during the distant Jupiter flyby in 2000/2001 have been used to generate global temperature maps of the planet in the troposphere and stratosphere, but to higher latitudes than were shown previously by Flasar et al. [Flasar, F.M., 39 colleagues, 2004a. Nature 427, 132-135; Flasar, F.M., 44 colleagues, 2004b. Space Sci. Rev. 115, 169-297]. Similar retrievals were performed on Voyager 1 IRIS data to provide the first detailed IRIS map of the stratosphere, and high latitudes in the troposphere. Thermal winds were calculated for each data set and show strong vertical shears in the zonal winds at low latitudes, and meridional temperature gradients indicate the presence of circumpolar jets, as well. The temperatures retrieved from the two spacecraft were also compared with yearly ground-based data obtained over the intervening two decades. Tropospheric temperatures reveal gradual changes at low latitudes, with little obvious seasonal or short-term variation [Orton et al., 1994. Science 265, 625-631]. Stratospheric temperatures show much more complicated behavior over short timescales, consistent with quasi-quadrennial oscillations at low latitudes, as suggested in prior analyses of shorter intervals of ground-based data [Orton et al., 1991. Science 252, 537-542; Friedson, A.J., 1999. Icarus 137, 34-55]. A scaling analysis indicates that meridional motions, mechanically forced by wave or eddy convergence, play an important role in modulating the temperatures and winds in the upper troposphere and stratosphere on seasonal and shorter timescales. At latitudes away from the equator, the mechanical forcing can be derived simply from a temporal record of temperature and its vertical derivative. Ground-based observations with improved vertical resolution and/or long-term monitoring from spacecraft are required for this purpose, though the Voyager and Cassini data given indications that the magnitude of the forcing is very small.  相似文献   

17.
The presence of a diurnal variation in meteor activity is well established. The sporadic meteor count rates are higher on the local dawn side and lower on the local dusk side. This phenomenon is caused by the Earth’s orbital motion and rotation. Meteor radar measurements have been compared from Esrange, Kiruna, Sweden, at 68° N, from Juliusruh, Germany, at 55° N, and from Ascension Island, at 8° S, to investigate how the diurnal variation depends on season at different latitudes. Data have been used from vernal and autumnal equinoxes and summer and winter solstices to locate the largest seasonal differences.  相似文献   

18.
Wavenumber spectra of the martian atmosphere covering zonal wavenumbers s=1-6 were obtained as a function of latitude and season for the first time from the temperatures measured by the Thermal Emission Spectrometer onboard the Mars Global Surveyor. The stationary component tends to peak at s=2, where the martian topography has large amplitude, and drops rapidly at higher wavenumbers. The transient component in the middle and high latitudes tends to peak at s=1, which is lower than the most unstable wavenumber based on linear theories, and exhibits spectral slopes much flatter than the stationary component. In the equatorial region, the spectra of the transient component are almost flat, indicating that the organization of large-scale structures is less efficient in this region. The spectral shapes are similar between the 0.5 and 2.2 hPa surfaces, except that the slopes are slightly steeper at 0.5 than at 2.2 hPa, probably due to selective vertical transmission at low wavenumbers. The seasonal variation is relatively large in the middle and high latitudes, where the maximum power occurs in winter and the minimum occurs in summer, with an exception that the transient component is maximum in spring in the southern hemisphere. Intensification of s=1 transient waves is observed around the period of the initiation of global dust storms.  相似文献   

19.
The diurnal and seasonal variations of H+, He+, N+, O+ and Ne are analyzed at 1400-km altitude. Using longitudinally averaged observations of ISIS-2 (April 1971 to December 1972), the ion and electron densities are decomposed via spherical harmonics and Fourier series into time-independent, seasonal and diurnal terms. The time-independent terms of H+ and He+ show a plateauor trough-like structure at medium to low latitudes and a strong decrease towards the poles; N+ and O+, on the other hand, yield an almost inverse picture with a density increase at high latitudes. All constituents, except He+, show at polar latitudes an enhancement during local summer conditions and a depletion during local winter conditions; He+, however, exhibits a winter bulge and a density minimum during local summer. The diurnal variations are strongly latitude dependent; while the amplitudes (relative) of H+, He+, and Ne are rather small, the heavier ions N+ and O+ show a deep minimum early in the morning and a high but flat maximum during daytime.  相似文献   

20.
This study utilizes the NCAR Land Surface Model (LSM1.2) integrated with dynamic global vegetation to recreate the early Paleogene global distribution of vegetation and to examine the response of the vegetation distribution to changes in climate at the Paleocene–Eocene boundary (∼ 55 Ma). We run two simulations with Eocene geography driven by climatologies generated in two atmosphere global modeling experiments: one with atmospheric pCO2 at 560 ppm, and another at 1120 ppm. In both scenarios, the model produces the best match with fossil flora in the low latitudes. A comparison of model output from the two scenarios suggests that the greatest impact of climate on vegetation will occur in the high latitudes, in the Arctic Circle and in Antarctica. In these regions, greater accumulated summertime warmth in the 1120 ppm simulation allows temperate plant functional types to expand further poleward. Additionally, the high pCO2 scenario produces a greater abundance of trees over grass at these high latitudes. In the middle and low latitudes, the general distribution of plant functional types is similar in both pCO2 scenarios. Likely, a greater increment of greenhouse gases is necessary to produce the type of change evident in the mid-latitude paleobotanical record. Overall, differences between model output and fossil flora are greatest at high latitudes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号