首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Land change was assessed in the Albertine rift region (ARR) using its central section of north-western Rwanda as case study. This region is one of Africa's most ecologically sensitive environments under severe pressure from human activities. The study maps and quantifies the spatial extent of land use-land cover (LULC) changes between 1987 and 2016 from Landsat images. Transitions between five major land classes were identified in order to understand the trajectory of observed changes. In terms of gains, the forest class, the urban built-up and bare land class increased by 9% and 4% respectively over the study period. The gains of forest were mainly derived from the afforestation of some agricultural lands in the southern part, whereas the gains of built-up and bare lands were mostly from cultivated land which was a net losing class. Forest increase is in line with government's policy to increase the national forest cover to 30% by 2020. Forest losses occurred mostly outside protected areas due to land conversion for settlement and agricultural purposes. Much needed information about changes in LULC over the last three decades is provided. This study demonstrates in a timely manner how to analyse and monitor LULC change and the drivers in an environment where field based research is a challenge due to the mountainous terrain. The ecological richness of the region, which coincides with heightened human population pressure, necessitates the monitoring of land change as input for improving land use planning with focus on conserving biodiversity.  相似文献   

2.
2015—2020年中国土地利用变化遥感制图及时空特征分析   总被引:1,自引:0,他引:1  
持续地开展国家尺度土地利用/覆盖变化遥感监测对于新时代国土空间规划和“美丽中国”蓝图绘制具有重要的科学价值。本文采用Landsat 8 OLI、GF-2等卫星遥感数据,融合遥感大数据云计算和专家知识辅助人机交互解译方法,研发了中国土地利用变化(2015—2020年)和2020年土地利用现状矢量数据(CLUD 2020),建立了完整的30 a(20世纪80年代末—2020年)每隔5 a的30 m分辨率中国土地利用动态数据库。基于CLUD 2020数据,从全国和区域两个尺度揭示了2015—2020年中国土地利用变化的总体规律、区域分异和主要特征。研究表明:将遥感大数据云计算生成的30 m分辨率植被覆盖变化和地表类型变化检测信息融入到人机交互遥感解译方法,可有效地提高大范围土地利用变化遥感制图的效率和变化图斑辨识的准确性;精度评价表明,CLUD 2020一级类型制图的综合精度达95%。总体上,全国范围内国土空间开发强度与2010—2015年比较进入相对稳定状态。期间全国耕地面积仍保持减少态势,空间分异特征为耕地南减北增,东北松嫩平原及其与三江平原交界区大规模的旱地向水田转移,西北新疆南部开垦和北部退耕/撂荒并存;全国城乡建设用地持续增加,空间分异特征表现为由以往的沿海地区和超大、大城市集聚转向中西部地区的大中小城镇周边蔓延为主。全国范围的林草自然生态用地面积持续减少,但强度与2010—2015年比较有所下降;受气候变化的持续影响,青藏高原地区的河流湖泊等水域面积显著增加。以上土地利用变化格局与“十三五”期间国家高质量发展、生态文明建设宏观战略和气候变化的影响密切相关。  相似文献   

3.
This study evaluates land use/cover changes and urban expansion in Greater Dhaka, Bangladesh, between 1975 and 2003 using satellite images and socio-economic data. Spatial and temporal dynamics of land use/cover changes were quantified using three Landsat images, a supervised classification algorithm and the post-classification change detection technique in GIS. Accuracy of the Landsat-derived land use/cover maps ranged from 85 to 90%. The analysis revealed that substantial growth of built-up areas in Greater Dhaka over the study period resulted significant decrease in the area of water bodies, cultivated land, vegetation and wetlands. Urban land expansion has been largely driven by elevation, population growth and economic development. Rapid urban expansion through infilling of low-lying areas and clearing of vegetation resulted in a wide range of environmental impacts, including habitat quality. As reliable and current data are lacking for Bangladesh, the land use maps produced in this study will contribute to both the development of sustainable urban land use planning decisions and also for forecasting possible future changes in growth patterns.  相似文献   

4.
Cultivated land change in the Belt and Road Initiative region   总被引:3,自引:1,他引:2  
The Belt and Road Initiative (BRI)–a development strategy proposed by China – provides unprecedented opportunities for multi-dimensional communication and cooperation across Asia, Africa and Europe. In this study, we analyse the spatio-temporal changes in cultivated land in the BRI countries (64 in total) to better understand the land use status of China along with its periphery for targeting specific collaboration. We apply FAO statistics and GlobeLand30 (the world’s finest land cover data at a 30-m resolution), and develop three indicator groups (namely quantity, conversion, and utilization degree) for the analysis. The results show that cultivated land area in the BRI region increased 3.73×104 km2 between 2000 and 2010. The increased cultivated land was mainly found in Central and Eastern Europe and Southeast Asia, while the decreased cultivated land was mostly concentrated in China. Russia ranks first with an increase of 1.59×104 km2 cultivated land area, followed by Hungary (0.66×104 km2) and India (0.57×104 km2). China decreased 1.95×104 km2 cultivated land area, followed by Bangladesh (–0.22×104 km2) and Thailand (–0.22×104 km2). Cultivated land was mainly transferred to/from forest, grassland, artificial surfaces and bare land, and transfer types in different regions have different characteristics: while large amount of cultivated land in China was converted to artificial surfaces, considerable forest was converted to cultivated land in Southeast Asia. The increase of multi-cropping index dominated the region except the Central and Eastern Europe, while the increase of fragmentation index was prevailing in the region except for a few South Asian countries. Our results indicate that the negative consequence of cultivated land loss in China might be underestimated by the domestic- focused studies, as none of its close neighbours experienced such obvious cultivated land losses. Nevertheless, the increased cultivated land area in Southeast Asia and the extensive cultivated land use in Ukraine and Russia imply that the regional food production would be greatly improved if China’ “Go Out policy” would help those countries to intensify their cultivated land use.  相似文献   

5.
江汉平原土地利用的时空变化及其驱动因素分析   总被引:31,自引:4,他引:27  
采用遥感、GIS一体化技术,利用1989~1990、1995~1996和1999~2000年获取的三期陆地资源卫星图像,对江汉平原土地利用10年变化和以1995~1996年为界的前后两个5年变化的时空特征进行了分析,并探讨了变化的驱动因素。结果表明,该区的土地利用在不同的时间及空间尺度上有明显不同的特点。10年间,耕地减少近5万hm2,其中,前5年的减少量占多数,达6783%。各类建设用地总计增加了156万hm2,其中,前5年的增加量是后5年的2倍。水域面积在10年间增加了达到354万hm2,后5年的增幅不到前期的1/2。土地利用变化最快的区域均处于工业经济较发达、城市化较快的地区如武汉、仙桃,变化最慢的区域在监利、松滋、天门等地。政策、社会经济与科技因素对土地利用随时间尺度的变化有决定性的影响。  相似文献   

6.
Rapid change in land use and land cover (LULC) and unplanned urban expansion in Dhaka City, Bangladesh, receives continuous attention from local policymakers and the international community. This study employed a supervised classification procedure and postclassification change detection technique to estimate major changes between different LULC classes. The study revealed that built-up area increased significantly from 1989 to 2014. The total urban growth of 81.54 percent resulted in a substantial decrease in natural vegetation cover and agricultural land. In addition, water bodies have declined consistently over the last twenty-five years. The overall accuracy of LULC change maps produced from Landsat data ranged from 89.72 percent to 92.97 percent. The results should contribute to ongoing LULC information updates while forecasting possible future LULC change and sustainable development under greater population density.  相似文献   

7.
基于遥感调查数据集定量分析了1990—2015年中国黄土高原地区耕地的时空变化特征和口粮绝对安全最小耕地保障面积的数量变化。结果表明:黄土高原耕地面积从1990年的192 529.65 km2至2015年的182 688.50 km2,净减少了9 841.14 km2,幅度达5.11%,其中2000—2010年的减幅最大,净减少8 483.00 km2;较大的耕地动态变化图斑主要分布于中部和西部区域,细碎的变化图斑广泛分布;耕地地类转出面积(31 875.82 km2)大于转入面积(21 815.25 km2),耕地面积的增加主要由草地和林地转化而来,主要分布在灌溉农业区和东南部平原区,减少的耕地主要转化为草地和林地,主要分布在中部沟壑区的雨养农业区。此外,该时期耕地转化为建筑用地和交通用地等人工表面的面积逐渐增加,主要分布在东南部低海拔平原地区;黄土高原口粮绝对安全所需最小耕地保障面积呈明显减少特征(从1990年的70 913.37 km2下降到2015年的33 981.64 km2),占该区耕地总面积比例呈明显缩减态势(从1990年的36.83%缩减到2015年的18.60%),目前耕地总量的净减少未对口粮绝对安全的耕地保障数量造成大的影响。  相似文献   

8.
Land use/cover change is an important theme on the impacts of human activities on the earth systems and global environmental change. National land-use changes of China during 2010–2015 were acquired by the digital interpretation method using the high-resolution remotely sensed images, e.g. the Landsat 8 OLI, GF-2 remote sensing images. The spatiotemporal characteristics of land-use changes across China during 2010–2015 were revealed by the indexes of dynamic degree model, annual land-use changes ratio etc. The results indicated that the built-up land increased by 24.6×103 km2 while the cropland decreased by 4.9×103 km2, and the total area of woodland and grassland decreased by 16.4×103 km2. The spatial pattern of land-use changes in China during 2010–2015 was concordant with that of the period 2000–2010. Specially, new characteristics of land-use changes emerged in different regions of China in 2010–2015. The built-up land in eastern China expanded continually, and the total area of cropland decreased, both at decreasing rates. The rates of built-up land expansion and cropland shrinkage were accelerated in central China. The rates of built-up land expansion and cropland growth increased in western China, while the decreasing rate of woodland and grassland accelerated. In northeastern China, built-up land expansion slowed continually, and cropland area increased slightly accompanied by the conversions between paddy land and dry land. Besides, woodland and grassland area decreased in northeastern China. The characteristics of land-use changes in eastern China were essentially consistent with the spatial govern and control requirements of the optimal development zones and key development zones according to the Major Function-oriented Zones Planning implemented during the 12th Five-Year Plan (2011–2015). It was a serious challenge for the central government of China to effectively protect the reasonable layout of land use types dominated with the key ecological function zones and agricultural production zones in central and western China. Furthermore, the local governments should take effective measures to strengthen the management of territorial development in future.  相似文献   

9.
Causes of land salinization were determined via land cover and hydrological process change detection in a typical part of Songnen Plain. The area of saline land increased from 4627 km2 in 1980 to 5416 km2 in 2000, and then decreased to 5198 km2 in 2015. The transformation between saline land and other land covers happened mainly before 2000, and saline land had transformation relationship mainly with cropland, grassland, and water body. From 1979 to 2007, groundwater depth fluctuated to increase and was mainly deeper than 3.3 m. Spatially, the area of the region where groundwater depth was deeper than 3.3 m increased from 46.7% in 1980 to 84% in 2000, while the area of the region almost occupied the whole region after 2000. Precipitation and evaporation changed little, while runoff decreased substantially. Shallow groundwater, change of cropland, grassland, and water body induced from human activities and decrease of runoff and increase of irrigation and water transfer from outer basin were the main reasons for land salinization before 2000. After 2000, groundwater with relatively great depth could not exert great influence on land salinization. Protection of grassland and wetland prevented the increase of the area of saline land.  相似文献   

10.
This study aimed at characterizing land cover dynamics for four decades in Eastern Mau forest and Lake Nakuru basin, Kenya. The specific objectives were to: (i) identify and map the major land cover types in 1973, 1985, 2000 and 2011; (ii) detect and determine the magnitude, rates and nature of the land cover changes that had occurred between these dates, and; (iii) establish the spatial and temporal distribution of these changes. Land cover types were discriminated through partitioning, hybrid classification and spatial reclassification of multi-temporal Landsat imagery. The land cover products were then validated and overlaid in post-classification comparison to detect the changes between 1973 and 2011. The accuracies of the land cover maps for 1973, 1985, 2000 and 2011 were 88%, 95%, 80% and 89% respectively. Six land cover classes, namely forests-shrublands, grasslands, croplands, built-up lands, bare lands and water bodies, were mapped. Forests-shrublands dominated in 1973, 1985 and 2000 covering about 1067 km2, 893 km2 and 797 km2 respectively, but were surpassed by croplands (953 km2) in 2011. Bare lands occupied the least area that varied between 2 km2 and 7 km2 during this period. Overall, forests-shrublands and grasslands decreased by 428 km2 and 258 km2 at the annual average rates of 1% each, whereas croplands and built-up lands expanded by 660 km2 and 24 km2 at the annual rates of 6% and 16% respectively. The key hotspots of these changes were distributed in all directions of the study area, but at different times. Therefore, policies that integrate restoration and conservation of natural ecosystems with enhancement of agricultural productivity are strongly recommended. This will ensure environmental sustainability and socio-economic well-being in the area. Future research needs to assess the impacts of the land cover changes on ecosystem services and to project the future patterns of land cover changes.  相似文献   

11.
Over the past few decades, built-up land in China has increasingly expanded with rapid urbanization, industrialization and rural settlements construction. The expansions encroached upon a large amount of cropland, placing great challenges on national food security. Although the impacts of urban expansion on cropland have been intensively illustrated, few attentions have been paid to differentiating the effects of growing urban areas, rural settlements, and industrial/transportation land. To fill this gap and offer comprehensive implications on framing policies for cropland protection, this study investigates and compares the spatio- temporal patterns of cropland conversion to urban areas, rural settlements, and industrial/ transportation land from 1987 to 2010, based on land use maps interpreted from remote sensing imagery. Five indicators were developed to analyze the impacts of built-up land expansion on cropland in China. We find that 42,822 km2 of cropland were converted into built-up land in China, accounting for 43.8% of total cropland loss during 1987–2010. Urban growth showed a greater impact on cropland loss than the expansion of rural settlements and the expansion of industrial/transportation land after 2000. The contribution of rural settlement expansion decreased; however, rural settlement saw the highest percentage of traditional cropland loss which is generally in high quality. The contribution of industrial/transportation land expansion increased dramatically and was mainly distributed in major food production regions. These changes were closely related to the economic restructuring, urban-rural transformation and government policies in China. Future cropland conservation should focus on not only finding a reasonable urbanization mode, but also solving the “hollowing village” problem and balancing the industrial transformations.  相似文献   

12.
The Atlantic Forest biome has only 13 percent of its pristine vegetation cover left. This article analyzes the consequences of land changes on forest cover in the Paraíba Valley, São Paulo state, Brazil, from 1985 to 2011. Multitemporal satellite image classifications were carried out to map eight land use and land cover classes. The forest cover increased from 2,696 km2 in 1985 to 4,704 km2 in 2011, mostly over areas of degraded pastures. The highest rates of afforestation were observed within protected areas around eucalyptus plantations. On the other hand, deforestation processes were concentrated on areas covered by secondary forests. Socioeconomic changes taking place in particular Brazilian settings, such as industrialization and agricultural modernization, allied to the Paraíba Valley's natural biophysical constraints for agricultural production, have led the region to experience a remarkable case of forest transition.  相似文献   

13.
长江沿线样带土地利用变化时空模拟及其对策   总被引:21,自引:6,他引:21  
龙花楼  李秀彬 《地理研究》2001,20(6):660-668
短时期(几年或几十年)的土地利用变化,主要受社会经济因素的驱动和自然因素的约束。各类土地利用变化基本上都能从与人类生产活动密切相关的耕地和城乡建设用地的变化上得到反映。利用修订后的GTR模型,对长江沿线样带未来30年的土地利用变化进行了模拟。研究发现,东部地区的耕地面积将进一步减少,而全区的耕地和建设用地面积将增加。根据研究区未来土地利用变化的时空特点,提出了相关应对策略,以利于区域土地持续利用的实现  相似文献   

14.
ABSTRACT

Urban landscapes are changing in response to changes in socio-economic conditions. Land change scientists seek to understand these land dynamics in the coupled human-environment system of urban landscapes. This study assessed land change in the built-up area of Wa Municipality between 1986 and 2016 using Landsat images. We used the Support Vector Machine algorithm for classifying the images. We recorded image classification accuracies of 97%, 95%, 92% and 96% for the 1986, 1996, 2006 and 2016 classified images, respectively. Our study finds that over the 1986–2016 period, agricultural land and bare land transitioned to build-up land by 9.23% and 3.79%, respectively, as compared to 2.79% for vegetation and 0.05% for water. Our in-municipal level analysis thus shows that urban landscapes could expand more sustainably by targeting other dominant land categories instead of the vegetation cover. The findings in this paper could serve as a spatial model for planning and reducing the unintended socio-ecological impacts of expansion in the built-up area.  相似文献   

15.
In this paper, we analyzed the spatial patterns of cultivated land change between 1982 and 2011 using global vector-based land use/land cover data. (1) Our analysis showed that the total global cultivated land area increased by 528.768×104 km2 with a rate of 7.920×104 km2/a, although this increasing trend was not significant. The global cultivated land increased fastest in the 1980s. Since the 1980s, the cultivated land area in North America, South America and Oceania increased by 170.854×104 km2, 107.890×104 km2, and 186.492×104 km2, respectively. In contrast, that in Asia, Europe and Africa decreased by 23.769×104 km2, 4.035×104 km2 and 86.76×104 km2, respectively. Furthermore, the cultivated land area in North America, South America and Oceania exhibited significant increasing trends of 7.236× 104 km2/a, 2.780×104 km2/a and 3.758×104 km2/a, respectively. On the other hand, that of Asia, Europe and Africa exhibited decreasing trend rates of–5.641×104 km2/a,–0.831×104 km2/a and–0.595×104 km2/a, respectively. Moreover, the decreasing trend in Asia was significant. (2) Since the 1980s, the increase in global cultivated lands was mainly due to converted grasslands and woodlands, which accounted for 53.536% and 26.148% of the total increase, respectively. The increase was found in southern and central Africa, eastern and northern Australia, southeastern South America, central US and Alaska, central Canada, western Russia, northern Finland and northern Mongolia. Among them, Botswana in southern Africa experienced an 80%–90% increase, making it the country with the highest increase worldwide. (3) Since the 1980s, the total area of cultivated lands converted to other types of land was 1071.946×104 km2. The reduction was mainly converted to grasslands and woodlands, which accounted for 57.482% and 36.000%, respectively. The reduction occurred mainly in southern Sudan in central Africa, southern and central US, southern Russia, and southern European countries including Bulgaria, Romania, Serbia and Hungary. The greatest reduction occurred in southern Africa with a 60% reduction. (4) The cultivated lands in all the continents analyzed exhibited a trend of expansion to high latitudes. Additionally, most countries displayed an expansion of newly increased cultivated lands and the reduction of the original cultivated lands.  相似文献   

16.
南京市热岛效应变化时空特征及其与土地利用变化的关系   总被引:9,自引:4,他引:5  
杨英宝  苏伟忠  江南  甄峰 《地理研究》2007,26(5):877-887
利用遥感数据和气象统计数据分析自1985年以来南京市热岛效应变化的时空特征及其与土地利用变化的关系。结果表明:自1985年以来,南京市热岛效应强度和范围在增长。南京市的年均温逐年上升,与郊区六合县的温差呈上升趋势;南京市建成区内4级热岛效应面积增加了107.88km2。热岛效应增长在空间上存在差异,大厂>雨花台>市辖区>栖霞>浦口>江宁。南京市土地利用变化的结果使得热岛效应空间分布更广泛,城镇居民点及工矿用地利用强度变化最大的地方即城市热岛效应增加最多的地方,两者在空间上具有很好的吻合;而和城镇居民点及工矿用地的扩展规模没有很好的空间相关性。  相似文献   

17.
唐常春  李亚平 《地理研究》2020,39(11):2626-2641
多中心城市群具有交通网络发达、功能联系密切、空间多维复合等特征,其土地利用/覆被变化(LUCC)是一个相当复杂的过程。采用地学信息图谱方法,探索城市群LUCC数量结构与时空格局一体化耦合机理,研究用地变化与区域发展互动关系,有助于深入揭示多中心城市群土地利用时空演变规律,为同类城市群的国土空间规划和健康发展提供参考。本文以典型案例长株潭城市群为例,构建1995—2015年四个时期地学信息图谱,并耦合重心转移模型,在总体量化分析基础上,重点从城际与城乡视角深入解析城市群土地利用时空变化特征和一体化发展态势。研究结果表明:① 土地利用总体动态加速演变。四期建设用地扩张年动态度分别为1.06、4.10、2.21和7.39,转移强度动态增加,耕地和林地呈加速减少态势。② 城际与城乡地类图谱转移呈现多维演变。图谱“15(耕地→建设用地)、25(林地→建设用地)、45(水域→建设用地)”重心由株洲城区(Ⅰ 期)向长沙城区(Ⅱ 期和Ⅲ 期)再向湘潭城区(Ⅳ期)迁移,经历“相对均衡-长沙加速崛起-有机均衡”和“城市加速集聚-城乡相对均衡”演变过程。③ 近年来,城际转移强度差异缩小,转移结构分异增加,区域主体功能逐步凸显。同时,外围区县加速发展,城乡一体化水平明显提升。④ 城市群土地利用涨落势图谱与经济社会一体化发展高度耦合,同时耕地保护与高质量发展有待加强。  相似文献   

18.
中国南方不同土地利用/覆被类型对气温升温的影响   总被引:2,自引:0,他引:2  
基于我国南方六省国家气象台站历史气象资料、1:10万土地利用/覆被数据和NCEP再分析气温资料,通过比较气温变化在不同观测环境气象站之间的差异,分析中国南方三种主要土地利用/覆被类型对气温趋势的影响。结果显示:土地利用/覆被类型对气温趋势具有稳定的影响,建设用地的年均温、年均最高和最低气温的升温幅度均最高,耕地次之,林地最小。进一步利用再分析资料剔除区域大尺度气候背景影响后,建设用地的年均温升温趋势仍最大(0.105℃/10a),其次是耕地(0.056℃/10a),林地的升温趋势最小(-0.025℃/10a),且为负。这表明对于研究区气温的升温趋势,林地具有抑制作用,建设用地具有增强作用,且增强作用较耕地强。林地的各季节平均气温的变化幅度同样低于非林地。  相似文献   

19.
In the present study, spatio-temporal urban sprawl and land consumption patterns were analysed in seven capital cities located in the Himalayan region during 1972, 1991 and 2015 using multi-temporal satellite images. The study exhibits that capital Himalayan cities experienced rapid growth (830.92%) with high population increase (333.45%) during the observation period (1972–2015). The significant urban growth was observed in the cities of western and middle Himalayan region viz., Srinagar (9.36 km2–142.19 km2), Kathmandu (11.38 km2–92.58 km2) and Dehradun (4.1 km2–50.09 km2) in the higher altitudes due to remarkable increase in the population (0.5–1 million persons) during 1972–2015. On the contrary, Itanagar (7.19 km2), Gangtok (7.09 km2), Shimla (3.04 km2) and Thimphu (2.93 km2) observed less urban growth with moderate to low population growth (i.e., 0.05 to 0.15 million persons). The Shannon entropy based study exhibits that the cities viz., Kathmandu, Gangtok and Itanagar observed comparatively more dispersed urban growth during later period (1991–2015) as compared to the previous period (1972–1991) whereas, the remaining cities observed comparatively less dispersed urban growth during later period. The temporal land consumption pattern exhibits low density urban growth in Srinagar, Dehradun and Kathmandu, as observed with decrease in population density and increasing land consumption during 1972–2015 as compared to other cities, wherein urban densification was evident with increase in population density and decrease in land consumption. The cities in central and western Himalayan region observed high urban growth as compared to cities in eastern Himalayan region. The result shows that the capital cities contributes insignificant proportion (0.5%; 314 km2) of urban area in Himalayan region and accommodating large (ca. 4 million) population during 2015. The study indicates unplanned and haphazard growth in all capital Himalayan cities, leading towards urban densification as well as dispersion in the periphery with varied pattern and intensity. The specific trends and patterns of urban and population growth are governed by geographical as well as socio-economic-political factors at local to regional scale. The high population pressure induced higher risk to the urban residents as well as constrained urban growth over higher vulnerable zones. The study necessitates implementation of suitable urban planning methods considering socio-economic and physico-cultural characteristics of the region.  相似文献   

20.
There is a growing demand for reliable information about land cover and land resources. The Norwegian area frame survey of land cover and outfield land resources (AR18X18) is a response to this demand. AR18X18 provides unbiased land cover and land resource statistics and constitutes a baseline for studying changes in outfield land resources in Norway and a framework for a national land resource accounting system for the outfields. The area frame survey uses a systematic sampling technique with 0.9 km2 sample plots at 18 km intervals. A complete wall-to-wall land cover map of an entire plot surveyed is obtained in situ by a team of fieldworkers equipped with aerial photographs. The use of sample plots with extended coverage (0.9 km2) ensures that the survey also deals with local variation, thus strengthening the estimates well beyond simple point sampling. The article documents the methodology used in the survey, followed by a discussion of issues raised by the choice of methodology. These issues include the problem of calculating uncertainty and a confidence interval for the estimates, the focus on common rather than rare land cover categories, and the prospect of downscaling the results in order to obtain statistics for subnational regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号