首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 95 毫秒
1.
We report a petrographic and mineralogical survey of tochilinite/cronstedtite intergrowths (TCIs) in Paris, a new CM chondrite considered to be the least altered CM identified to date. Our results indicate that type‐I TCIs consist of compact tochilinite/cronstedtite rims surrounding Fe‐Ni metal beads, thus confirming kamacite as the precursor of type‐I TCIs. In contrast, type‐II TCIs are characterized by complex compositional zoning composed of three different Fe‐bearing secondary minerals: from the outside inwards, tochilinite, cronstedtite, and amakinite. Type‐II TCIs present well‐developed faces that allow a detailed morphological analysis to be performed in order to identify the precursors. The results demonstrate that type‐II TCIs formed by pseudomorphism of the anhydrous silicates, olivine, and pyroxene. Hence, there is no apparent genetic relationship between type‐I and type‐II TCIs. In addition, the complex chemical zoning observed within type‐II TCIs suggests that the alteration conditions evolved dramatically over time. At least three stages of alteration can be proposed, characterized by alteration fluids with varying compositions (1) Fe‐ and S‐rich fluids; (2) S‐poor and Fe‐ and Si‐rich fluids; and (3) S‐ and Si‐poor, Fe‐rich fluids. The presence of unaltered silicates in close association with euhedral type‐II TCIs suggests the existence of microenvironments during the first alteration stages of CM chondrites. In addition, the absence of Mg‐bearing secondary minerals in Paris TCIs suggests that the Mg content increases during the course of alteration.  相似文献   

2.
Based on the high abundance of fine‐grained material and its dark appearance, NWA 11024 was recognized as a CM chondrite, which is also confirmed by oxygen isotope measurements. But contrary to known CM chondrites, the typical phases indicating aqueous alteration (e.g., phyllosilicates, carbonates) are missing. Using multiple analytical techniques, this study reveals the differences and similarities to known CM chondrites and will discuss the possibility that NWA 11024 is the first type 3 CM chondrite. During the investigation, two texturally apparent tochilinite–cronstedtite intergrowths were identified within two thin sections. However, the former phyllosilicates were recrystallized to Fe‐rich olivine during a heating event without changing the textural appearance. A peak temperature of 400–600 °C is estimated, which is not high enough to destroy or recrystallize calcite grains. Thus, calcites were never constituents of the mineral paragenesis. Another remarkable feature of NWA 11024 is the occurrence of unknown clot‐like inclusions (UCLIs) within fine‐grained rims, which are unique in this clarity. Their density and S concentration are significantly higher than of the surrounding fine‐grained rim and UCLIs can be seen as primary objects that were not formed by secondary alteration processes inside the rims. Similarities to chondritic and cometary interplanetary dust particles suggest an ice‐rich first‐generation planetesimal for their origin. In the earliest evolution, NWA 11024 experienced the lowest degree of aqueous alteration of all known CM chondrites and subsequently, a heating event dehydrated the sample. We suggest to classify the meteorite NWA 11024 as the first type 3 CM chondrite similar to the classification of CV3 chondrites (like Allende) that could also have lost their matrix phyllosilicates by thermal dehydration.  相似文献   

3.
We report a petrographic and mineralogical survey of Paris, a new CM chondrite considered to be the least‐altered CM identified so far (Hewins et al. 2014 ). Compared to other CMs, Paris exhibits (1) a higher concentration of Fe‐Ni metal beads, with nickel contents in the range 4.1–8.1 wt%; (2) the systematic presence of thin lamellae and tiny blebs of pentlandite in pyrrhotite grains; and (3) ubiquitous tochilinite/cronstedtite associations with higher FeO/SiO2 and S/SiO2 ratios. In addition, Paris shows the highest concentration of trapped 36Ar reported so far for a CM chondrite (Hewins et al. 2014 ). In combination with the findings of previous studies, our data confirm the reliability of (1) the alteration sequence based on the chemical composition of tochilinite/cronstedtite associations to quantify the fluid alteration processes and (2) the use of Cr content variability in type II ferroan chondrule olivine as a proxy of thermal metamorphism. In contrast, the scales based on (1) the Fe3+ content of serpentine in the matrix to estimate the degree of aqueous alteration and (2) the chemical composition of Fe‐Ni metal beads for quantifying the intensity of the thermal metamorphism are not supported by the characteristics of Paris. It also appears that the amount of trapped 36Ar is a sensitive indicator of the secondary alteration modifications experienced by chondrites, for both aqueous alteration and thermal metamorphism. Considering Paris, our data suggest that this chondrite should be classified as type 2.7 as it suffered limited but significant fluid alteration and only mild thermal metamorphism. These results point out that two separated scales should be used to quantify the degree of the respective role of aqueous alteration and thermal metamorphism in establishing the characteristics of CM chondrites.  相似文献   

4.
The CM carbonaceous chondrite meteorites experienced aqueous alteration in the early solar system. They range from mildly altered type 2 to almost completely hydrated type 1 chondrites, and offer a record of geochemical conditions on water‐rich asteroids. We show that CM1 chondrites contain abundant (84–91 vol%) phyllosilicate, plus olivine (4–8 vol%), magnetite (2–3 vol%), Fe‐sulfide (<5 vol%), and calcite (<2 vol%). The CM1/2 chondrites contain phyllosilicate (71–88 vol%), olivine (4–20 vol%), enstatite (2–6 vol%), magnetite (2–3 vol%), Fe‐sulfides (1–2 vol%), and calcite (~1 vol%). As aqueous alteration progressed, the abundance of Mg‐serpentine and magnetite in the CM chondrites increased. In contrast, calcite abundances in the CM1/2 and CM1 chondrites are often depleted relative to the CM2s. The modal data support the model, whereby metal and Fe‐rich matrix were the first components to be altered on the CM parent body(ies), before further hydration attacked the coarser Mg‐rich silicates found in chondrules and fragments. Based on the absence of tochilinite, we suggest that CM1 chondrites experienced increased alteration due to elevated temperatures (>120 °C), although higher water/rock ratios may also have played a role. The modal data provide constraints for interpreting the composition of asteroids and the mineralogy of samples returned from these bodies. We predict that “CM1‐like” asteroids, as has been proposed for Bennu—target for the OSIRIS‐REx mission—will have a high abundance of Mg‐rich phyllosilicates and Fe‐oxides, but be depleted in calcite.  相似文献   

5.
The polymict Kaidun microbreccia contains lithologies of C‐type chondrites with euhedral iron sulfide crystals of hydrothermal origin. Our FIB‐TEM study reveals that acicular sulfides in a CM1 lithology are composed of Fe‐rich pyrrhotite with nonintegral vacancy superstructures (NC‐pyrrhotite), troilite, and pentlandite, all showing distinct exsolution textures. Based on phase relations in the Fe‐Ni‐S system, we constrain the temperature of formation of the originally homogeneous monosulfide solid solution to the range of 100–300 °C. In some crystals the exsolution of pentlandite and the microtextural equilibration was incomplete, probably due to rapid cooling. We use thermodynamic modeling to constrain the physicochemical conditions of the extreme hydrothermal alteration in this lithology. Unless the CM1 lithology was sourced from a large depth in the parent body (internal pressure >85 bar) or the temperatures were in the lower range of the interval determined, the water was likely present as vapor. Previously described light δ34S compositions of sulfides in Kaidun's CM1 lithology are likely due to the loss of 34S‐enriched H2S during boiling. Platy sulfide crystals in an adjacent, intensely altered CI1 lithology are composed of Fe‐poor, monoclinic 4C‐pyrrhotite and NC‐pyrrhotite and probably formed at lower temperatures and higher fS2 relative to the CM1 lithology. However, a better understanding of the stability of Fe‐poor pyrrhotites at temperatures below 300 °C is required to better constrain these conditions.  相似文献   

6.
Abstract– The study of aqueous alteration of kamacite in CM chondrites provides insight on the conditions, products, and relative timing of aqueous alteration. We studied unaltered, partially altered, and fully altered kamacite grains from Murray, Murchison, Cold Bokkeveld, and Nogoya using optical microscopy, electron microprobe analysis, scanning electron microscopy, and Raman spectroscopy. From textual evidence and chemical analysis, we established three separate microchemical environments. 1) In a microchemical environment with a high S activity, kamacite alters to form tochilinite, P‐bearing sulfides, eskolaite, and schreibersite. Mass balance calculations show that 81% of the Fe in kamacite is removed from the alteration region, making it available for the formation of other minerals or Fe‐rich aureoles. The release of Fe can alter the mesostasis of type‐I chondrules forming cronstedtite. 2) In a microchemical environment with a high Si activity and a low S activity, kamacite alters to form cronstedtite with small accessory sulfide inclusions. 3) A microchemical environment with limited S and Si activity results in kamacite alteration forming magnetite. The resulting magnetite retains associated Ni that can distinguish it from precipitated magnetite. In addition, the accessory phases of pentlandite and apatite can be formed if S or Ca are present. Finally, we note that small tochilinite grains in the matrix lack typical Ni, P, and Co levels, suggesting that they did not form from kamacite but possibly by sulfidization of magnetite.  相似文献   

7.
Abstract— Iron‐rich aureoles in CM carbonaceous chondrites are previously unidentified domains of aqueously altered matrix material, whose FeO content may exceed that of the surrounding matrix by up to more than 15 wt%. We describe the petrography and mineralogy of these objects in the CM chondrites Murray, Murchison, and Allan Hills (ALH) 81002. The size of Fe‐rich aureoles ranges from a few hundred microns to several millimeters in diameter and appears to be a function of the degree of alteration of the host chondrite. The origin of Fe‐rich aureoles is related to the alteration of large metal grains that has resulted in the formation of characteristic PCP‐rich reaction products that are frequently observed at the centers of the aureoles. This suggests that Fe‐rich aureoles in CM chondrites are the result of the mobilization of Fe from altering metal grains into the matrix. The fact that Fe‐rich aureoles enclose numerous chondritic components such as chondrules, calcium‐aluminum‐rich inclusions (CAIs), and mineral fragments, as well as their radial symmetric appearance, are strong evidence that they formed in situ and that significant directional fluid flow was not involved in the alteration process. This and additional constraints, such as the distribution of S and other elements, as well as the inferred alteration conditions, are consistent with in situ parent‐body alteration. The observations are, however, entirely incompatible with preaccretionary alteration models in which the individual CM chondrite components have experienced diverse alteration histories. The presence of numerous intact aureoles in the brecciated CM chondrites Murray and Murchison further suggests that the alteration occurred largely after brecciation affected these meteorites. Therefore, the progressive aqueous alteration of CM chondrites may not be necessarily coupled to brecciation as has been previously proposed.  相似文献   

8.
Abstract— Results from an inorganic geochemical modeling study support a scenario in which low‐temperature aqueous alteration of an anhydrous CM asteroidal parent body and melt water from H2O and CO2 ices produces the altered assemblage observed in CM carbonaceous chondrites (chrysotile, greenalite, tochilinite, cronstedtite and minor calcite and magnetite). We consider a range of possible precursor mineral assemblages, varying with respect to the Fe‐oxidation state of the initial anhydrous phases. The aqueous solutions produced by this alteration are generally strongly basic and reducing and a large quantity of H2, and possible CH4, gas can be released during aqueous alteration.  相似文献   

9.
We have sampled sulfide grains from one pristine CM2 chondrite (Yamato [Y‐] 791198), one thermally metamorphosed CM2 chondrite (Y‐793321), and two anomalous, metamorphosed CM/CI‐like chondrites (Y‐86720 and Belgica [B‐] 7904) by the focused ion beam (FIB) technique and studied them by analytical transmission electron microscopy (TEM). Our study aims at exploring the potential of sulfide assemblages and microstructures to decipher processes and conditions of chondrite petrogenesis. Complex exsolution textures of pyrrhotite (crystallographic NC‐type with ≈ 6), troilite, and pentlandite occur in grains of Y‐791198 and Y‐793321. Additionally, polycrystalline 4C‐pyrrhotite‐pentlandite‐magnetite aggregates occur in Y‐791198, pointing to diverse conditions of gas–solid interactions in the solar nebula. Coarser exsolution textures of Y‐793321 grains indicate higher long‐term average temperatures in the <100 °C range compared to Y‐791198 and other CM chondrites. Sulfide mineralogy of Y‐86720 and B‐7904 is dominated by aggregates of pure troilite and metal, indicating metamorphic equilibration at sulfur fugacities (fS2) of the iron‐troilite buffer. Absence of magnetite in equilibrium with sulfide and metal in Y‐86720 indicates higher peak temperatures compared with B‐7904, in which coexistence of troilite, metal, and magnetite constrains metamorphic temperature to less than 570 °C. NC‐pyrrhotite occurs in both meteorites as nm‐wide rims on troilite grains and, together with frequent anhydrite, indicates a retrograde metamorphic stage at higher fS2 slightly above the fayalite‐magnetite‐quartz‐pyrrhotite buffer. Fine‐grained troilite‐olivine intergrowths in both meteorites suggest the pre‐metamorphic presence of tochilinite‐serpentine interlayer phases, pointing to mineralogical CM affinity. Pseudomorphs after euhedral pyrrhotite crystals in Y‐86720 in turn suggest CI affinity as do previously published O isotopic data of both meteorites.  相似文献   

10.
Abstract– Maribo is a new Danish CM chondrite, which fell on January 17, 2009, at 19:08:28 CET. The fall was observed by many eye witnesses and recorded by a surveillance camera, an all sky camera, a few seismic stations, and by meteor radar observatories in Germany. A single fragment of Maribo with a dry weight of 25.8 g was found on March 4, 2009. The coarse‐grained components in Maribo include chondrules, fine‐grained olivine aggregates, large isolated lithic clasts, metals, and mineral fragments (often olivine), and rare Ca,Al‐rich inclusions. The components are typically rimmed by fine‐grained dust mantles. The matrix includes abundant dust rimmed fragments of tochilinite with a layered, fishbone‐like texture, tochilinite–cronstedtite intergrowths, sulfides, metals, and carbonates often intergrown with tochilinite. The oxygen isotopic composition: (δ17O = ?1.27‰; δ18O = 4.96‰; Δ17O = ?3.85‰) plots at the edge of the CM field, close to the CCAM line. The very low Δ17O and the presence of unaltered components suggest that Maribo is among the least altered CM chondrites. The bulk chemistry of Maribo is typical of CM chondrites. Trapped noble gases are similar in abundance and isotopic composition to other CM chondrites, stepwise heating data indicating the presence of gas components hosted by presolar diamond and silicon carbide. The organics in Maribo include components also seen in Murchison as well as nitrogen‐rich components unique to Maribo.  相似文献   

11.
CM chondrites are complex impact (mostly regolith) breccias, in which lithic clasts show various degrees of aqueous alteration. Here, we investigated the degree of alteration of individual clasts within 19 different CM chondrites and CM‐like clasts in three achondrites by chemical analysis of the tochilinite‐cronstedtite‐intergrowths (TCIs; formerly named “poorly characterized phases”). To identify TCIs in various chondritic lithologies, we used backscattered electron (BSE) overview images of polished thin sections, after which appropriate samples underwent electron microprobe measurements. Thus, 75 lithic clasts were classified. In general, the excellent work and specific criteria of Rubin et al. (2007) were used and considered to classify CM breccias in a similar way as ordinary chondrite breccias (e.g., CM2.2‐2.7). In BSE images, TCIs in strongly altered fragments in CM chondrites (CM2.0‐CM2.2) appear dark grayish and show a low contrast to the surrounding material (typically clastic matrix), and can be distinguished from TCIs in moderately (CM2.4‐CM2.6) or less altered fragments (CM2.7‐CM2.9); the latter are bright and have high contrast to the surroundings. We found that an accurate subclassification can be obtained by considering only the “FeO”/SiO2 ratio of the TCI chemistry. One could also consider the TCIs’ S/SiO2 ratio and the metal abundance, but these were not used for classification due to several disadvantages. Most of the CM chondrites are finds that have suffered terrestrial weathering in hot and cold deserts. Thus, the observed abundance of metal is susceptible to weathering and may not be a reliable indicator of subtype classification. This study proposes an extended classification scheme based on Rubin’s scale from subtypes CM2.0‐CM2.9 that takes the brecciation into account and includes the minimum to maximum degree of alteration of individual clasts. The range of aqueous alteration in CM chondrites and small spatial scale of mixing of clasts with different alteration histories will be important for interpreting returned samples from the OSIRIS‐REx and Hayabusa 2 missions in the future.  相似文献   

12.
The Sutter's Mill (SM) CM chondrite fell in California in 2012. The CM chondrite group is one of the most primitive, consisting of unequilibrated minerals, but some of them have experienced complex processes occurring on their parent body, such as aqueous alteration, thermal metamorphism, brecciation, and solar wind implantation. We have determined noble gas concentrations and isotopic compositions for SM samples using a stepped heating gas extraction method, in addition to mineralogical observation of the specimens. The primordial noble gas abundances, especially the P3 component trapped in presolar diamonds, confirm the classification of SM as a CM chondrite. The mineralogical features of SM indicate that it experienced mild thermal alteration after aqueous alteration. The heating temperature is estimated to be <350 °C based on the release profile of primordial 36Ar. The presence of a Ni‐rich Fe‐Ni metal suggests that a minor part of SM has experienced heating at >500 °C. The variation in the heating temperature of thermal alteration is consistent with the texture as a breccia. The heterogeneous distribution of solar wind noble gases is also consistent with it. The cosmic‐ray exposure (CRE) age for SM is calculated to be 0.059 ± 0.023 Myr based on cosmogenic 21Ne by considering trapped noble gases as solar wind, the terrestrial atmosphere, P1 (or Q), P3, A2, and G components. The CRE age lies at the shorter end of the CRE age distribution of the CM chondrite group.  相似文献   

13.
Abstract— We used high‐resolution transmission electron microscopy (HRTEM), electron tomography, electron energy‐loss spectroscopy (EELS), and energy‐dispersive spectroscopy (EDS) to investigate the structure and composition of polyhedral serpentine grains that occur in the matrices and fine‐grained rims of the Murchison, Mighei, and Cold Bokkeveld CM chondrites. The structure of these grains is similar to terrestrial polygonal serpentine, but the data show that some have spherical or subspherical, rather than cylindrical morphologies. We therefore propose that the term polyhedral rather than polygonal be used to describe this material. EDS shows that the polyhedral grains are rich in Mg with up to 8 atom% Fe. EELS indicates that 70% of the Fe occurs as Fe3+. Alteration of cronstedtite on the meteorite parent body under relatively oxidizing conditions is one probable pathway by which the polyhedral material formed. The polyhedral grains are the end‐member serpentine in a mineralogic alteration sequence for the CM chondrites.  相似文献   

14.
Abstract– Dhofar (Dho) 225 and Dho 735 are carbonaceous chondrites found in a hot desert and having affinities to Belgica‐like Antarctic chondrites (Belgica [B‐] 7904 and Yamato [Y‐] 86720). Texturally they resemble CM2 chondrites, but differ in mineralogy, bulk chemistry and oxygen isotopic compositions. The texture and main mineralogy of Dho 225 and Dho 735 are similar to the CM2 chondrites, but unlike CM2 chondrites they do not contain any (P, Cr)‐sulfides, nor tochilinite 6Fe0.9S*5(Fe,Mg)(OH)2. H2O‐contents of Dho 225 and Dho 735 (1.76 and 1.06 wt%) are lower than those of CM2 chondrites (2–18 wt%), but similar to those in the metamorphosed carbonaceous chondrites of the Belgica‐like group. Bulk compositions of Dho 225 and Dho 735, as well as their matrices, have low Fe and S and low Fe/Si ratios relative to CM2 chondrites. X‐ray powder diffraction patterns of the Dho 225 and Dho 735 matrices showed similarities to laboratory‐heated Murchison CM2 chondrite and the transformation of serpentine to olivine. Dho 225 and 735’s oxygen isotopic compositions are in the high 18O range on the oxygen diagram, close to the Belgica‐like meteorites. This differs from the oxygen isotopic compositions of typical CM2 chondrites. Experimental results showed that the oxygen isotopic compositions of Dho 225 and Dhofar 725, could not be derived from those of typical CM2 chondrites via dehydration caused by thermal metamorphism. Dho 225 and Dho 735 may represent a group of chondrites whose primary material was different from typical CM2 chondrites and the Belgica‐like meteorites, but they formed in an oxygen reservoir similar to that of the Belgica‐like meteorites.  相似文献   

15.
Carbonaceous chondrites are classified into several groups. However, some are ungrouped. We studied one such ungrouped chondrite, Y‐82094, previously classified as a CO. In this chondrite, chondrules occupy 78 vol%, and the matrix is distinctly poor in abundance (11 vol%), compared with CO and other C chondrites. The average chondrule size is 0.33 mm, different from that in C chondrites. Although these features are similar to those in ordinary chondrites, Y‐82094 contains 3 vol% Ca‐Al‐rich inclusions and 5% amoeboid olivine aggregates (AOAs). Also, the bulk composition resembles that of CO chondrites, except for the volatile elements, which are highly depleted. The oxygen isotopic composition of Y‐82094 is within the range of CO and CV chondrites. Therefore, Y‐82094 is an ungrouped C chondrite, not similar to any other C chondrite previously reported. Thin FeO‐rich rims on AOA olivine and the mode of occurrence of Ni‐rich metal in the chondrules indicate that Y‐82094 is petrologic type 3.2. The extremely low abundance of type II chondrules and high abundance of Fe‐Ni metal in the chondrules suggest reducing condition during chondrule formation. The depletion of volatile elements indicates that the components formed under high‐temperature conditions, and accreted to the parent body of Y‐82094. Our study suggests a wider range of formation conditions than currently recorded by the major C chondrite groups. Additionally, Y‐82094 may represent a new, previously unsampled, asteroidal body.  相似文献   

16.
Abstract— We report detailed chemical, petrological, and mineralogical studies on the Ningqiang carbonaceous chondrite. Ningqiang is a unique ungrouped type 3 carbonaceous chondrite. Its bulk composition is similar to that of CV and CK chondrites, but refractory lithophile elements (1.01 × CI) are distinctly depleted relative to CV (1.29 × CI) and CK (1.20 × CI) chondrites. Ningqiang consists of 47.5 vol% chondrules, 2.0 vol% Ca,Al‐rich inclusions (CAIs), 4.5 vol% amoeboid olivine aggregates (AOAs), and 46.0 vol% matrix. Most chondrules (95%) in Ningqiang are Mg‐rich. The abundances of Fe‐rich and Al‐rich chondrules are very low. Al‐rich chondrules (ARCs) in Ningqiang are composed mainly of olivine, plagioclase, spinel, and pyroxenes. In ARCs, spinel and plagioclase are enriched in moderately volatile elements (Cr, Mn, and Na), and low‐Ca pyroxenes are enriched in refractory elements (Al and Ti). The petrology and mineralogy of ARCs in Ningqiang indicate that they were formed from hybrid precursors of ferromagnesian chondrules mixed with refractory materials during chondrule formation processes. We found 294 CAIs (55.0% type A, 39.5% spinel‐pyroxene‐rich, 4.4% hibonite‐rich, and several type C and anorthite‐spinel‐rich inclusions) and 73 AOAs in 15 Ningqiang sections (equivalent to 20 cm2surface area). This is the first report of hibonite‐rich inclusions in Ningqiang. They are texturally similar to those in CM, CH, and CB chondrites, and exhibit three textural forms: aggregates of euhedral hibonite single crystals, fine‐grained aggregates of subhedral hibonite with minor spinel, and hibonite ± Al,Ti‐diopside ± spinel spherules. Evidence of secondary alteration is ubiquitous in Ningqiang. Opaque assemblages, formed by secondary alteration of pre‐existing alloys on the parent body, are widespread in chondrules and matrix. On the other hand, nepheline and sodalite, existing in all chondritic components, formed by alkali‐halogen metasomatism in the solar nebula.  相似文献   

17.
CM chondrites are a group of primitive meteorites that have recorded the alteration history of the early solar system. We report the occurrence, chemistry, and oxygen isotopic compositions of P‐O‐rich sulfide phase in two CM chondrites (Grove Mountains [GRV] 021536 and Murchison). This P‐O‐rich sulfide is a polycrystalline aggregate of nanometer‐size grains. It occurs as isolated particles or aggregates in both CM chondrites. These grains, in the matrix and in type‐I chondrules from Murchison, were partially altered into tochilinite; however, grains enclosed by Ca‐carbonate are much less altered. This P‐O‐rich sulfide in Murchison is closely associated with magnetite, FeNi phosphide, brezinaite (Cr3S4), and eskolaite (Cr2O3). In addition to sulfur as the major component, this sulfide contains ~6.3 wt% O, ~5.4 wt% P, and minor amounts of hydrogen. Analyses of oxygen isotopes by SIMS resulted in an average δ18O value of ?22.5 ‰ and an average Δ17O value of 0.2 ± 9.2 ‰ (2σ). Limited variations in both chemical compositions and electron‐diffraction patterns imply that the P‐O‐rich sulfide may be a single phase rather than a polyphase mixture. Several features indicate that this P‐O‐rich sulfide phase formed at low temperature on the parent body, most likely through the alteration of FeNi metal (a) close association with other low‐temperature alteration products, (b) the presence of hydrogen, (c) high Δ17O values and the presence in altered mesostasis of type‐I chondrules and absence in type‐II chondrules. The textural relations of the P‐O‐rich sulfide and other low‐temperature minerals reveal at least three episodic‐alteration events on the parent body of CM chondrites (1) formation of P‐O‐rich sulfide during sulfur‐rich aqueous alteration of P‐rich FeNi metal, (2) formation of Ca‐carbonate during local carbonation, and (3) alteration of P‐O‐rich sulfide and formation of tochilinite during a period of late‐stage intensive aqueous alteration.  相似文献   

18.
To better understand the formation conditions of ferromagnesian chondrules from the Renazzo‐like carbonaceous (CR) chondrites, a systematic study of 210 chondrules from 15 CR chondrites was conducted. The texture and composition of silicate and opaque minerals from each observed FeO‐rich (type II) chondrule, and a representative number of FeO‐poor (type I) chondrules, were studied to build a substantial and self‐consistent data set. The average abundances and standard deviations of Cr2O3 in FeO‐rich olivine phenocrysts are consistent with previous work that the CR chondrites are among the least thermally altered samples from the early solar system. Type II chondrules from the CR chondrites formed under highly variable conditions (e.g., precursor composition, redox conditions, cooling rate), with each chondrule recording a distinct igneous history. The opaque minerals within type II chondrules are consistent with formation during chondrule melting and cooling, starting as S‐ and Ni‐rich liquids at 988–1350 °C, then cooling to form monosulfide solid solution (mss) that crystallized around olivine/pyroxene phenocrysts. During cooling, Fe,Ni‐metal crystallized from the S‐ and Ni‐rich liquid, and upon further cooling mss decomposed into pentlandite and pyrrhotite, with pentlandite exsolving from mss at 400–600 °C. The composition, texture, and inferred formation temperature of pentlandite within chondrules studied here is inconsistent with formation via aqueous alteration. However, some opaque minerals (Fe,Ni‐metal versus magnetite and panethite) present in type II chondrules are a proxy for the degree of whole‐rock aqueous alteration. The texture and composition of sulfide‐bearing opaque minerals in Graves Nunataks 06100 and Grosvenor Mountains 03116 suggest that they are the most thermally altered CR chondrites.  相似文献   

19.
Abstract– Queen Alexandra Range (QUE) 94204, an enstatite achondrite, is a coarse‐grained, highly recrystallized, chondrule‐free and unbrecciated rock dominated (about 70 vol%) by anhedral, equigranular crystals of orthoenstatite of nearly endmember composition (Fs0.1–0.4, Wo0.3–0.4) with interstitial plagioclase, kamacite, and troilite. Abundance of approximately 120° triple junctions and the close association of metal–sulfide and plagioclase‐rich melts indicate that QUE 94204 has undergone limited partial melting with inefficient melt extraction. Mineral chemistry indicates a high degree of thermal metamorphism. Kamacite in QUE 94204 contains between 2.09 and 2.55 wt% Si, similar to highly metamorphosed EL chondrites. Plagioclase has between 4.31 and 6.66 wt% CaO, higher than other E chondrites but closer in composition to plagioclase from metamorphosed EL chondrites. QUE 94204 troilite contains up to 2.55 wt% Ti, consistent with extensive thermal metamorphism of an E chondrite‐like precursor. Results presented in this study indicate that QUE 94204 is the result of low degree, (about 5–20 vol%, probably toward the lower end of this range) partial melting of an E chondrite protolith. Textural and chemical evidence suggests that during the metamorphism of QUE 94204, melts formed first at the Fe,Ni‐FeS cotectic near approximately 900 °C, followed by plagioclase‐pyroxene silicate partial melts near approximately 1100 °C. Neither the Fe,Ni‐FeS nor the plagioclase‐pyroxene melts were efficiently segregated or extracted. QUE 94204 belongs to a grouplet of similar “primitive enstatite achondrites” that are analogous to the acapulcoites‐lodranites, but that have resulted from the partial melting of an E chondrite‐like protolith.  相似文献   

20.
Meteorite Hills (MET) 01075 is unique among the CM carbonaceous chondrites in containing the feldspathoid mineral sodalite, and hence it may provide valuable evidence for a nebular or parent body process that has not been previously recorded by this meteorite group. MET 01075 is composed of aqueously altered chondrules and calcium‐ and aluminum‐rich inclusions (CAIs) in a matrix that is predominantly made of serpentine‐ and tochilinite‐rich particles. The chondrules have been impact flattened and define a foliation petrofabric. Sodalite occurs in a 0.6 mm size CAI that also contains spinel, perovskite, and diopside together with Fe‐rich phyllosilicate and calcite. By analogy with feldspathoid‐bearing CAIs in the CV and CO carbonaceous chondrites, the sodalite is interpreted to have formed by replacement of melilite or anorthite during alkali‐halogen metasomatism in a parent body environment. While it is possible that the CAI was metasomatized in a precursor parent body, then excavated and incorporated into the MET 01075 parent body, in situ metasomatism is the favored model. The brief episode of relatively high temperature water–rock interaction was driven by radiogenic or impact heating, and most of the evidence for metasomatism was erased by subsequent lower temperature aqueous alteration. MET 01075 is very unusual in sampling a CM parent body region that underwent early alkali‐halogen metasomatism and has retained one of its products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号