首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 241 毫秒
1.
 A 3-year study of indoor radon in more than 1000 homes in northern Virginia and southern Maryland was conducted using 3-month exposure alpha-track monitors. In a study set of 200 homes, first-floor indoor radon concentrations, which most closely approximates home exposure levels, averaged slightly more than 3 pCi/l. In a study set of 100 homes, sub-slab ventilation was used to reduce indoor radon concentrations. Interest in remediation was related to public perception of the hazardous nature of radon; people living in homes with indoor radon measurements of more than 4 pCi/l were more likely to participate in the remediation phase of the project. Sub-slab ventilation was successful in more than 90% of the homes in reducing indoor radon from concentrations as high as 30 pCi/ to less than 4 pCi/l, at least for the entire year of post-remediation radon measurements. Received: 29 February 1996 · Accepted: 29 May 1996  相似文献   

2.
Radon concentration was evaluated in dwellings of the urban area of Vila Real (Northern Portugal). The area is mainly composed of Hercynian granites and Cambrian metasediments, and CR-39 passive detectors (n = 112) were used for the purpose. The results obtained in winter conditions suggest that the most productive geological unit is the Hercynian granite G1 (geometric mean of 364 Bq/m3), while Cambrian metasediments of the Douro Group show the lowest average indoor radon concentration (236 Bq/m3). The geological, geochemical and radiological data obtained suggest that the most effective control on the radon concentrations of the area is related with the uranium content of the rocks; indeed, the highest contents were observed in granite G1 (21 ppm) and the lowest in the metasediments (3 ppm). This is also confirmed by the results obtained for groundwater, where granites present the highest concentrations of dissolved radon (up to 938 Bq/l), uranium (5–18 ppb) and gross α activities (0.47–0.92 Bq/l). No important radiometric anomalies were found in relation with geological structures such as faults, veins and contacts, but a moderate increase of the uranium content can occur locally in such structures. Petrographic observations and SEM studies show that uranium is mainly contained within the rock in heavy accessory minerals (apatite, zircon, monazite, xenotime), which reduces radon emanation. Notwithstanding, due to the high U contents granites show a significant potential to induce indoor radon concentrations in dwellings in excess of the recommended value of 400 Bq/m3. Overall, we can conclude that the region of Vila Real presents a moderate to high radon risk in dwellings and groundwater.  相似文献   

3.
Indoor radon measurements were carried out in a total of 420 dwellings and 17 schools in Hail region of Saudi Arabia, using NTDs based radon dosimeters. The duration of the measurements was one year, from April 2008 to April 2009. The indoor radon concentrations varied from 4 to 513 Bq/m3 with an overall average of 45 Bq/m3 for all surveyed dwellings. These passive measurements were confirmed by the active measurements. The anomalous concentrations above 200 Bq/m3 were observed in 13 dwellings, representing 3.1 % of the total surveyed dwellings. In Inbowan village alone, it was found that 7.6 % of the dwellings have indoor radon concentration above 200 Bq/m3. The highest average indoor radon concentration of 64 Bq/m3 was found in Inbowan village while the lowest average of 24 Bq/m3 was found in Majasah village. The city of Hail showed an average indoor radon concentration of 49 Bq/m3. The average indoor radon concentration in one area located at the edge of the Aja Mountain in Hail city was 111 Bq/m3. The elevated indoor radon concentrations in many dwellings in the Hail region, prompted us to measure outdoor ground radon in such locations using gas monitor. It was found that radon concentrations at a depth of 0.5 m varied significantly from place to place ranging from 1.2 to 177 kBq/m3. The outdoor radon concentrations are generally correlated with the indoor radon measurements. Radon exhalations from construction materials and soil samples from the Hail region were also measured. It was found that radon exhalations from soil samples are higher than that of construction materials by a factor of at least 3 and reaching up to 11. These results indicate that soil is the main source of indoor radon. Geological interpretations of the results are also given.  相似文献   

4.
In an effort to quantify the geogenic radon soil–gas potential and appraise the use of radon technique as a geological mapping tool in a crystalline basement rock terrain of Ile–Ife Nigeria, radon measurement concentration were made using a radon detector instrument (EDA RD-200) that measures radon isotopes by a scintillator cell coupled to a photomultiplier tube. The data were collected from soils derived from three different lithologic rock units. The observed values were then correlated with the geology of the area. Significant differences in the radon soil–gas concentrations among the three geologic units were observed. Granite gneiss has the highest concentration, followed by grey gneiss and mica schist in that order. The geometric mean (GM) concentration of radon-222 measured in soils directly overlying the three different rock types were 301.4 pCi/l for granite gneiss, 202.8 pCi/l for the grey gneiss, and 199.4 pCi/l for mica schist. Conversely, the average values for radon-220 averaged 1510.0, 815.4, and 733.0 pCi/l for granite gneiss, grey gneiss, and mica schist rocks, respectively. Statistical t test (α=0.05) results indicated that there was no significant difference in the geometric mean of radon soil–gas measured between low and medium potential zones. However, significant differences were found between the low and high radon potential zones, and between the medium and high zones. The low concentrations of radon soil–gas emission observed in this study is explained in terms of the seasonal variation due to thermal convection fluid movement, while the radon concentrations were found to be controlled by the lithology and geochemistry of the underlying bedrock.  相似文献   

5.
 Radon concentrations were measured in soil, air and groundwater in Bhilangana Valley, Garhwal Himalaya, India by using an LR-115 plastic track detector and radon emanometer. Radon concentrations were found to vary from 1 KBq/m3 to 57 KBq/m3 in soil , 5 Bq/l to 887 Bq/l in water and 95 Bq/m3 to 208 Bq/m3 in air. The recorded values are quite high due to associated uranium mineralization in the area. Radon concentration was also found to depend on the tectonic structure and geology of the area. Received: 22 July 1996 · Accepted: 8 January 1997  相似文献   

6.
Radon is a radioactive hazardous and ubiquitous gas. It has been recognized to be one of the major contributors to natural radiation even causing lung cancer if present at enhanced levels. There are large variations in data available in the literature for radium content and radon exhalation rates of various materials. It is a well-documented fact that radon exhalation from the ground surface depends upon a number of parameters such as soil grain size, soil porosity and radium content. For this purpose, in this study the so-called can technique has been used to measure radium content and exhalation rates of radon in soil samples collected from different places of Aligarh, Etah and Mathura districts of Uttar Pradesh??a province in northern India. These districts lie within the subtropical region of the Indo-Gangetic plains. The values of effective radium content are found to vary from 8.11 to 112.83?Bq?kg?1 with a mean value of 33.21?Bq?kg?1 and a standard deviation of 28.15. The values of mass exhalation rates of radon vary from 0.76?×?10?6 to 15.80?×?10?6?Bq?kg?1?day?1 with a mean value of 4.21?×?10?6?Bq?kg?1?day?1, while the surface exhalation rates vary from 1.97?×?10?5 to 41.03?×?10?5?Bq?m?2?day?1 with a mean value of 10.93?×?10?5?Bq?m?2?day?1.  相似文献   

7.
In 1996–1997, indoor radon values of more than 40,000 Bq/m3 and large seasonal and geographical variations in indoor air radon were reported from a residential area located on a highly permeable ice-marginal deposit. Geochemical analyses of bedrock, groundwater and sediments and comparisons between indoor radon values and soil radon values indicate that the indoor radon concentrations in this area are strongly affected by subterranean airflows caused by temperature differences between soil air and atmospheric air. The airflows concentrate the radon-laden soil air towards the topographic highest part of the deposit in winter and towards the topographic lowest part in summer. In areas where subterranean airflows are likely to occur, radon measurements performed both in summer and in winter provide the best estimate of annual average indoor radon concentrations, and assessments of indoor radon concentrations based on single soil gas measurements are not recommended.  相似文献   

8.
This paper presents the results of indoor radon concentration measurements in 120 dwellings of district Sudhnuti of Azad Kashmir. Measurements were taken with CR-39 passive alpha track detector. CR-39 based box type radon detectors were installed in a bedroom and living rooms of each house. The detectors were retrieved after exposing to indoor radon for period of 6 months and then etched in 6 M NaOH at 80°C for 16 h, the observed track densities were converted in to the indoor radon concentration. Indoor radon concentration varied from 20 ± 12 to 170 ± 4 Bq m−3 for the houses of the district Sudhnuti. Arithmetic mean (AM), geometric mean (GM) and geometric standard deviations (GSD) were found to be 82 ± 6, 77 ± 6 and 1.51, respectively. The minimum value of weighted average radon concentration was recorded in one of the house of Mang town, whereas the maximum value was found in the Pattan Sher Khan region. Doses due to indoor radon exposure vary from 0.50 ± 0.31 to 4.28 ± 0.11 mSv year−1 AM, GM and GSD. of mean effective doses were found to be 2.06 ± 0.13, 1.95 ± 0.18 and 1.51, respectively. According to the recommendations made by the Health Protection Agency, UK (200 Bq m−3) all the houses surveyed are within the safe limits.  相似文献   

9.
This paper presents the results of radon concentration measurements in the drinking water from the municipal water supply system and private wells of Xian, Xianyang and Baoji city of Shaanxi province of China. The measurements were carried out on 38 samples. Radon levels in drinking water in Xian, Xianyang and Baoji were found to be 5.78, 13.04 and 15.01 k Bq m–3, respectively. The AM radon concentration of private well water from Xianyang and Baoji is 28.84 k Bq m–3 and 38.85 k Bq m–3, respectively, which is 2.56 times and 3.14 times as high as that of tap water radon, respectively. The radiation risk of radon in water would be due to degassing and not due to drinking water. The domestic use of showers, humidifiers, and cooking, washing up, laundering, etc. may lead to an additional increase of the radon concentration in the indoor air. The observed radon concentration in drinking water from three main cities of Shaanxi Province can contribute to a 4.86 to 32.63% increase in indoor radon concentration and can cause 0.068±0.016 mSv y–1 to 0.177±0.045 mSv y–1 extra annual effective dose to males, 0.060±0.014 mSv y–1 to 0.155±0.039 mSv y–1 to females. The mean annual effective dose equivalents to males and females of Xianyang and Baoji from well water account for 25.94 to 39.75% of environmental radon and radon daughters annual effective dose equivalents. The radon concentrations in the well water from Xianyang and Baoji will bring a definite additional risk to the population.  相似文献   

10.
 Radon concentration was measured in 133 water samples from tubewells, handpumps, dug wells and springs of the Doon Valley, Outer Himalaya, India. The observed radon values were found to vary from 10 to 154 Bq/l whereas radium in selected water samples varied from 0.11 to 0.75 Bq/l. Three different clusters of high radon values were observed in the north-western, central and south-eastern parts of the Doon Valley. These clusters were found to be associated with tectonics (thrust/fault) and associated uranium mineralization in the area. In general, radon concentration in groundwater was found to be positively correlated with the depth of the wells, whereas no significant correlation was observed between radon concentration in groundwater and the water temperature, pH value, conductivity and altitude of the water samples. An attempt has also been made to determine the nature and extent of aquifers in the Doon Valley on radon concentration in groundwater. The variation in radon concentration within the groundwater of the study area was found to be controlled by the neotectonic activity and geohydrological processes that occur in the area. The impact of these activities on radon concentration in groundwater are discussed. Received: 17 September 1999 · Accepted: 11 April 2000  相似文献   

11.
The levels of Rn-222 in homes located in Fairfax County, Virginia, and Montgomery County, Maryland, are currently being measured during four consecutive three-month seasonal intervals using alpha-track detectors. Significant variations occur between parts of northern Virginia and southern Maryland because the area is part of three very different geologic provinces. Results from the winter period in these three provinces show that the indoor radon levels were about twice as high as anticipated. Approximately 45 percent of the homes had winter indoor radon levels above 4 pCi/l, the EPA’s recommended action level, and in the spring period, more than 30 percent of the homes still had indoor levels above 4 pCi/l. Indoor radon variations due to seasonal control were about as significant as geological control. Worst-case combinations developed over some rock units in the winter, producing areas in which about 70 percent of the homes exceeded 4 pCi/l.  相似文献   

12.
It has been established that radon and its airborne decay products can present serious radiation hazards. A long term exposure to high concentration of radon causes lung cancer. Besides, it is also known that out of the total radiation dose received from natural and man-made sources, 60% of the dose is due to radon and its progeny. Taking this into account, an attempt has been made to estimate radon concentration in dwellings in and around Guwahati using aluminium dosimeter cups with CR-39 plastic detectors. Results of preliminary investigation presented in this paper show that the mean concentration is 21.31 Bq m − 3.  相似文献   

13.
 The purpose of this study was to compare regional patterns of indoor radon concentration with uranium-bearing rock zones and county populations in Texas. Zones yielding radon concentrations that are relatively high for Texas include shale and sandstone in northwest Texas; red beds in north-central Texas; felsic volcanic rocks in west Texas; and sandstone, limestone, and igneous rocks in central Texas. Located in northwest Texas, only five of the 202 counties evaluated have mean indoor radon concentrations above 4.0 pCi l–1. Two of those counties have populations above the state median of 20 115. The highest county mean concentration is 8.8 pCi l–1. Results of this study suggest that (1) regional geology influences indoor radon concentrations in Texas, (2) statewide, the radon concentrations are relatively low, (3) highly populated counties do not coincide with regions of high indoor radon concentration, and (4) regions that may warrant further monitoring include northwest Texas and, to a lesser degree, west and central Texas. Received: 8 August 1995 · Accepted: 6 September 1995  相似文献   

14.
A study of the indoor radon gas levels was performed in 935 homes in Scania, southernmost Sweden, located on geologically different ground with regard to uranium (U) content. In one of these two areas the bedrock consists of alum shale with U contents exceeding 200 ppm. In the other area there is no U-rich bedrock. Indoor radon levels are influenced by U content and permeability as shown below.For maam nancy for table, please place here. Thanx!The results show that the indoor radon levels were highest in homes located on bedrock with medium to high U content combined with a highly permeable drift covering the bedrock. The difference was statistically significant(P < 0.0001). Other results of the investigation are: 14 homes built from aerated concrete made from U-rich alum shale had higher levels than 767 homes with walls from other material (312 vs 106 Bq/m3;P = 0.0011); 242 homes with a cellar had lower radon levels than 563 without (62 vs 138 Bq/m3;P <0.0001); further, 418 homes with private well had higher levels than 360 with public water supply (140 vs 82 Bq/m3;P <0.0001). The results of the investigation show a profound effect of a combination of high bedrock U content and high cover permeability. The effect of the uraniferous drift on the indoor radon levels is evident. Thus, the geological conditions should be carefully considered when screening for high-risk buildings, as well as when planning for new ones. Also, the construction of the building and its water supply have some influence.  相似文献   

15.
The incidence of lung cancer in the Gejiu area of Yunnan Province ranks the first in the world.The radon level(indoor,soil) was measured in the Gejiu area by the SSNTD method from 1990 to 1996,The result indicates an extensive high-level of indoor radon in that area though U and Th are lower in local limestones,The indoor radon level of houses located in the geologic fault zone is 6 times high that 2km far from the fault zone.The reason probably is that the radon level of soil in the fault is 6-8 times high that 1 km far from the faults.our data indicate that a lower range of radon levels,0-100Bq.m^-3,exists in healthy families.However,a higher radon level,over 800 Bq.m^-3,is often found corresponding to that of cancer patients‘ homes(the house-owners are suffering from either lung cancer or leukaemia or liver cancer),Obviously,an increase in lung cancer incidence follows an increase in indoor radon level,The risk of cancer induced by indoor radon is no longer an inference,but a fact.  相似文献   

16.
Indoor radon is considered as one of the potential dangerous radioactive elements. Common building materials and soil are the major source of this radon gas in the indoor environment. In the present study, the measurement of radon exhalation rate in the soil and building material samples of Una and Hamirpur districts of Himachal Pradesh has been done with solid state alpha track detectors, LR-115 type-II plastic track detectors. The radon exhalation rate for the soil samples varies from 39.1 to 91.2 mBq kg?1 h?1 with a mean value 59.7 mBq kg?1 h?1. Also the radium concentration of the studied area is found and it varies from 30.6 to 51.9 Bq kg?1 with a mean value 41.6 Bq kg?1. The exhalation rate for the building material samples varies from 40.72 (sandstone) to 81.40 mBq kg?1 h?1 (granite) with a mean value of 59.94 mBq kg?1 h?1.  相似文献   

17.
High indoor radon in approximately 30 percent of private dwellings in the Albuquerque, New Mexico area has been reported previously. The present study explains the areas of high indoor radon as a function of different soil and/or bedrock in the area. Soils were sampled during summer and winter periods using alpha track radon detectors. The values range from 40 to 890 pCi/I air at a depth of 38 cm. The gross mean average is 360 pCi/I for the area for summer readings and 200 pCi/I for winter readings; both values are well over the average U.S. soil radon values of approximately 100 pCi/I. Analyses of soil uranium show a range in values of 1–6 ppm, with a mean of 3.1 ppm. Thorium values range from 3.3 to 28.8 ppm, and Th/U ratios range from 2.9 to 4.6.These values for U, Th, and Th/U suggest that soil U and Th are close to the values reported for the Sandia granite, the source of most of the pediment on which Albuquerque is built. Soil infiltration rates range from ~6 × 10–4 to 4.5 × 10–3 cm/sec for the samples, and soil moisture content ranges from 1.4 to 7.2 percent. A fair correlation of summer soil radon with infiltration rate is noted. Correlation of soil radon with moisture content and/or with percent silt, silt + clay, clay size fraction material is not established by this study. Soil radon values do correlate with regions in the Albuquerque area where high indoor radon is common. A better correlation of high indoor radon values with soils developed immediately over bedrock is observed. Furthermore, all values of average soil and indoor radon increase significantly with proximity of the stations to the Sandia Mountains. Soil uranium also shows this trend. The data argue that regions of potentially high radon can thus be identified.  相似文献   

18.
Radon measurements in soil and groundwater (springs, thermal springs and handpumps) were made in a variety of lithological units including major thrusts between Mandi and Manali in Himachal Himalaya. Analysis of radon data in light of lithological controls and influence of deep-seated thrusts has been made to elucidate the causative factors for anomalous emanation of radon. The lithological types include banded gneisses, schists, quartzite, granite, phyllites, volcanics and mylonites. The low-grade metasedimentries of Shali and Dharamsala generally show low and narrow range of radon concentration in water (5.6–13.4 Bq/l) as well as in soil (1.8–3.2 kBq/m3) except for the samples related to thrusts. On the other hand, sheared and deformed rocks of Chail and Jutogh show moderate radon content (average 5.03 kBq/m3, range 2.9–11.1 kBq/m3) in soil. However, the groundwater radon concentration shows wide variation in different types of sources (2.1–80.8 Bq/l). The quartzite and volcanic rocks of Rampur formation in this area present as a window separated by Chail thrust. Radon emanations on these rock types are relatively high (6.3–68.1 Bq/l in water and 5.5–15.9 kBq/m3 in soil) and are exceptionally high in samples that are related to uranium mineralization, deep-seated thrusts and hot springs (13.5–653.5 Bq/l). It is generally observed that anomalous high radon content is associated with mineralization, deeper source and tectonic discontinuities. Whereas it is obvious that subsurface radioactive mineralization would facilitate enhanced radon production, however, thrust plains provide easy pathways for escape of gases from the deeper sources. Shallow and deep sources of the groundwater have contrasting radon content particularly in the deformed and metamorphosed rocks of Jutogh and Chail. Shallow groundwater sources, mainly handpumps, have lower radon concentration due to limited superficial water circulation, whereas deeper sources, mainly perennial springs, show higher radon content because of larger opportunity for water–rock interaction.  相似文献   

19.
Radon buildup in homes is now recognized throughout the world as a potentially major health hazard. The U.S. Nuclear Regulatory Commission and the U.S. Environmental Protection Agency estimate 8,000–30,000 fatalities per year in the United States due to indoor radon. The Albuquerque, New Mexico area was chosen for study because it is representative of metropolitan areas in the southwestern United States where slightly uraniferous source rocks (Sandia granite) have provided the very immature soil for much of the area. The granite contains 4.7 ppm U, and limestone capping the granite 5.7 ppm U. Soils in the area average 4.24 ppm U, and Th/U ratios average 3.2. These data suggest some removal of U from the source rocks, but fixation of the U in the soils (that is, as opposed to widespread removal of the U by solution), thus providing a ready source for soil radon. A pilot study of soil radon in the area in winter of 1983–1984 shows high values, 180 pCi/l, relative to the U.S. average (about 100 pCi/l). In the winter of 1986–1987, 180 dwellings were surveyed for their indoor radon levels, including 20 that had been surveyed in summer of 1986. Twenty-eight percent of those in the winter study yielded indoor radon above the EPA suggested maximum permissible level of 4 pCi/l air, well above the EPA estimate of 10–15 dwellings for the U.S. The indoor radon levels show positive correlation with closeness to the Sandia Mountains, to soil radon, to excess insulation, to homes with solar capacities, and other factors. Building materials may provide a very minor source of some indoor radon. Summer readings are lower than winter readings except when the houses possess refrigerated air conditioning.  相似文献   

20.
为了解不同地质背景条件室内氡浓度水平,采用脉冲电离室测氡仪AlphaGUARD测量了北京广东不同地质背景典型测点的室内氡浓度,同时对广东某一测点进行了长期的室内氡监测。测量和研究结果表明:地表岩性是影响室内氡浓度高低的重要因素之一。地处花岗岩地区的建筑物内氡浓度高于其他岩性地区的室内氡浓度,广东室内氡水平明显高于北京地区,广东北京花岗岩地区的平均室内氡浓度分别为69.98 Bq/m^3和43.97 Bq/m^3,第四系覆盖地区的平均室内氡浓度分别为43.60 Bq/m^3和35.74 Bq/m^3。民用住宅卧室内的室内氡浓度略高于公共建筑物办公室内的室内氡浓度。因此,结合地质背景研究室内氡的水平与分布对指导开展室内氡调查中确定抽样方案、选择测点及进行区域尺度室内氡评价有重要的实用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号