首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Ko?ice meteorite fall occurred in eastern Slovakia on February 28, 2010, 22:25 UT. The very bright bolide was imaged by three security video cameras from Hungary. Detailed bolide light curves were obtained through clouds by radiometers on seven cameras of the European Fireball Network. Records of sonic waves were found on six seismic and four infrasonic stations. An atmospheric dust cloud was observed the next morning before sunrise. After careful calibration, the video records were used to compute the bolide trajectory and velocity. The meteoroid, of estimated mass of 3500 kg, entered the atmosphere with a velocity of 15 km s?1 on a trajectory with a slope of 60° to the horizontal. The largest fragment ceased to be visible at a height of 17 km, where it was decelerated to 4.5 km s?1. A maximum brightness of absolute stellar magnitude about ?18 was reached at a height of 36 km. We developed a detailed model of meteoroid atmospheric fragmentation to fit the observed light curve and deceleration. We found that Ko?ice was a weak meteoroid, which started to fragment under the dynamic pressure of only 0.1 MPa and fragmented heavily under 1 MPa. In total, 78 meteorites were recovered in the predicted fall area during official searches. Other meteorites were found by private collectors. Known meteorite masses ranged from 0.56 g to 2.37 kg. The meteorites were classified as ordinary chondrites of type H5 and shock stage S3. The heliocentric orbit had a relatively large semimajor axis of 2.7 AU and aphelion distance of 4.5 ± 0.5 AU. Backward numerical integration of the preimpact orbit indicates possible large variations of the orbital elements in the past due to resonances with Jupiter.  相似文献   

2.
Abstract— Using visual observations that were reported 140 years ago in the Comptes Rendus de l'Académie des Sciences de Paris, we have determined the atmospheric trajectory and the orbit of the Orgueil meteorite, which fell May 14, 1864, near Montauban, France. Despite the intrinsic uncertainty of visual observations, we were able to calculate a reasonably precise atmospheric trajectory and a moderately precise orbit for the Orgueil meteoroid. The atmosphere entry point was ?70 km high and the meteoroid terminal point was ?20 km high. The calculated luminous path was ?150 km with an entry angle of 20°. These characteristics are broadly similar to that of other meteorites for which the trajectory is known. Five out of six orbital parameters for the Orgueil orbit are well constrained. In particular, the perihelion lies inside the Earth's orbit (q ?0.87 AU), as is expected for an Earth‐crossing meteorite, and the orbital plane is close to the ecliptic (i ?0°). The aphelion distance (Q) depends critically on the pre‐atmospheric velocity. From the calculated atmospheric path and the fireball duration, which was reported by seven witnesses, we have estimated the pre‐atmospheric velocity to be larger than 17.8 km/sec, which corresponds to an aphelion distance Q larger than 5.2 AU, the semi‐major axis of Jupiter orbit. These results suggest that Orgueil has an orbit similar to that of Jupiter‐family comets (JFCs), although an Halley‐type comet cannot be excluded. This is at odds with other meteorites that have an asteroidal origin, but it is compatible with 140 years of data‐gathering that has established the very special nature of Orgueil compared to other meteorites. A cometary origin of the Orgueil meteorite does not contradict cosmochemistry data on CI1 chondrites. If CI1 chondrites originate from comets, it implies that comets are much more processed than previously thought and should contain secondary minerals. The forthcoming return of cometary samples by the Stardust mission will provide a unique opportunity to corroborate (or contradict) our hypothesis.  相似文献   

3.
Abstract– The isotope fractionation of Zn in meteorites has been measured for the first time using thermal ionization mass spectrometry and a double spiking technique. The magnitude of δZn ranged from ?0.29 to +0.38‰ amu?1 for five stone meteorites whereas the iron meteorite Canyon Diablo displays δZn of 1.11 ± 0.11‰ amu?1. The results for chondrites in this work can be divided into positive and negative δZn, supporting a previous proposal that chondrites are a mixture of materials from two different temperature sources. The Zn isotope fractionation present in meteorites may represent a primordial heterogeneity formed in the early solar system. An anomalous isotopic composition of Zn obtained for the Redfields iron meteorite suggests large‐scale inherited isotope heterogeneity of the protosolar nebula, or the presence of a parent body that has formed within its own isotopically anomalous reservoir. These anomalies are in the same direction but smaller than nuclear field shift effects observed in chemical exchange reactions. The isotope dilution mass spectrometry (IDMS) technique was used to measure Zn concentration, yielding a range from 20.1 μg g?1 to 302 μg g?1 in five stone meteorites and from 0.019 to 26 μg g?1 in seven iron meteorites. The IDMS‐measured abundance of Zn in Orgueil is 302 ± 14 μg g?1 and should be considered for future compilations of the abundance of Zn in the solar system.  相似文献   

4.
The common appearance of hygroscopic brine (“sweating”) on ordinary chondrites (OCs) from Oman during storage under room conditions initiated a study on the role of water‐soluble salts on the weathering of OCs. Analyses of leachates from OCs and soils, combined with petrography of alteration features and a 11‐month record of in situ meteorite and soil temperatures, are used to evaluate the role of salts in OC weathering. Main soluble ions in soils are Ca2+, SO42?, HCO3?, Na+, and Cl?, while OC leachates are dominated by Mg2+ (from meteoritic olivine), Ca2+ (from soil), Cl? (from soil), SO42? (from meteoritic troilite and soil), and iron (meteoritic). “Sweating meteorites” mainly contain Mg2+ and Cl?. The median Na/Cl mass ratio of leachates changes from 0.65 in soils to 0.07 in meteorites, indicating the precipitation of a Na‐rich phase or loss of an efflorescent Na‐salt. The total concentrations of water‐soluble ions in bulk OCs ranges from 600 to 9000 μg g?1 (median 2500 μg g?1) as compared to 187–14140 μg g?1 in soils (median 1148 μg g?1). Soil salts dissolved by rain water are soaked up by meteorites by capillary forces. Daily heating (up to 66.3 °C) and cooling of the meteorites cause a pumping effect, resulting in a strong concentration of soluble ions in meteorites over time. The concentrations of water‐soluble ions in meteorites, which are complex mixtures of ions from the soil and from oxidation and hydrolysis of meteoritic material, depend on the degree of weathering and are highest at W3. Input of soil contaminants generally dominates over the ions mobilized from meteorites. Silicate hydrolysis preferentially affects olivine and is enhanced by sulfide oxidation, producing local acidic conditions as evidenced by jarosite. Plagioclase weathering is negligible. After completion of troilite oxidation, the rate of chemical weathering slows down with continuing Ca‐sulfate contamination.  相似文献   

5.
Abstract— We study the observational data relating to 44 events recorded by the Canadian fireball camera network between 1971 and 1984. Each event is believed to have dropped meteorites, with main masses in the range from 0.1 to 11 kg. Median values are given for 20 parameters describing the atmospheric behavior and orbital elements. A typical duration for a meteoritic fireball is 4 seconds, reaching an end height of 31 km and a velocity of 8 km s?1 at the end of the luminous path. The peak brightness is typically ?9 magnitude but varies from ?7 to ?15. Meteorites may survive from relatively unspectacular fireballs. Numerous correlations among parameters are investigated. The strong correlations of brightness with initial mass and of duration with slope of the trajectory could be anticipated. Moderate correlations also exist between: (1) initial mass and end height; (2) initial mass and duration of luminosity; (3) initial velocity and beginning height; (4) initial velocity and the fraction of the mass that survives as the largest fragment; (5) initial velocity and the perihelion distance of the orbit. Ablation limits the survival of small masses while fragmentation is usually severe for masses larger than 10 kg. The fractional survival may peak for entry masses between 1 and 10 kg.  相似文献   

6.
Abstract— The properties and history of the parent meteoroid of the Morávka H5–6 ordinary chondrites have been studied by a combination of various methods. The pre‐atmospheric mass of the meteoroid was computed from fireball radiation, infrasound, seismic signal, and the content of noble gases in the meteorites. All methods gave consistent results. The best estimate of the pre‐atmospheric mass is 1500 ± 500 kg. The fireball integral bolometric luminous efficiency was 9%, and the acoustic efficiency was 0.14%. The meteoroid cosmic ray exposure age was determined to be (6.7 ± 1.0) × 106 yr. The meteorite shows a clear deficit of helium, both 3He and 4He. This deficit can be explained by solar heating. Numerical backward integration of the meteoroid orbit (determined in a previous paper from video records of the fireball) shows that the perihelion distance was probably lower than 0.5 AU and possibly as low as 0.1 AU 5 Ma ago. The collision which excavated Morávka probably occurred while the parent body was on a near‐Earth orbit, as opposed to being confined entirely to the main asteroid belt. An overview of meteorite macroscopic properties, petrology, mineralogy, and chemical composition is given. The meteorites show all mineralogical features of H chondrites. The shock level is S2. Minor deviations from other H chondrites in abundances of trace elements La, Ce, Cs, and Rb were found. The ablation crust is enriched with siderophile elements.  相似文献   

7.
Large Near-Earth-Asteroids have played a role in modifying the character of the surface geology of the Earth over long time scales through impacts. Recent modeling of the disruption of large meteoroids during atmospheric flight has emphasized the dramatic effects that smaller objects may also have on the Earth's surface. However, comparison of these models with observations has not been possible until now. Peekskill is only the fourth meteorite to have been recovered for which detailed and precise data exist on the meteoroid atmospheric trajectory and orbit. Consequently, there are few constraints on the position of meteorites in the solar system before impact on Earth. In this paper, the preliminary analysis based on 4 from all 15 video recordings of the fireball of October 9, 1992 which resulted in the fall of a 12.4 kg ordinary chondrite (H6 monomict breccia) in Peekskill, New York, will be given. Preliminary computations revealed that the Peekskill fireball was an Earth-grazing event, the third such case with precise data available. The body with an initial mass of the order of 104 kg was in a pre-collision orbit with a = 1.5 AU, an aphelion of slightly over 2 AU and an inclination of 5. The no-atmosphere geocentric trajectory would have lead to a perigee of 22 km above the Earth's surface, but the body never reached this point due to tremendous fragmentation and other forms of ablation. The dark flight of the recovered meteorite started from a height of 30 km, when the velocity dropped below 3 km/s, and the body continued 50 km more without ablation, until it hit a parked car in Peekskill, New York with a velocity of about 80 m/s. Our observations are the first video records of a bright fireball and the first motion pictures of a fireball with an associated meteorite fall.  相似文献   

8.
Abstract— The Tagish Lake C2 (ungrouped) carbonaceous chondrite fall of January 18, 2000, delivered ?10 kg of one of the most primitive and physically weak meteorites yet studied. In this paper, we report the detailed circumstances of the fall and the recovery of all documented Tagish Lake fragments from a strewnfield at least 16 km long and 3 to 4 km wide. Nearly 1 kg of “pristine” meteorites were collected one week after the fall before new snow covered the strewnfield; the majority of the recovered mass was collected during the spring melt. Ground eyewitnesses and a variety of instrument‐recorded observations of the Tagish Lake fireball provide a refined estimate of the fireball trajectory. From its calculated orbit and its similarity to the remotely sensed properties of the D‐ and P‐class asteroids, the Tagish Lake carbonaceous chondrite apparently represents these outer belt asteroids. The cosmogenic nuclide results and modeled production indicate a prefall radius of 2.1–2.4 m (corresponding to 60–90 tons) consistent with the observed fireball energy release. The bulk oxygen‐isotope compositions plot just below the terrestrial fractionation line (TFL), following a trend similar to the CM meteorite mixing line. The bulk density of the Tagish Lake material (1.64 ± 0.02 g/cm3) is the same, within uncertainty, as the total bulk densities of several C‐class and especially D‐ and P‐class asteroids. The high microporosity of Tagish Lake samples (?40%) provides an obvious candidate material for the composition of low bulk density primitive asteroids.  相似文献   

9.
Abstract— MacAlpine Hills (MAC) 87300 and 88107 are two unusual carbonaceous chondrites that are intermediate in chemical composition between the CO3 and CM2 meteorite groups. Calcium‐aluminum‐rich inclusions (CAIs) from these two meteorites are mostly spinel‐pyroxene and melilite‐rich (Type A) varieties. Spinel‐pyroxene inclusions have either a banded or nodular texture, with aluminous diopside rimming Fe‐poor spinel. Melilite‐rich inclusions (Åk4–42) are irregular in shape and contain minor spinel (FeO <1 wt%), perovskite and, more rarely, hibonite. The CAIs in MAC 88107 and 87300 are similar in primary mineralogy to CAIs from low petrologic grade CO3 meteorites but differ in that they commonly contain phyllosilicates. The two meteorites also differ somewhat from each other: melilite is more abundant and slightly more Al‐rich in inclusions from MAC 88107 than in those from MAC 87300, and phyllosilicate is more abundant and Mg‐poor in MAC 87300 CAIs relative to that in MAC 88107. These differences suggest that the two meteorites are not paired. The CAI sizes and the abundance of melilite‐rich CAIs in MAC 88107 and 87300 suggests a genetic relationship to CO3 meteorites, but the CAIs in both have suffered a greater degree of aqueous alteration than is observed in CO meteorites. Aluminum‐rich melilite in CAIs from both meteorites generally contains excess 26Mg, presumably from the in situ decay of 26Al. Although well‐defined isochrons are not observed, the 26Mg excesses are consistent with initial 26Al/27Al ratios of approximately 3–5 times 10?5. An unusual hibonite‐bearing inclusion is isotopically heterogeneous, with two large and abutting hibonite crystals showing significant differences in their degrees of mass‐dependent fractionation of 25Mg/24Mg. The two crystals also show differences in their inferred initial 26Al/27Al ratios, 1 × 10?5 vs. ≤3 × 10?6.  相似文献   

10.
We report a comprehensive analysis of the instrumentally observed meteorite fall ??ár nad Sázavou, which occurred in the Czech Republic on December 9, 2014, at 16:16:45–54 UT. The original meteoroid with an estimated initial mass of 150 kg entered the atmosphere with a speed of 21.89 km s?1 and began a luminous trajectory at an altitude of 98.06 km. At the maximum, it reached ?15.26 absolute magnitude and terminated after a 9.16 s and 170.5 km long flight at an altitude of 24.71 km with a speed of 4.8 km/s. The average slope of the atmospheric trajectory to the Earth's surface was only 25.66°. Before its collision with Earth, the initial meteoroid orbited the Sun on a moderately eccentric orbit with perihelion near Venus orbit, aphelion in the outer main belt, and low inclination. During the atmospheric entry, the meteoroid severely fragmented at a very low dynamic pressure 0.016 MPa and further multiple fragmentations occurred at 1.4–2.5 MPa. Based on our analysis, so far three small meteorites classified as L3.9 ordinary chondrites totaling 87 g have been found almost exactly in the locations predicted for a given mass. Because of very high quality of photographic and radiometric records, taken by the dedicated instruments of the Czech part of the European Fireball Network, ??ár nad Sázavou belongs to the most reliably, accurately, and thoroughly described meteorite falls in history.  相似文献   

11.
Abstract— –The distribution of sediment‐dispersed extraterrestrial (ordinary chondritic) chromite (EC) grains (>63 μm) has been studied across the latest Maastrichtian and Paleocene in the Bottaccione Gorge section at Gubbio, Italy. This section is ideal for determining the accumulation rate of EC because of its condensed nature and well‐constrained sedimentation rates. In a total of 210 kg of limestone representing eight samples of 14–28 kg distributed across 24 m of the Bottaccione section, only 6 EC grains were found (an average of 0.03 EC grains kg?1). In addition, one probable pallasitic chromite grain was found. No EC grains could be found in two samples at the Cretaceous‐Tertiary (K‐T) boundary, which is consistent with the K‐T boundary impactor being a carbonaceous chondrite or comet low in chromite. The average influx of EC to Earth is calculated to ~~0.26 grain m?2 kyr?1. This corresponds to a total flux of ~~200 tons of extraterrestrial matter per year, compared to ~~30,000 tons per year, as estimated from Os isotopes in deep‐sea sediments. The difference is explained by the EC grains representing only unmelted ordinary chondritic matter, predominantly in the size range from ~~0.1 mm to a few centimeters in diameter. Sedimentary EC grains can thus give important information on the extent to which micrometeorites and small meteorites survive the passage through the atmosphere. The average of 0.03 EC grain kg?1 in the Gubbio limestone contrasts with the up to ~~3 EC grains kg?1 in mid‐Ordovician limestone that formed after the disruption of the L chondrite parent body in the asteroid belt at ~~470 Ma. The two types of limestone were deposited at about the same rate, and the difference in EC abundance gives support for an increase by two orders of magnitude in the flux of chondritic matter directly after the asteroid breakup.  相似文献   

12.
Abstract– Sixty named lunar meteorite stones representing about 24 falls have been found in Oman. In an area of 10.7 × 103 km2 in southern Oman, lunar meteorite areal densities average 1 g km?2. All lunar meteorites from Oman are breccias, although two are dominated by large igneous clasts (a mare basalt and a crystalline impact‐melt breccia). Among the meteorites, the range of compositions is large: 9–32% Al2O3, 2.5–21.1% FeO, 0.3–38 μg g?1 Sm, and <1 to 22.5 ng g?1 Ir. The proportion of nonmare lunar meteorites is higher among those from Oman than those from Antarctica or Africa. Omani lunar meteorites extend the compositional range of lunar rocks as known from the Apollo collection and from lunar meteorites from other continents. Some of the feldspathic meteorites are highly magnesian (high MgO/[MgO + FeO]) compared with most similarly feldspathic Apollo rocks. Two have greater concentrations of incompatible trace elements than all but a few Apollo samples. A few have moderately high abundances of siderophile elements from impacts of iron meteorites on the Moon. All lunar meteorites from Oman are contaminated, to various degrees, with terrestrial Na, K, P, Zn, As, Se, Br, Sr, Sb, Ba, U, carbonates, or sulfates. The contamination is not so great, however, that it seriously compromises the scientific usefulness of the meteorites as samples from randomly distributed locations on the Moon.  相似文献   

13.
High entry speed (>25 km s?1) and low density (<2500 kg m?3) are the two factors that lower the chance of a meteoroid to drop meteorites. The 26 g carbonaceous (CM2) meteorite Maribo recovered in Denmark in 2009 was delivered by a bright bolide observed by several instruments across northern and central Europe. By reanalyzing the available data, we confirmed the previously reported high entry speed of (28.3 ± 0.3) km s?1 and trajectory with slope of 31° to the horizontal. In order to understand how such a fragile material survived, we applied three different models of meteoroid atmospheric fragmentation to the detailed bolide light curve obtained by radiometers located in Czech Republic. The Maribo meteoroid was found to be quite inhomogeneous with different parts fragmenting at different dynamic pressures. While 30–40% of the (2000 ± 1000) kg entry mass was destroyed already at 0.02 MPa, another 25–40%, according to different models, survived without fragmentation up to the relatively large dynamic pressures of 3–5 MPa. These pressures are only slightly lower than the measured tensile strengths of hydrated carbonaceous chondrite (CC) meteorites and are comparable with usual atmospheric fragmentation pressures of ordinary chondritic (OC) meteoroids. While internal cracks weaken OC meteoroids in comparison with meteorites, this effect seems to be absent in CC, enabling meteorite delivery even at high speeds, though in the form of only small fragments.  相似文献   

14.
Abstract— The fireball accompanying the Park Forest meteorite fall (L5) was recorded by ground‐based videographers, satellite systems, infrasound, seismic, and acoustic instruments. This meteorite shower produced at least 18 kg of recovered fragments on the ground (Simon et al. 2004). By combining the satellite trajectory solution with precise ground‐based video recording from a single site, we have measured the original entry velocity for the meteoroid to be 19.5 ± 0.3 km/s. The earliest video recording of the fireball was made near the altitude of 82 km. The slope of the trajectory was 29° from the vertical, with a radiant azimuth (astronomical) of 21° and a terminal height measured by infrared satellite systems of 18 km. The meteoroid's orbit has a relatively large semi‐major axis of 2.53 ± 0.19 AU, large aphelion of 4.26 ± 0.38 AU, and low inclination. The fireball reached a peak absolute visual magnitude of ?22, with three major framentation episodes at the altitudes of 37, 29, and 22 km. Acoustic recordings of the fireball airwave suggest that fragmentation was a dominant process in production of sound and that some major fragments from the fireball remained supersonic to heights as low as ?10 km. Seismic and acoustic recordings show evidence of fragmentation at 42, 36, 29, and 17 km. Examination of implied energies/initial masses from all techniques (satellite optical, infrasound, seismic, modeling) leads us to conclude that the most probable initial mass was (11 ± 3) × 103 kg, corresponding to an original energy of ?0.5 kt TNT (2.1 times 1012 J) and a diameter of 1.8 m. These values correspond to an integral bolometric efficiency of 7 ± 2%. Early fragmentation ram pressures of <1 MPa and major fragmentations occurring with ram pressures of 2–5 MPa suggest that meter‐class stony near‐Earth asteroids (NEAs) have tensile strengths more than an order of magnitude lower than have been measured for ordinary chondrites. One implication of this observation is that the rotation period for small, fast‐rotating NEAs is likely to be >30 seconds.  相似文献   

15.
Abstract– We report an analysis of the first instrumentally observed meteorite fall in Australia, which was recorded photographically and photoelectrically by two eastern stations of the Desert Fireball Network (DFN) on July 20, 2007. The meteoroid with an initial mass of 22 kg entered the atmosphere with a low speed of 13.36 km s?1 and began a luminous trajectory at an altitude of 62.83 km. In maximum, it reached ?9.6 absolute magnitude and terminated after a 5.7 s and 64.7 km long flight at an altitude of 29.59 km with a speed of 5.8 km s?1. The angle of the atmospheric trajectory to the Earth’s surface was 30.9°. The first organized search took place in October 2008 and the first meteorite (150 g) was found 97 m southward from the predicted central line at the end of the first day of searching (October 3, 2008). The second stone (174 g) was recovered 39 m northward from the central line, both exactly in the predicted mass limits. During the second expedition in February 2009, a third fragment of 14.9 g was found again very close (~100 m) from the predicted position. Total recovered mass is 339 g. The meteorite was designated Bunburra Rockhole (BR) after a nearby landscape structure. This first DFN sample is an igneous achondrite. Initial petrography indicated that BR was a brecciated eucrite but detailed analyses proved that BR is not a typical eucrite, but an anomalous basaltic meteorite ( Bland et al. 2009 ). BR was delivered from an unusual, Aten type orbit (a < 1 AU) where virtually the entire orbit was contained within Earth’s orbit. BR is the first achondrite fall with a known orbit and it is one of the most precise orbits ever calculated for a meteorite dropping fireball.  相似文献   

16.
Abstract— We measured nickel isotopes via multicollector inductively coupled plasma mass spectrometry (MC‐ICPMS) in the bulk metal from 36 meteorites, including chondrites, pallasites, and irons (magmatic and non‐magmatic). The Ni isotopes in these meteorites are mass fractionated; the fractionation spans an overall range of ~0.4‰ amu?1. The ranges of Ni isotopic compositions (relative to the SRM 986 Ni isotopic standard) in metal from iron meteorites (~0.0 to ~0.3‰ amu?1) and chondrites (~0.0 to ~0.2‰ amu?1) are similar, whereas the range in pallasite metal (~–0.1 to 0.0‰ amu?1) appears distinct. The fractionation of Ni isotopes within a suite of fourteen IIIAB irons (~0.0 to ~0.3‰ amu?1) spans the entire range measured in all magmatic irons. However, the degree of Ni isotopic fractionation in these samples does not correlate with their Ni content, suggesting that core crystallization did not fractionate Ni isotopes in a systematic way. We also measured the Ni and Fe isotopes in adjacent kamacite and taenite from the Toluca IAB iron meteorite. Nickel isotopes show clearly resolvable fractionation between these two phases; kamacite is heavier relative to taenite by ~0.4‰ amu?1. In contrast, the Fe isotopes do not show a resolvable fractionation between kamacite and taenite. The observed isotopic compositions of kamacite and taenite can be understood in terms of kinetic fractionation due to diffusion of Ni during cooling of the Fe‐Ni alloy and the development of the Widmanstätten pattern.  相似文献   

17.
Edward Anders 《Icarus》1975,24(3):363-371
The place of origin of stony meteorites can be determined from their trapped solar-wind gases. “Gas-rich” meteorites have only 10?3?10?4 the solar noble gas content and ?10?2?10?4 the surface exposure age of lunar soils. These differences suggest that the gas implantation took place between 1 and 8 AU from the Sun, in a region where the cratering rate was 102?103 times higher than at 1 AU. Both characteristics point to the asteroid belt. The predicted Ne20 content a gas-rich meteorite formed at 2.5 AU is 1.2 × 10?5 cc STP g?1, compared to an observed mean for H-chondrites of 0.5 × 10?5 cc STP g?1. The observed prevalence of gas-rich meteorites (40–100% among carbonaceous chondrites, 2–33% among other classes) requires that the parent body remained long enough in the asteroid belt to develop a substantial regolith. This condition can be met by asteroids (~ 10% of mass converted to regolith.in 4.5 × 109 yr), but not by short period comets (~0.04% converted in 107 yr). It appears that a cometary origin can be ruled out for all stony meteorite clases that have gas-rich members. This includes carbonaceous chondrites.  相似文献   

18.
On February 28, 2021, a fireball dropped ∼0.6 kg of recovered CM2 carbonaceous chondrite meteorites in South-West England near the town of Winchcombe. We reconstruct the fireball's atmospheric trajectory, light curve, fragmentation behavior, and pre-atmospheric orbit from optical records contributed by five networks. The progenitor meteoroid was three orders of magnitude less massive (∼13 kg) than any previously observed carbonaceous fall. The Winchcombe meteorite survived entry because it was exposed to a very low peak atmospheric dynamic pressure (∼0.6 MPa) due to a fortuitous combination of entry parameters, notably low velocity (13.9 km s−1). A near-catastrophic fragmentation at ∼0.07 MPa points to the body's fragility. Low entry speeds which cause low peak dynamic pressures are likely necessary conditions for a small carbonaceous meteoroid to survive atmospheric entry, strongly constraining the radiant direction to the general antapex direction. Orbital integrations show that the meteoroid was injected into the near-Earth region ∼0.08 Myr ago and it never had a perihelion distance smaller than ∼0.7 AU, while other CM2 meteorites with known orbits approached the Sun closer (∼0.5 AU) and were heated to at least 100 K higher temperatures.  相似文献   

19.
Abstract– Numerous fossil meteorites and high concentrations of sediment‐dispersed extraterrestrial chromite (EC) grains with ordinary chondritic composition have previously been documented from 467 ± 1.6 Ma Middle Ordovician (Darriwilian) strata. These finds probably reflect a temporarily enhanced influx of L‐chondritic matter, following the disruption of the L‐chondrite parent body in the asteroid belt 470 ± 6 Ma. In this study, a Volkhovian‐Kundan limestone/marl succession at Lynna River, northwestern Russia, has been searched for EC grains (>63 μm). Eight samples, forming two separate sample sets, were collected. Five samples from strata around the Asaphus expansusA. raniceps trilobite Zone boundary, in the lower‐middle Kundan, yielded a total of 496 EC grains in 65.5 kg of rock (average 7.6 EC grains kg?1, but up to 10.2 grains kg?1). These are extremely high concentrations, three orders of magnitude higher than “background” levels in similar condensed sediment from other periods. EC grains are typically about 50 times more abundant than terrestrial chrome spinel in the samples and about as common as terrestrial ilmenite. Three stratigraphically lower lying samples, close to the A. lepidurusA. expansus trilobite Zone boundary, at the Volkhov‐Kunda boundary, yielded only two EC grains in 38.2 kg of rock (0.05 grains kg?1). The lack of commonly occurring EC grains in the lower interval probably reflects that these strata formed before the disruption of the L‐chondrite parent body. The great similarity in EC chemical composition between this and other comparable studies indicates that all or most EC grains in these Russian mid‐Ordovician strata share a common source––the L‐chondrite parent body.  相似文献   

20.
We propose that the Taurid meteor shower may contain bodies able to survive and be recovered as meteorites. We review the expected properties of meteorite‐producing fireballs, and suggest that end heights below 35 km and terminal speeds below 10 km s?1 are necessary conditions for fireballs expected to produce meteorites. Applying the meteoroid strength index (PE criteria) of Ceplecha and McCrosky (1976) to a suite of 33 photographically recorded Taurid fireballs, we find a large spread in the apparent meteoroid strengths within the stream, including some very strong meteoroids. We also examine in detail the flight behavior of a Taurid fireball (SOMN 101031) and show that it has the potential to be a (small) meteorite‐producing event. Similarly, photographic observations of a bright, potential Taurid fireball recorded in November of 1995 in Spain show that it also had meteorite‐producing characteristics, despite a very high entry velocity (33 km s?1). Finally, we note that the recent Maribo meteorite fall may have had a very high entry velocity (28 km s?1), further suggesting that survival of meteorites at Taurid‐like velocities is possible. Application of a numerical entry model also shows plausible survival of meteorites at Taurid‐like velocities, provided the initial meteoroids are fairly strong and large, both of which are characteristics found in the Taurid stream.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号