首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The M w=9.3 megathrust earthquake of December 26, 2004 off the coast of Sumatra in the Indian Ocean generated a catastrophic tsunami that caused widespread damage in coastal areas and left more than 226,000 people dead or missing. The Sumatra tsunami was accurately recorded by a large number of tide gauges throughout the world's oceans. This paper examines the amplitudes, frequencies and wave train structure of tsunami waves recorded by tide gauges located more than 20,000 km from the source area along the Pacific and Atlantic coasts of North America.  相似文献   

2.
The Mw = 9.3 megathrust earthquake of December 26, 2004 off the northwest coast of Sumatra in the Indian Ocean generated a catastrophic tsunami that was recorded by a large number of tide gauges throughout the World Ocean. Part 1 of our study of this event examines tide gauge measurements from the Indian Ocean region, at sites located from a few hundred to several thousand kilometers from the source area. Statistical characteristics of the tsunami waves, including wave height, duration, and arrival time, are determined, along with spectral properties of the tsunami records.  相似文献   

3.
In the last 15 years there have been 16 tsunami events recorded at tide stations on the Pacific Coast of Canada. Eleven of these events were from distant sources covering almost all regions of the Pacific, as well as the December 26, 2004 Sumatra tsunami in the Indian Ocean. Three tsunamis were generated by local or regional earthquakes and two were meteorological tsunamis. The earliest four events, which occurred in the period 1994–1996, were recorded on analogue recorders; these tsunami records were recently re-examined, digitized and thoroughly analysed. The other 12 tsunami events were recorded using digital high-quality instruments, with 1-min sampling interval, installed on the coast of British Columbia (B.C.) in 1998. All 16 tsunami events were recorded at Tofino on the outer B.C. coast, and some of the tsunamis were recorded at eight or more stations. The tide station at Tofino has been in operation for 100 years and these recent observations add to the dataset of tsunami events compiled previously by S.O. Wigen (1983) for the period 1906–1980. For each of the tsunami records statistical analysis was carried out to determine essential tsunami characteristics for all events (arrival times, maximum amplitudes, frequencies and wave-train structure). The analysis of the records indicated that significant background noise at Langara, a key northern B.C. Tsunami Warning station located near the northern end of the Queen Charlotte Islands, creates serious problems in detecting tsunami waves. That station has now been moved to a new location with better tsunami response. The number of tsunami events observed in the past 15 years also justified re-establishing a tide gauge at Port Alberni, where large tsunami wave amplitudes were measured in March 1964. The two meteorological events are the first ever recorded on the B.C. coast. Also, there have been landslide generated tsunami events which, although not recorded on any coastal tide gauges, demonstrate, along with the recent investigation of a historical catastrophic event, the significant risk that landslide generated tsunami pose to coastal and inland regions of B.C.  相似文献   

4.
The tsunami in the Indian Ocean caused by the earthquake of December 26, 2004, near Sumatra Island had catastrophic consequences in coastal areas of many countries in this region. Notwithstanding extensive investigations of this phenomenon at various laboratories of the world, the focal mechanism of the aftershock remains unclear. The paper analyzes possible seafloor movements in the source area of the earthquake on the basis of the keyboard model of tsunamigenic earthquakes and describes numerical simulation of the generation, propagation, and runup of water surface waves in terms of this model involving vertical displacements of seafloor “keyboard-blocks.” It is shown that generated tsunami waves are essentially dependent on the combination of keyboard-block movements, which results in an irregular distribution of maximum runups along the shoreline. If the oblique nature of the subduction zone associated with the Sumatra-Andaman earthquake of December 26, 2004, is taken into account, the model results fit well the runup values observed at the Thailand shoreline. It is noted that this model of the subduction zone accounts more adequately for the tsunami wave field pattern in both areas of the Indian Ocean and other water areas such as the region of the Kurile-Kamchatka Island Arc and the Sea of Okhotsk.  相似文献   

5.
Comparison of the 2010 Chile and 2011 Japan Tsunamis in the Far Field   总被引:1,自引:0,他引:1  
In this study we analyze water level data from coastal tide gauges and deep-ocean tsunameters to explore the far-field characteristics of two major trans-Pacific tsunamis, the 2010 Chile and the 2011 Japan (Tohoku-oki) events. We focused our attention on data recorded in California (14 stations) and New Zealand (31 stations) as well as on tsunameters situated along the tsunami path and proximal to the study sites. Our analysis considers statistical analyses of the time series to determine arrival times of the tsunami as well as the timing of the largest waves and the highest absolute sea levels. Fourier and wavelet analysis were used to describe the spectral content of the tsunami signal. These characteristics were then compared between the two events to highlight similarities and differences between the signals as a function of the receiving environment and the tsunami source. This study provides a comprehensive analysis of far-field tsunami characteristics in the Pacific Ocean, which has not experienced a major tsunami in nearly 50 years. As such, it systematically describes the tsunami response characteristics of modern maritime infrastructure in New Zealand and California and will be of value for future tsunami hazard assessments in both countries.  相似文献   

6.
This paper presents tsunami intensity mapping and damage patterns along the surveyed coast of Tamilnadu (India) of the deadly Indian Ocean tsunami of December 26, 2004. The tsunami caused severe damage and claimed many victims in the coastal areas of eleven countries bordering the Indian Ocean. A twelve-stage tsunami intensity scale proposed by Papadopoulos and Imamura (2001) was followed to assign the intensity at the visited localities. Along the coast of the Indian mainland, tsunami damage sustained exclusively. Most severe damage was observed in Nagapattinam Beach, Nabiyarnagar, Vellaipalyam, and the Nagapattinam Port of Nagapattinum District on the east coast and Keelamanakudy village of Kanyakumari District on the western coast of Tamilnadu. The maximum assigned tsunami intensity was X+ at these localities. Minimum intensity V+ was received along the coast of Thanjavur, Puddukkotai and Ramnathpuram Districts in Palk Strait. The general observation reported by many people was that the first arrival was a tsunami crest. The largest tsunami waves were first arrivals on the eastern coast and the second arrivals on the western coast. Along the coast, people were unaware of the tsunami, and no anomalous behavior of ocean animals was reported. Good correlation was observed between the severity of damage and the presence of shadow zone of Sri Lanka, reflected waves from Sri Lanka and the Maldives Islands, variation in the width of the continental shelf, elevation of the coast and the presence of breakwaters. The presence of medu (naturally elevated landmass very close to the sea shore and elongated parallel to the coast) reduced the impact of the tsunami on the built environment.  相似文献   

7.
Several independent indicators imply a high probability of a great (M > 8) earthquake rupture of the subduction megathrust under the Mentawai Islands of West Sumatra. The human consequences of such an event depend crucially on its tsunamigenic potential, which in turn depends on unpredictable details of slip distribution on the megathrust and how resulting seafloor movements and the propagating tsunami waves interact with bathymetry. Here we address the forward problem by modelling about 1000 possible complex earthquake ruptures and calculating the seafloor displacements and tsunami wave height distributions that would result from the most likely 100 or so, as judged by reference to paleogeodetic data. Additionally we carry out a systematic study of the importance of the location of maximum slip with respect to the morphology of the fore-arc complex. Our results indicate a generally smaller regional tsunami hazard than was realised in Aceh during the December 2004 event, though more than 20% of simulations result in tsunami wave heights of more than 5 m for the southern Sumatran cities of Padang and Bengkulu. The extreme events in these simulations produce results which are consistent with recent deterministic studies. The study confirms the sensitivity of predicted wave heights to the distribution of slip even for events with similar moment and reproduces Plafker's rule of thumb. Additionally we show that the maximum wave height observed at a single location scales with the magnitude though data for all magnitudes exhibit extreme variability. Finally, we show that for any coastal location in the near field of the earthquake, despite the complexity of the earthquake rupture simulations and the large range of magnitudes modelled, the timing of inundation is constant to first order and the maximum height of the modelled waves is directly proportional to the vertical coseismic displacement experienced at that point. These results may assist in developing tsunami preparedness strategies around the Indian Ocean and in particular along the coasts of western Sumatra.  相似文献   

8.
Sumatra tsunami: lessons from modeling   总被引:1,自引:0,他引:1  
The need for the combination of seismic data with real-time wave height information for an effective prediction of tsunami impact is emphasized in the paper. A preliminary, but comprehensive study of arrival times, wave heights and run-up values at a number of locations and tide gage stations throughout the Indian Ocean seaboard is presented. Open ocean wave height data from satellite observations are analyzed and used in the reconstruction of a tsunami source mechanism for the December 26, 2004 event. The reconstructed source is then used to numerically estimate tsunami impact along the Indian Ocean seaboard, including wave height, and arrival times at 12 tide gage stations, and inundation at 3 locations on the coast of India. The December 2004, as well as the March 28, 2005 tsunamis are investigated and their differences in terms of tsunami generation are analyzed and presented as a clear example of the need for both, seismic and real-time tsunami data for a reliable tsunami warning system in the Indian Ocean.  相似文献   

9.
A nonlinear shallow water model in cylindrical polar coordinate system is developed, using an explicit finite difference scheme with a very fine resolution, to compute different aspects of tsunami at North Sumatra and the adjacent island Simeulue in Indonesia, and the Penang Island in Peninsular Malaysia. The pole of the frame is placed on the mainland of Penang (100.5°E) and the model area extends up to the west of Sumatra (87.5°E). The model is applied to simulate the propagation of tsunami wave towards North Sumatra, Simeulue and Penang Islands associated with Indonesian tsunami of 26 December 2004. The model is also applied to compute water levels along the coastal belts of those islands. Computed and observed water level data are found to be in good agreement and North Sumatra is found to be vulnerable for very high surges. The computed and observed arrival times of high surges are also in reasonable agreement everywhere. Further studies are carried out to investigate the effect of convective terms and it is found that their effects are insignificant in tsunami propagation and weakly significant for wave amplitude very near to the coast.  相似文献   

10.
Following the recent reports by Yuan et al. (2005) of recordings of the 2004 Sumatra tsunami on the horizontal components of coastal seismometers in the Indian Ocean basin, we build a much enhanced dataset extending into the Atlantic and Pacific Oceans, as far away as Bermuda and Hawaii, and also expanded to five additional events in the years 1995–2006. In order to interpret these records quantitatively, we propose that the instruments are responding to the combination of horizontal displacement, tilt and perturbation in gravity described by Gilbert (1980), and induced by the passage of the progressive tsunami wave over the ocean basin. In this crude approximation, we simply ignore the island or continent structure, and assume that the seismometer functions de facto as an ocean-bottom instrument. The records can then be interpreted in the framework of tsunami normal mode theory,and lead to acceptable estimates of the seismic moment of the parent earthquakes. We further demonstrate the feasibility of deconvolving the response of the ocean floor in order to reconstruct the time series of the tsunami wave height at the surface of the ocean, suggesting that island or coastal continental seismometers could complement the function of tsunameters.  相似文献   

11.
The tsunami event generated by the great Sumatra–Andaman earthquake on 26 December 2004 was simulated with the recently developed model TsunAWI. The model is based on the finite element method, which allows for a very flexible discretization of the model domain. This is demonstrated by a triangulation of the whole Indian Ocean with a resolution of about 14 km in the deep ocean but a considerably higher resolution of about 500 m in the coastal area. A special focus is put on the Banda Aceh region in the Northern tip of Sumatra. This area was heavily hit by the tsunami and the highest resolution in this area is about 40 m in order to include inundation processes in the model simulation. We compare model results to tide gauge data from all around the Indian Ocean, to satellite altimetry, and field measurements of flow depth in selected locations of the Aceh region. Furthermore, we compare the model results of TsunAWI to the results of a nested grid model (TUNAMI-N3) with the same initial conditions and identical bathymetry and topography in the Aceh region. It turns out that TsunAWI gives accurate estimates of arrival times in distant locations and in the same mesh gives good inundation results when compared to field measurements and nested grid results.  相似文献   

12.
An interpretation of the occurrence conditions and source parameters is proposed for the catastrophic earthquake of December 26, 2004, in the northwestern part of the Sunda island arc. The interpretation is based on the analysis of spatial distributions of aftershock epicenters and regions subjected to destructive tsunamis, seismicity manifestations in the NW part of the Sunda island arc in the past century, and locations of large tsunami sources of historical earthquakes off the Sumatra Island coast. The source parameters of the December 26, 2004, earthquake are compared with the reliably established main characteristics of sources of the largest tsunamigenic earthquakes in island arcs of the Pacific Ocean. According to the proposed interpretation, the December 26, 2004, earthquake source is a steep reverse fault striking NW and dipping toward the Indian Ocean. The source, ~450 km long, is located in front of the NW termination of Sumatra Island, in the southern part of the Nicobar Islands. Possible positions and sizes of large potential seismic sources in the NW part of the Sunda island arc are suggested.  相似文献   

13.
The effects of the 2004 tsunami on a coastal aquifer in Sri Lanka   总被引:1,自引:0,他引:1  
On December 26, 2004, the earthquake off the southern coast of Sumatra in the Indian Ocean generated far-reaching tsunami waves, resulting in severe disruption of the coastal aquifers in many countries of the region. The objective of this study was to examine the impact of the tsunami on groundwater in coastal areas. Field investigations on the east coast of Sri Lanka were carried out along a transect located perpendicular to the coastline on a 2.4 km wide sand stretch bounded by the sea and a lagoon. Measurements of groundwater table elevation and electrical conductivity (EC) of the groundwater were carried out monthly from October 2005 to August 2007. The aquifer system and tsunami saltwater intrusion were modeled using the variable-density flow and solute transport code HST3D to understand the tsunami plume behavior and estimate the aquifer recovery time. EC values reduced as a result of the monsoonal rainfall following the tsunami with a decline in reduction rate during the dry season. The upper part of the saturated zone (down to 2.5 m) returned to freshwater conditions (EC < 1000 μS/cm) 1 to 1.5 years after the tsunami, according to field observations. On the basis of model simulations, it may take more than 15 years for the entire aquifer (down to 28 m) to recover completely, although the top 6 m of the aquifer may become fresh in about 5 years.  相似文献   

14.
The major (M w = 8.8) Chilean earthquake of 27 February 2010 generated a trans-oceanic tsunami that was observed throughout the Pacific Ocean. Waves associated with this event had features similar to those of the 1960 tsunami generated in the same region by the Great (M w = 9.5) 1960 Chilean Earthquake. Both tsunamis were clearly observed on the coast of British Columbia. The 1960 tsunami was measured by 17 analog pen-and-paper tide gauges, while the 2010 tsunami was measured by 11 modern digital coastal tide gauges, four NEPTUNE-Canada bottom pressure recorders located offshore from southern Vancouver Island, and two nearby open-ocean DART stations. The 2010 records were augmented by data from seven NOAA tide gauges on the coast of Washington State. This study examines the principal characteristics of the waves from the 2010 event (height, period, duration, and arrival and travel times) and compares these properties for the west coast of Canada with corresponding properties of the 1960 tsunami. Results show that the 2010 waves were approximately 3.5 times smaller than the 1960 waves and reached the British Columbia coast 1 h earlier. The maximum 2010 wave heights were observed at Port Alberni (98.4 cm) and Winter Harbour (68.3 cm); the observed periods ranged from 12 min at Port Hardy to 110–120 min at Prince Rupert and Port Alberni and 150 min at Bamfield. The open-ocean records had maximum wave heights of 6–11 cm and typical periods of 7 and 15 min. Coastal and open-ocean tsunami records revealed persistent oscillations that “rang” for 3–4 days. Tsunami energy occupied a broad band of periods from 3 to 300 min. Estimation of the inverse celerity vectors from cross-correlation analysis of the deep-sea tsunami records shows that the tsunami waves underwent refraction as they approached the coast of Vancouver Island with the direction of the incoming waves changing from an initial direction of 340° True to a direction of 15° True for the second train of waves that arrived 7 h later after possible reflection from the Marquesas and Hawaiian islands.  相似文献   

15.
We use a numerical tsunami model to describe wave energy decay and transformation in the Pacific Ocean during the 2011 Tohoku tsunami. The numerical model was initialised with the results from a seismological finite fault model and validated using deep-ocean bottom pressure records from DARTs, from the NEPTUNE-Canada cabled observatory, as well as data from four satellite altimetry passes. We used statistical analysis of the available observations collected during the Japan 2011 tsunami and of the corresponding numerical model to demonstrate that the temporal evolution of tsunami wave energy in the Pacific Ocean leads to the wave energy equipartition law. Similar equipartition laws are well known for wave multi-scattering processes in seismology, electromagnetism and acoustics. We also show that the long-term near-equilibrium state is governed by this law: after the passage of the tsunami front, the tsunami wave energy density tends to be inversely proportional to the water depth. This fact leads to a definition of tsunami wave intensity that is simply energy density times the depth. This wave intensity fills the Pacific Ocean basin uniformly, except for the areas of energy sinks in the Southern Ocean and Bering Sea.  相似文献   

16.
Multiple‐layered tsunami deposits have been frequently reported from coastal stratigraphic sequences, but the formation processes of these layers remain uncertain. A terrestrial sandy deposit formed by the 2004 Indian Ocean Tsunami was investigated at Ban Nam Kem, southern Thailand. Four internal layers induced by two tsunami waves were identified in the tsunami deposit. Sedimentary structures indicated that two units were formed by run‐up currents caused by the tsunami and the other two units were deposited by the backwash flows. Graded bedding was common in the layers, but inverse grading was observed at limited intervals on the surveyed transects. The characteristics of the multiple‐layered tsunami deposit vary remarkably over a very short distance (<1 m) in response to the local topography. Remarkable asymmetries in thickness and grain‐size distribution are recognized between the run‐up and backwash flow deposits. On the basis of the interpretation of sedimentary structures, the formation process of the multiple‐layered tsunami deposit observed in this study can be explained in a schematic model as the modification of the ideal tsunami sequence by local erosion and the asymmetric hydraulic properties of tsunami waves, such as the maximum shear velocity and the heterogeneity of the flow velocity field.  相似文献   

17.
The importance of accurate tsunami simulation has increased since the 2004 Sumatra-Andaman earthquake and the Indian Ocean tsunami that followed it, because it is an important tool for inundation mapping and, potentially, tsunami warning. An important source of uncertainty in tsunami simulations is the source model, which is often estimated from some combination of seismic, geodetic or geological data. A magnitude 8.3 earthquake that occurred in the Kuril subduction zone on 15 November, 2006 resulted in the first teletsunami to be widely recorded by bottom pressure recorders deployed in the northern Pacific Ocean. Because these recordings were unaffected by shallow complicated bathymetry near the coast, this provides a unique opportunity to investigate whether seismic rupture models can be inferred from teleseismic waves with sufficient accuracy to be used to forecast teletsunami. In this study, we estimated the rupture model of the 2006 Kuril earthquake by inverting the teleseimic waves and used that to model the tsunami source. The tsunami propagation was then calculated by solving the linear long-wave equations. We found that the simulated 2006 Kuril tsunami compared very well to the ocean bottom recordings when simultaneously using P and long-period surface waves in the earthquake source process inversion.  相似文献   

18.
A great earthquake occurred at 00:58:49 (UTC) on Sunday, December 26, 2004 off the northwest coast of Sumatra, Indonesia. Its revised moment magnitude was M 9.3 making it in the top four largest earthquakes in the world since 1900 and the largest since the Alaskan 1964 event. The earthquake caused tsunami waves which killed more than 300,000 people in Southern Asia and Africa. There were 31 earthquakes with magnitudes between 5.5 and 7.3 in the 48-h period after the main event, and it seemed that seismicity migrated northwards along the 1200 km fault (http: //www.ga.gov.au). Similar size events occurred in that location off Sumatra in the 19th century, but no evidence of written records of their tsunami effects in Australia is found. The devastating megathrust earthquake of 26 December 2004 occurred on the interface of the Indo-Australian and Euro-Asian plates where the first plate subducts beneath the overriding second plate and the Indo-Australian plate begins its descent into the mantle. In the epicentral region, the Indo-Australian plate moves toward the northeast at a rate of about 7 cm/year relative to the Euro-Asian plate resulting in oblique convergence and partitioning into thrust-faulting. From the size of the earthquake, it is likely that the displacement on the fault plane was up to fifteen meters. As with the recent event, megathrust earthquakes often generate large tsunamis that cause damage over a much wider area than is directly affected by ground shaking near the earthquake’s rupture. The subduction zone continues further south of the Indonesian archipelago and that area is also a potential risk of producing a megathrust event that may affect coastal parts of northwest Australia. The tragic events of Boxing Day 2004 highlighted the importance of establishing a tsunami warning system for the Indian Ocean like the one for the Pacific. Issues like more and better instrumentation, and a long-term program to educate people in the region about the dangers of tsunamis, were identified as priorities. Of particular interest is the time for identifying and issuing alerts for such devastating earthquakes with possibility to reduce it in future for warning purposes.  相似文献   

19.
Model predictions from a numerical model, Delft3D, based on the nonlinear shallow water equations are compared with analytical results and laboratory observations from seven tsunami-like benchmark experiments, and with field observations from the 26 December 2004 Indian Ocean tsunami. The model accurately predicts the magnitude and timing of the measured water levels and flow velocities, as well as the magnitude of the maximum inundation distance and run-up, for both breaking and non-breaking waves. The shock-capturing numerical scheme employed describes well the total decrease in wave height due to breaking, but does not reproduce the observed shoaling near the break point. The maximum water levels observed onshore near Kuala Meurisi, Sumatra, following the 26 December 2004 tsunami are well predicted given the uncertainty in the model setup. The good agreement between the model predictions and the analytical results and observations demonstrates that the numerical solution and wetting and drying methods employed are appropriate for modeling tsunami inundation for breaking and non-breaking long waves. Extension of the model to include sediment transport may be appropriate for long, non-breaking tsunami waves. Using available sediment transport formulations, the sediment deposit thickness at Kuala Meurisi is predicted generally within a factor of 2.  相似文献   

20.
Tide gauge data collected from Sri Lanka (three stations) and Western Australia (eleven stations) during the Indian Ocean tsunamis, which occurred in December 2004, March 2005, July 2006, and September 2007, and incorporated five tsunamis, were examined to determine tsunami behaviour during these events. During the December 2004 tsunami, maximum wave heights of 3.87 m and 1.75 m were recorded at Colombo (Sri Lanka) and Bunbury (Western Australia), respectively. The results indicated that although the relative magnitudes of the tsunamis varied, the tsunami behaviour at each station was similar. This was due to the effect of the local and regional topography. At all tide gauges, the spectral energy corresponding to periods between 20 and 85 minutes increased during the tsunami. The sea-level data obtained from the west and south coasts of Sri Lanka (Colombo and Kirinda) indicated the importance of wave reflections from the Maldives Island chain, which produced the maximum wave two to three hours after the arrival of the first wave. In contrast, Trincomalee on the east coast did not show evidence of a reflected wave. Similarly, along the west coast of Australia, the highest waves occurred 15 hours after the arrival of the first wave. Here, based on travel times, we postulated that the waves were reflected from the Mascarene Ridge and/or the Island of Madagascar. Reflected waves were not present in the 2006 tsunami, where the primary waves propagated away from topographic features. One of the main influences of the tsunami was to set up oscillations at the local resonance frequency. Because Sri Lanka and Western Australia have relatively straight coastlines, these oscillations were related to the fundamental period of the shelf oscillation. For Colombo, this corresponded to 75-minute period, whereas in Geraldton and Busselton (Australia), the four-hour period was most prominent; at Jurien Bay and Fremantle, the resonance period was 2.7 hours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号