首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Six Cr‐spinel grains from NWA 6077 brachinite‐like and NWA 725 winonaite achondrites have been studied by single‐crystal X‐ray diffraction and structural refinement. From a chemical point of view, spinels from NWA 6077 show Cr/(Cr + Al) (i.e., Cr#) and Mg/(Mg + Fe2+) (i.e., Mg#) values similar to other brachinites, while the Cr# of NWA 725 is lower than that of literature winonaites. Spinels from NWA 6077 and NWA 725 meteorites show similar cell edges, while the oxygen positional parameter is rather different being about 0.2629 for NWA 6077 and 0.2622 for NWA 725. Considering both parameters, NWA 725 shows structural features that are close to some terrestrial spinel occurrences as in komatiites, kimberlites, or included in diamonds; those from NWA 6077 show values that have no terrestrial analogs. Olivine‐chromite closure temperature ranges from ~737 to ~765° C for NWA 725, being similar to that of literature winonaites and ~846 to ~884° C for NWA 6077. The logfO2 ranges from ?19.8 to ?20.5 and ?17.0 to ?17.9 for the two meteorites, respectively. The u values for terrestrial samples can give information about the cooling history of the samples. For the extraterrestrial samples, it seems that it can give information about the cooling only for spinels where it is lower than 0.2625. For higher values, it appears related only to the chemistry of the spinels.  相似文献   

2.
Abstract— In addition to the Mg‐, Al‐, 16O‐rich spinels that are known to occur in refractory inclusions, the Murchison meteorite contains Cr‐rich, 16O‐poor spinels, most of whose sources are unknown because they are rarely found in situ. Here we report the in situ occurrence in Allende of Cr‐rich spinels, found in 13 chondrules and 4 “olivine‐rich objects”. The Allende spinels exhibit major and minor element contents, isotopic compositions, and zoning of Cr2O3 contents like those of the Cr‐spinels from Murchison. Some chondrules contain patchy‐zoned spinel (Simon et al., 1994), which suggests that such grains did not form by sintering but perhaps by formation of overgrowths on relic grains. Unlike the olivine‐rich objects, phases in all three chondrules that were analyzed by ion microprobe have uniform, near‐normal O‐isotopic compositions. One olivine‐rich object, ALSP1, has a huge (1 mm) fragment of chevron‐zoned spinel. This spinel has near‐normal O‐isotopic compositions that are quite distinct from those of adjacent forsteritic olivine, which are relatively 16O‐rich and plot on the calcium‐aluminum‐inclusion (CAI) line, like some isolated forsterite grains found in Allende. The spinel and olivine in this object are therefore not genetically related to each other. Another olivine‐rich object, ALSP11A, contains a rectangular, 150 ×s 100 μm, homogeneous spinel grain with 50 wt% Cr2O3 and 23 wt% FeO in a vuggy aggregate of finer‐grained (5–90 μm), FeO‐rich (Fo47–55) olivine. The magnesian core of one olivine grain has a somewhat 16O‐rich isotopic composition like that of the large spinel, whereas the FeO‐rich olivine is relatively 16O‐poor. The composition of the spinel in ALSP11A plots on the CAI line, the first Cr‐rich spinel found to do so. Chevron‐zoned spinel has not been observed in chondrules, and it is unlikely that either ALSP1 or ALSP11A were ever molten. Calculations show that a spinel with the composition of that in ALSP1 can condense at 1780 K at a Ptot of 10?3 atm and a dust/gas ratio of 100 relative to solar. The Cr‐rich spinel in ALSP11A could condense at ~1420 K, but this would require a dust/gas enrichment of 1000 relative to solar. The data presented here confirm that, as in Murchison, the coarse Cr‐rich spinels in Allende are relatively 16O‐depleted and are isotopically distinct from the 16O‐enriched MgAl2O4 from CAIs. Sample ALSP11A may represent a third population, one that is Cr‐rich and plots on the CAI line. That the O‐isotopic composition of ALSP1 is like those of Cr‐rich spinels from chondrules indicates that O‐isotopic compositions cannot be used to distinguish whether grains from such unequilibrated objects are condensates or are fragments from a previous generation of chondrules.  相似文献   

3.
Ti valence measurements in MgAl2O4 spinel from calcium‐aluminum‐rich inclusions (CAIs) by X‐ray absorption near‐edge structure (XANES) spectroscopy show that many spinels have predominantly tetravalent Ti, regardless of host phases. The average spinel in Allende type B1 inclusion TS34 has 87% Ti+4. Most spinels in fluffy type A (FTA) inclusions also have high Ti valence. In contrast, the rims of some spinels in TS34 and spinel grain cores in two Vigarano type B inclusions have larger amounts of trivalent titanium. Spinels from TS34 have approximately equal amounts of divalent and trivalent vanadium. Based on experiments conducted on CAI‐like compositions over a range of redox conditions, both clinopyroxene and spinel should be Ti+3‐rich if they equilibrated with CAI liquids under near‐solar oxygen fugacities. In igneous inclusions, the seeming paradox of high‐valence spinels coexisting with low‐valence clinopyroxene can be explained either by transient oxidizing conditions accompanying low‐pressure evaporation or by equilibration of spinel with relict Ti+4‐rich phases (e.g., perovskite) prior to or during melting. Ion probe analyses of large spinel grains in TS34 show that they are enriched in heavy Mg, with an average Δ25Mg of 4.25 ± 0.028‰, consistent with formation of the spinel from an evaporating liquid. Δ25Mg shows small, but significant, variation, both within individual spinels and between spinel and adjacent melilite hosts. The Δ25Mg data are most simply explained by the low‐pressure evaporation model, but this model has difficulty explaining the high Ti+4 concentrations in spinel.  相似文献   

4.
Abstract— The distribution of sediment‐dispersed extraterrestrial chromite grains and other Cr‐rich spinels (>63 μm) has been studied in Middle Ordovician Orthoceratite Limestone from two quarries at Kinnekulle, southern Sweden. In the Thorsberg quarry, an ?3.2 m thick sequence of beds previously shown to be rich in fossil meteorites is also rich in sediment‐dispersed extraterrestrial chromite grains. Typically, 1–3 grains are found per kilogram of limestone. In the nearby Hällekis quarry, the same beds show similarly high concentrations of extraterrestrial chromite grains, but in samples representing the 9 m downward continuation of the section exposed at this site, only 5 such grains were found in a total of 379 kg of limestone. The extraterrestrial (equilibrated ordinary chondritic) chromite grains can be readily distinguished by a homogeneous and characteristic major element chemistry, including 2.0–3.5 wt% TiO2 and stable V2O3 concentrations close to 0.7 wt%. Terrestrial Cr‐rich spinels have a wide compositional range and co‐exist with extraterrestrial chromite in some beds. These grains may be derived, for example, from mafic dykes exposed and weathered at the sea floor. Considering lithologic and stratigraphic aspects variations in sedimentation rate cannot explain the dramatic increase in extraterrestrial chromite seen in the upper part of the composite section studied. Instead, the difference may be primarily related to an increase in the ancient flux of extraterrestrial matter to Earth in connection with the disruption of the L chondrite parent body in the asteroid belt at about this time. The coexistence in some beds of high concentrations of chondritic chromite and terrestrial Cr‐rich spinels, however, indicates that redistribution of heavy minerals on the sea floor, related to changes in sea level and sea‐floor erosion and currents, must also be considered.  相似文献   

5.
MnO/FeO ratios in olivine from amoeboid olivine aggregates (AOAs) reflect conditions of nebular condensation and can be used in concert with matrix textures to compare metamorphic conditions in carbonaceous chondrites. LIME (low‐iron, Mn‐enriched) olivine was identified in AOAs from Y‐81020 (CO3.05), Kaba (CV~3.1), and in Y‐86009 (CV3), Y‐86751 (CV3), NWA 1152 (CR/CV3), but was not identified in AOAs from Efremovka (CV3.1–3.4) or Allende (CV>3.6). According to thermodynamic models of nebular condensation, LIME olivine is stable at lower temperatures than Mn‐poor olivine and at low oxygen fugacities (dust enrichment <10× solar). Although this set of samples does not represent a single metamorphic sequence, the higher subtypes tend to have AOA olivine with lower Mn/Fe, suggesting that Mn/Fe decreases during parent body metamorphism. Y‐81020 has the lowest subtype and most forsteritic AOA olivine (Fo>95) in our study, whereas Efremovka AOAs are slightly Fe‐rich (Fo>92). AOA olivines from Kaba are mostly forsteritic, but rare Fe‐rich olivine precipitated from an aqueous fluid. A combination of precipitation of Fe‐rich olivine and diffusion of Fe into primary olivine grains resulted in iron‐rich compositions (Fo97–59) in Allende AOAs. Variations from fine‐grained, nonporous matrix toward higher porosity and coarser lath‐like matrix olivine can be divided into six stages represented by (1) Y‐81020, Efremovka, NWA 1152; (2) Y‐86751 lithology B; (3) Y‐86009; (4) Kaba; (5) Y‐86751 lithology A; (6) Allende. These stages are inferred to represent general degree of metamorphism, although the specific roles of thermally driven grain growth and diffusion versus aqueous dissolution and precipitation remain uncertain.  相似文献   

6.
Abstract— Minor element variations in MgAl2O4 spinel from the type B1 calcium‐aluminum‐rich inclusion (CAI) Allende TS‐34 confirm earlier studies in showing correlations between the minor element chemistry of spinels with their location within the inclusion and with the chemistry of host silicate phases. These correlations result from a combination of crystallization of a liquid produced by re‐melting event(s) and local re‐equilibration during subsolidus reheating. The correlation of the Ti and V in spinel inclusions with the Ti and V in the adjacent host clinopyroxene can be qualitatively explained by spinel and clinopyroxene crystallization prior to melilite, following a partial melting event. There are, however, difficulties in quantitative modeling of the observed trends, and it is easier to explain the Ti correlation in terms of complete re‐equilibration. The correlation of V in spinel inclusions with that in the adjacent host clinopyroxene also cannot be quantitatively modeled by fractional crystallization of the liquid produced by re‐melting, but it can be explained by partial re‐equilibration. The distinct V and Ti concentrations in spinel inclusions in melilite from the edge regions of the CAI are best explained as being affected by only a minor degree of re‐equilibration. The center melilites and included spinels formed during crystallization of the liquid produced by re‐melting, while the edge melilites and included spinels are primary. The oxygen isotope compositions of TS‐34 spinels are uniformly 16O‐rich, regardless of the host silicate phase or its location within the inclusion. Similar to other type B1 CAIs, clinopyroxene is 16O‐rich, but melilite is relatively 16O‐poor. These data require that the oxygen isotope exchange in TS‐34 melilite occurred subsequent to the last re‐melting event.  相似文献   

7.
Abstract— We present a new single‐crystal X‐ray diffraction (XRD) study performed on a suite of six orthopyroxene grains from the low‐shocked H6 Trenzano meteorite. The quenched intracrystalline Fe2+‐Mg ordering state in orthopyroxene preserves the memory of the cooling rate near closure temperature Tc, thus yielding useful constraints on the last thermal event undergone by the host rock. The orthopyroxene Tc of 522 ± 13 °C, calculated using a new calibration equation obtained by Stimpfl (2005b), is higher than in previously published H chondrite data. The orthopyroxene cooling rate at this Tc is about 100 °C/kyr. This fast rate is inconsistent with the much slower cooling rate expected for H6 in the onion shell structural and thermal model of chondrite parent bodies. A petrographic study carried out at the same time indicated that the Trenzano meteorite is an H5 chondrite and not an H6 chondrite, as it is officially classified. Furthermore, the two‐pyroxene equilibrium temperature of Trenzano (824 ± 24 °C), calculated with QUILF95, is similar to the two‐pyroxene temperature of 750–840 °C obtained for the Carcote (H5) chondrite (Kleinschrot and Okrusch 1999).  相似文献   

8.
Martian magmas are thought to be rich in chlorine compared with their terrestrial counterparts. Here, we experimentally investigate the effect of chlorine on liquidus depression and near‐liquidus crystallization of olivine‐phyric shergottite NWA 6234 and compare these results with previous experimental results on the effect of chlorine on near‐liquidus crystallization of the surface basalts Humphrey and Fastball. Previous experimental results showed that the change in liquidus temperature is dependent on the bulk composition of the basalt. The effect of chlorine on liquidus depression is greater for lower SiO2 and higher Al2O3 magmas than for higher SiO2 and lower Al2O3 magmas. The bulk composition for this study has lower Al2O3 and higher FeO contents than previous work; therefore, we provide additional constraints on the effect of the bulk composition on the influence of chlorine on near‐liquidus crystallization. High pressure and temperature crystallization experiments were performed at 1 GPa on a synthetic basalt, of the bulk composition of NWA 6234, with 0–4 wt% Cl added to the sample as AgCl. The results are consistent with previous notions that with increasing wt% Cl in the melt, the crystallization temperature decreases. Importantly, our results have a liquidus depression ?T (°C) from added chlorine that is consistent with the difference in bulk composition and suggest a dependence on both the bulk Al2O3 and FeO content. Our results suggest that the addition of chlorine to the Martian mantle may lower magma genesis temperatures and potentially aid in the petrogenesis of Martian magmas.  相似文献   

9.
Abstract– We used a combination of different analytical techniques to study particle W7190‐D12 using microinfrared spectroscopy, micro‐Raman spectroscopy, and field emission scanning electron microscopy (FESEM) energy dispersive X‐ray spectroscopy (EDS). The particle consists mainly of hematite (α‐Fe2O3) with considerable variations in structural disorder. It further contains amorphous (Na,K)‐bearing Ca,Al‐silicate and organic carbon. Iron‐bearing spherules (<150 nm in diameter) cover the surface of this particle. At local sites of structural disorder at the hematite surface, the hematite spheres were reduced to FeO in the presence of organic carbons forming FeO‐spheres. However, metallic Fe spheres cannot be excluded based on the available data. To the best of our knowledge, this particle is the first detection of such spherules at the surface of a stratospheric dust particle. Although there is no definitive evidence for an extraterrestrial origin of particle W7190‐D12, we suggest that it could be an IDP that had moved away from the asteroid‐forming region of the early solar system into the outer solar system of the accreting Kuiper Belt objects. After it was released from a Jupiter family comet, this particle became part of the zodiacal cloud. Atmospheric entry flash‐heating caused (1) the formation of microenvironments of reduced iron oxide when indigenous carbon materials reacted with hematite covering its surface resulting in the formation of FeO‐spheres and (2) Na‐loss from Na,Al‐plagioclase. The particle of this study, and other similar particles on this collector, may represent a potentially new type of nonchondritic IDPs associated with Jupiter family comets, although an origin in the asteroid belt cannot be ignored.  相似文献   

10.
High‐precision isotope data of meteorites show that the long‐standing notion of a “chondritic uniform reservoir” is not always applicable for describing the isotopic composition of the bulk Earth and other planetary bodies. To mitigate the effects of this “isotopic crisis” and to better understand the genetic relations of meteorites and the Earth‐forming reservoir, we performed a comprehensive petrographic, elemental, and multi‐isotopic (O, Ca, Ti, Cr, Ni, Mo, Ru, and W) study of the ungrouped achondrites NWA 5363 and NWA 5400, for both of which terrestrial O isotope signatures were previously reported. Also, we obtained isotope data for the chondrites Pillistfer (EL6), Allegan (H6), and Allende (CV3), and compiled available anomaly data for undifferentiated and differentiated meteorites. The chemical compositions of NWA 5363 and NWA 5400 are strikingly similar, except for fluid mobile elements tracing desert weathering. We show that NWA 5363 and NWA 5400 are paired samples from a primitive achondrite parent‐body and interpret these rocks as restite assemblages after silicate melt extraction and siderophile element addition. Hafnium‐tungsten chronology yields a model age of 2.2 ± 0.8 Myr after CAI, which probably dates both of these events within uncertainty. We confirm the terrestrial O isotope signature of NWA 5363/NWA 5400; however, the discovery of nucleosynthetic anomalies in Ca, Ti, Cr, Mo, and Ru reveals that the NWA5363/NWA 5400 parent‐body is not the “missing link” that could explain the composition of the Earth by the mixing of known meteorites. Until this “missing link” or a direct sample of the terrestrial reservoir is identified, guidelines are provided of how to use chondrites for estimating the isotopic composition of the bulk Earth.  相似文献   

11.
Abstract— We report on the petrology and geochemistry of Northwest Africa (NWA) 4215, an unbrecciated diogenite recovered in the Sahara. This single stone, weighing 46.4 g, displays a wellpreserved cumulative texture. It consists of zoned xenomorphic orthopyroxene grains on the order of 500 μm in size, along with a few large chromite crystals (<5 vol%, up to 3 mm). Accessory olivine and scarce diopside grains occur within the groundmass, usually around the chromite crystals. Minor phases are cristobalite, troilite, and metal. Unlike other diogenites, orthopyroxenes (En76.2Wo1.1Fs22.7 to En68.6Wo5.5Fs25.9), olivines (Fo76 to Fo71), and chromites (Mg# = 14.3 44.0, Cr# = 42.2–86.5) are chemically zoned. The minor element behavior in orthopyroxenes and the intricate chemical profiles obtained in chromites indicate that the zonings do not mirror the evolution of the parental melt. We suggest that they resulted from reaction of the crystals with intercumulus melt. In order to preserve the observed zoning profiles, NWA 4215 clearly cooled significantly faster than other diogenites. Indeed, the cooling rate determined from the diffusion of Cr in olivine abutting chromite is in the order of 10–50 °C/a, suggesting that NWA 4215 formed within a small, shallow intrusion. The bulk composition of NWA 4215 has been determined for major and trace elements. This meteorite is weathered and its fractures are filled with calcite, limonite, and gypsum, typical of hot desert alteration. In particular, the FeO, CaO abundances and most of the trace element concentrations (Sr, Ba, Pb, and REE among others) are high and indicate a significant contribution from the secondary minerals. To remove the terrestrial contribution, we have leached with HCl a subsample of the meteorite. The residue, made essentially of orthopyroxene and chromite, has similar major and trace element abundances to diogenites as shown by the shape of its REE pattern or by its high Al/Ga ratio. The connection of NWA 4215 with diogenites is confirmed by its O‐isotopic composition (δ17O = 1.431 ± 0.102‰, δ18O = 3.203 ± 0.205‰, Δ17O = ?0.248 ± 0.005‰).  相似文献   

12.
Abstract— We report on a new angrite, Northwest Africa (NWA) 1296, a fine‐grained rock with a magmatic texture of rapid cooling. Dendritic olivine (?Fo50) crystallized first in association with anorthite microcrysts (An98–100) forming composite chains separated from one another by intergrown Al‐Fe diopside‐hedenbergite pyroxenes. In addition, some olivines with lower Mg# and increased CaO (up to 12%) are found between the chains as equant microphenocrysts. Pyroxenes and olivines are both normally zoned from Mg# = 0.52 to less than 0.01 in the rims. Ca‐rich olivines are surrounded by, intergrown with, or replaced by subcalcic kirschsteinite. They appear after plagioclase crystallization stopped, at the end of the crystallization sequence. Minor phases are pyrrhotite, F‐apatite, and titanomagnetite. Pyroxene is the last silicate phase to grow, interstitial to idiomorphic olivine‐kirschsteinite. Numerous small vesicles and some channels are filled with microcristalline carbonate. The mode (vol%) is about 28% olivine, 3% kirschsteinite, 32% anorthite, 34% pyroxene, and 3% of the minor phases—close to that reported previously for D'Orbigny and Sahara (SAH) 99555. The bulk chemical composition of NWA 1296 is similar to D'Orbigny and SAH 99555; NWA 1296 differs by its texture and mineralogy, which are interpreted as resulting from rapid crystallization—an evidence of impact melting. Angrites cannot be produced by partial melting of a CV source because segregation of a “planetary” core is necessary to explain the low FeO/MgO ratio of magnesian olivines. Neither the odd Ca/Al ratio nor the very low SiO2 content can be explained by conventional partial melting scenarios. We suggest that carbonate is the key to angrite genesis. This is supported by the striking similarities with terrestrial melilitites (low SiO2, superchondritic Ca/Al ratio, presence of carbonate). The lack of alkalies could be the result of either loss after impact melting or absence of alkalies in the source.  相似文献   

13.
Abstract— North West Africa (NWA) 480 is a new martian meteorite of 28 g found in the Moroccan Sahara in November 2000. It consists mainly of large gray pyroxene crystals (the largest grains are up to 5 mm in length) and plagioclase converted to maskelynite. Excluding the melt pocket areas, modal analyses indicate the following mineral proportions: 72 vol% pyroxenes extensively zoned, 25% maskelynite, 1% phosphates (merrillite and chlorapatite), 1% opaque oxides (ilmenite, ulvöspinel and chromite) and sulfides, and 1% others such as silica and fayalite. The compositional trend of NWA 480 pyroxenes is similar to that of Queen Alexandra Range (QUE) 94201 but in NWA 480 the pyroxene cores are more Mg‐rich (En77‐En65). Maskelynites display a limited zoning (An42–50Ab54‐48Or2–4). Our observations suggest that NWA 480 formed from a melt with a low nuclei density at a slow cooling rate. The texture was achieved via a single‐stage cooling where pyroxenes grew continuously. A similar model was previously proposed for QUE 94201 by McSween et al. (1996). NWA 480 is an Al‐poor ferroan basaltic rock and resembles Zagami or Shergotty for major elements and compatible trace element abundances. The bulk rock analysis for oxygen isotopes yields Δ17O = +0.42%, a value in agreement at the high margin, with those measured on other shergottites (Clayton and Mayeda, 1996; Romanek et al., 1998; Franchi et al., 1999). Its CI‐normalized rare earth element pattern is similar to those of peridotitic shergottites such as Allan Hills (ALH)A77005, suggesting that these shergottites shared a similar parent liquid, or at least the same mantle source.  相似文献   

14.
We present noble gas data for 16 shergottites, 2 nakhlites (NWA 5790, NWA 10153), and 1 angrite (NWA 7812). Noble gas exposure ages of the shergottites fall in the 1–6 Ma range found in previous studies. Three depleted olivine‐phyric shergottites (Tissint, NWA 6162, NWA 7635) have exposure ages of ~1 Ma, in agreement with published data for similar specimens. The exposure age of NWA 10153 (~12.2 Ma) falls in the range of 9–13 Ma reported for other nakhlites. Our preferred age of ~7.3 Ma for NWA 5790 is lower than this range, and it is possible that NWA 5790 represents a distinct ejection event. A Tissint glass sample contains Xe from the Martian atmosphere. Several samples show a remarkably low (21Ne/22Ne)cos ratio < 0.80, as previously observed in a many shergottites and in various other rare achondrites. This was explained by solar cosmic ray‐produced Ne (SCR Ne) in addition to the commonly found galactic cosmic ray‐produced Ne, implying very low preatmospheric shielding and ablation loss. We revisit this by comparing measured (21Ne/22Ne)cos ratios with predictions by cosmogenic nuclide production models. Indeed, several shergottites, acalpulcoites/lodranites, angrites (including NWA 7812), and the Brachina‐like meteorite LEW 88763 likely contain SCR Ne, as previously postulated for many of them. The SCR contribution may influence the calculation of exposure ages. One likely reason that SCR nuclides are predominantly detected in meteorites from rare classes is because they usually are analyzed for cosmogenic nuclides even if they had a very small (preatmospheric) mass and hence low ablation loss.  相似文献   

15.
Abstract— Single crystals of orthopyroxene from small fragments of the Kapoeta, Old Homestead 001, and Hughes 002 howardites were studied by x‐ray diffraction and microprobe analyses. The Fe‐Mg equilibrium distribution coefficients kD of the crystals were used to calculate the closure temperatures (Tc) using the calibration by Stimpfl et al. (1999). The compositions, the presence of exsolved augite lamellae, and the Tc values (from 365 to 385 °C) obtained for Kapoeta orthopyroxene s suggest that our fragment comes from a diogenitic cumulate clast. The more Fe‐rich composition, the absence of exsolved lamellae, and the higher Tc values (from 583 to 605 °C) measured in the Old Homestead 001 orthopyroxenes suggest that this fragment comes from a cumulitic clast affected by fast cooling at high temperature. For the Hughes 002 orthopyroxenes, close in composition to Old Homestead 001, the different Tc values (339, 358, and 607 °C) recorded by the various crystals and the presence of augite lamellae in the crystals with the lowest Tc support the hypothesis that this howardite sample is an unheated breccia containing a mixture of cumulitic orthopyroxenes with different thermal histories.  相似文献   

16.
We report an occurrence of hexagonal CaAl2Si2O8 (dmisteinbergite) in a compact type A calcium‐aluminum‐rich inclusion (CAI) from the CV3 (Vigarano‐like) carbonaceous chondrite Northwest Africa 2086. Dmisteinbergite occurs as approximately 10 μm long and few micrometer‐thick lath‐shaped crystal aggregates in altered parts of the CAI, and is associated with secondary nepheline, sodalite, Ti‐poor Al‐diopside, grossular, and Fe‐rich spinel. Spinel is the only primary CAI mineral that retained its original O‐isotope composition (Δ17O ~ ?24‰); Δ17O values of melilite, perovskite, and Al,Ti‐diopside range from ?3 to ?11‰, suggesting postcrystallization isotope exchange. Dmisteinbergite, anorthite, Ti‐poor Al‐diopside, and ferroan olivine have 16O‐poor compositions (Δ17O ~ ?3‰). We infer that dmisteinbergite, together with the other secondary minerals, formed by replacement of melilite as a result of fluid‐assisted thermal metamorphism experienced by the CV chondrite parent asteroid. Based on the textural appearance of dmisteinbergite in NWA 2086 and petrographic observations of altered CAIs from the Allende meteorite, we suggest that dmisteinbergite is a common secondary mineral in CAIs from the oxidized Allende‐like CV3 chondrites that has been previously misidentified as a secondary anorthite.  相似文献   

17.
Recently it has been shown that the relatively low closure temperature (Tc) of 500 (100)°C calculated for augite from Miller Range nakhlite (MIL 03346,13) using the available geothermometers would correspond to a slow cooling rate inconsistent with the petrologic evidence for an origin from a fast‐cooled lava flow. Moreover, previous annealing experiments combined with HR‐SC‐XRD on an augite crystal from MIL 03346 clearly showed that at 600 °C, the Fe2+‐Mg degree of order remained unchanged, thus suggesting that the actual Tc is close to this temperature. In order to clarify this discrepancy, we undertook an ex situ annealing experimental study at 700, 800, and 900 °C, until the equilibrium in the intracrystalline Fe2+‐Mg exchange is reached, using an augite crystal from Miller Range nakhlite (MIL 03346,13) with a composition of about En36Fs24Wo40. These data allowed us to calculate the following new geothermometer calibration for Martian nakhlites: where The application of this new equation to other Martian nakhlites (NWA 988 and Nakhla) suggests that for augite with composition close to that of MIL 03346, the Tc is up to 170 °C higher with respect to the one calculated using the previous available geothermometer equation, thus suggesting a significantly faster cooling in agreement with petrologic evidence.  相似文献   

18.
Abstract— Antarctic meteorite Miller Range (MIL) 03346 is a nakhlite composed of 79% clinopyroxene, ?1% olivine, and 20% vitrophyric intercumulus material. We have performed a petrological and geochemical study of MIL 03346, demonstrating a petrogenetic history similar to previously discovered nakhlites. Quantitative textural study of MIL 03346 indicates long (>1 × 101 yr) residence times for the cumulus augite, whereas the skeletal Fe‐Ti oxide, fayalite, and sulfide in the vitrophyric intercumulus matrix suggest rapid cooling, probably as a lava flow. From the relatively high forsterite contents of olivine (up to Fo43) compared with other nakhlites and compositions of augite cores (Wo38–42En35–40Fs22–28) and their hedenbergite rims, we suggest that MIL 03346 is part of the same or a similar Martian cumulate‐rich lava flow as other nakhlites. However, MIL 03346 has experienced less equilibration and faster cooling than other nakhlites discovered to date. Calculated trace element concentrations based upon modal abundances of MIL 03346 and its constituent minerals are identical to whole rock trace element abundances. Parental melts for augite have REE patterns that are approximately parallel with whole rock and intercumulus melt using experimentally defined partition coefficients. This parallelism reflects closed‐system crystallization for MIL 03346, where the only significant petrogenetic process between formation of augite and eruption and emplacement of the nakhlite flow has been fractional crystallization. A model for the petrogenesis of MIL 03346 and the nakhlites (Nakhla, Governador Valadares, Lafayette, Yamato‐000593, Northwest Africa (NWA) 817, NWA 998) would include: 1) partial melting and ascent of melt generated from a long‐term LREE depleted mantle source, 2) crystallization of cumulus augite (± olivine, ± magnetite) in a shallow‐level Martian magma chamber, 3) eruption of the crystal‐laden nakhlite magma onto the surface of Mars, 4) cooling, crystal settling, overgrowth, and partial equilibration to different extents within the flow, 5) secondary alteration through hydrothermal processes, possibly immediately succeeding or during emplacement of the flow. This model might apply to single—or multiple—flow models for the nakhlites. Ultimately, MIL 03346 and the other nakhlites preserve a record of magmatic processes in volcanic rocks on Mars with analogous petrogenetic histories to pyroxene‐rich terrestrial lava flows and to komatiites.  相似文献   

19.
Abstract– We measured cosmogenic radionuclides and noble gases in the L3–6 chondrite breccia Northwest Africa (NWA) 869, one of the largest meteorite finds from the Sahara. Concentrations of 10Be, 26Al, and 36Cl in stone and metal fractions of six fragments of NWA 869 indicate a preatmospheric radius of 2.0–2.5 m. The 14C and 10Be concentrations in three fragments yield a terrestrial age of 4.4 ± 0.7 kyr, whereas two fragments show evidence for a recent change in shielding, most likely due to a recent impact on the NWA meteoroid, approximately 105 yr ago, that excavated material up to approximately 80 cm deep and exposed previously shielded material to higher cosmic‐ray fluxes. This scenario is supported by the low cosmogenic 3He/21Ne ratios in these two samples, indicating recent loss of cosmogenic 3He. Most NWA samples, except for clasts of petrologic type 4–6, contain significant amounts of solar Ne and Ar, but are virtually free of solar helium, judging from the trapped 4He/20Ne ratio of approximately 7. Trapped planetary‐type Kr and Xe are most clearly present in the bulk and matrix samples, where abundances of 129Xe from decay of now extinct 129I are highest. Cosmogenic 21Ne varies between 0.55 and 1.92 × 10?8 cm3 STP g?1, with no apparent relationship between cosmogenic and solar Ne contents. Low cosmogenic (22Ne/21Ne)c ratios in solar gas free specimens are consistent with irradiation in a large body. Combined 10Be and 21Ne concentrations indicate that NWA 869 had a 4π cosmic‐ray exposure (CRE) age of 5 ± 1 Myr, whereas elevated 21Ne concentrations in several clasts and bulk samples indicate a previous CRE of 10–30 Myr on the parent body, most probably as individual components in a regolith. Unlike many other large chondrites, NWA 869 does not show clear evidence of CRE as a large boulder near the surface of its parent body. Radiogenic 4He concentrations in most NWA 869 samples indicate a major outgassing event approximately 2.8 Gyr ago that may have also resulted in loss of solar helium.  相似文献   

20.
Olivine‐phyric shergottites represent primitive basaltic to picritic rocks, spanning a large range of Mg# and olivine abundances. As primitive olivine‐bearing magmas are commonly representative of their mantle source on Earth, understanding the petrology and evolution of olivine‐phyric shergottites is critical in our understanding of Martian mantle compositions. We present data for the olivine‐phyric shergottite Northwest Africa (NWA) 10170 to constrain the petrology with specific implications for magma plumbing‐system dynamics. The calculated oxygen fugacity and bulk‐rock REE concentrations (based on modal abundance) are consistent with a geochemically intermediate classification for NWA 10170, and overall similarity with NWA 6234. In addition, we present trace element data using laser ablation ICP‐MS for coarse‐grained olivine cores, and compare these data with terrestrial and Martian data sets. The olivines in NWA 10170 contain cores with compositions of Fo77 that evolve to rims with composition of Fo58, and are characterized by cores with low Ni contents (400–600 ppm). Nickel is compatible in olivine and such low Ni content for olivine cores in NWA 10170 suggests either early‐stage fractionation and loss of olivine from the magma in a staging chamber at depth, or that Martian magmas have lower Ni than terrestrial magmas. We suggest that both are true in this case. Therefore, the magma does not represent a primary mantle melt, but rather has undergone 10–15% fractionation in a staging chamber prior to extrusion/intrusion at the surface of Mars. This further implies that careful evaluation of not only the Mg# but also the trace element concentrations of olivine needs to be conducted to evaluate pristine mantle melts versus those that have fractionated olivine (±pyroxene and oxide minerals) in staging chambers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号