首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
以葡萄牙牡蛎(Crassostrea angulata)为研究对象,分别使用6种介质(NaCl、KCl、CaCl_2、MgCl_2、蔗糖、海水)配制的梯度低渗溶液,在40%~50%受精卵出现第一极体(PB1)时处理15 min,进行三倍体诱导。研究表明,对于同种介质,卵裂率和孵化率均随渗透压升高而增大,三倍体诱导率则先增后减,在渗透压为P_8(盐度为8的海水渗透压)时达到最高。在同一渗透压P_8条件下,除CaCl_2组外,各组卵裂率、孵化率、诱导率与低渗海水组相比无显著差异(P0.05),CaCl_2组卵裂率、孵化率降低,而诱导率显著较高(P0.05)。各低渗组卵裂率、孵化率均低于自然海水组。研究结果表明,低渗海水法诱导贝类三倍体时物理的低渗因素发挥主要作用,Ca~(2+)可能起到辅助作用。  相似文献   

2.
当今世界,科学技术日新月异,而能源消耗也与日俱增。因此,能源的开发和利用已成为世界范围的重大课题。 在海洋能源的开发研究方面,近年来有了较大进展。主要有三类:一是海底矿藏的开发,如石油;二是利用海水的显能,如波浪、潮汐和海流发电等;三是利用海水的潜能,如海水温差发电和浓(度)差发电等。 实验证明,标准海水对淡水的渗透压是24.8个大气压。所谓海水浓差发电就是利用咸淡水之间的这个渗透压使水轮机旋转而发电。目前,浓差发电  相似文献   

3.
为了解盐度渐变对黄条鰤(Seriola aureovittata)渗透调节的影响,设置自然海水(对照组盐度为29),5,10,15,20,35六个盐度梯度,并对不同盐度下幼鱼鳃丝Na~+/K~+-ATP酶活力、离子浓度、渗透压进行了检测和分析。结果显示:在盐度5~35,黄条鰤尿、血清、血浆的渗透压均随盐度升高而升高,盐度为35时渗透压均为最高,其中尿的渗透压显著高于血清和血浆渗透压。在盐度从29下降的过程中,鳃丝Na~+/K~+-ATP酶活力、离子浓度、渗透压呈现相似的变化规律,都随着盐度的降低而呈现总体下降的趋势;盐度从29升高到35时,各检测指标中仅有尿和血浆的K~+含量无显著变化(P0.05),其余均显著升高(P0.05)。实验结果表明,黄条鰤生存和繁衍的自然海水盐度29是幼鱼存活的适宜盐度,在略低的盐度20~29均能较快适应,说明在盐度渐变过程中,黄条鰤幼鱼对外界盐度变化有较强的调节能力。  相似文献   

4.
硬骨鱼类的渗透压调节   总被引:7,自引:1,他引:7  
生活在淡水或海水中的各种硬骨鱼类,它们体液的渗透浓度是比较接近和稳定的,但它们所生活的外界水环境的盐度却相差很大,鱼类为了维持体内一定的渗透浓度必须进行渗透压调节,鱼类调节渗透压能力的大小,决定了它们对水环境盐度变化的耐受力。研究鱼类的渗透压调节机能对生产实践有一定的指导意义。譬如通过研究  相似文献   

5.
人类利用海水直接灌溉农作物的设想由来已久。但也有人认为这是异想天开的科学幻想,因为1000千克的海水中平均含有35千克的盐,用它来灌溉绿色植物,那不是在“腌咸菜”吗?生物学家告诉我们,植物细胞中的主要成分是淡水,约占整个细胞体的85%~90%,细胞膜具有逆向的阻挡作用,使细胞内外的渗透压相差6—8个大气压。浓度压力差促使细胞膜内的水分逆向交流,由低浓度流向高浓度,使细胞保持一定的形态和体积。如果用浓度和渗透压都很高的海水浇灌庄稼,就会破坏细胞膜的逆向阻  相似文献   

6.
作者提出了放置于水温为19~20℃及30℃,盐度为0,16‰和30‰的各水体中尼罗罗非鱼渗透压调节的时间过程。研究揭示出尼罗罗非鱼幼鱼具有极其灵活的渗透压调节能力力:当水体由于盐度的改变,其冰点下降值Δ°改变114~121.4%时,幼鱼在收容五天后,血液渗透压重新达到平衡,冰点下降值Δ°只增加1.6~4.7%,当水体的Δ°改变292~307.2%,幼鱼血液渗透压的Δ°值只增加4.7~6.2%。作者认为,该幼鱼渗透压的调节过程分为三个阶段,一、失控期,Δ°值迅速增加 二,调节期,Δ°缓慢地随收容时间继续增加,直达到最大值,并开始下降;三、趋平期,幼鱼血液的Δ°值下降并达到平衡位置。尼罗罗非鱼渗透压调节的具体时间过程及特点取决于其内外渗透浓度变化的梯度(从淡水到海水或半海水)以及水温、饵料条件。  相似文献   

7.
潮间带藻类具有与其他植物类群不同的渗透特性,其忍受海水渗透压变化的程度和相应的生理变化对潮间带藻类分布以及进行人工养殖密切相关。方同光等曾对青岛太平角的潮间带四种绿藻和一种褐藻的渗透生理及其在潮间带分布的关系做了研究。他们曾对石莼和鼠尾藻的光合与呼吸作用进行过测定。据报道,国外也有一些学者(Legendre1921;Hoffman 1929;Biebl 1938,1939,1952;Kanwisher 1957)先后就某些藻类忍受渗透压变化范围以及它们在各种盐度海水中的光合和(或)呼吸作用进行过一些测定。Von-  相似文献   

8.
全球海水温差能的开发利用大有可为   总被引:1,自引:0,他引:1  
在全球1.45×10~(10)亿吨的海水中,每年吸收的太阳能约在37×10~(10)亿千瓦以上,每平方公里的海洋所含有的热能大大超过360吨石油所产生的能量。据估算,世界海洋的海水温差能达500亿千瓦,可供利用的为20亿千瓦。我国南海地处热带和亚热带,可利用的海水温差能约1.5亿千瓦。如此巨大的能量资源,既可再生,又无污染,又不占用宝贵的陆地,还可进行综合利用,因此开发利用海水温差能早就引起  相似文献   

9.
研究了Ca2+由自然海水浓度突变到低浓度和高浓度时,褐牙鲆(Paralichthys olivaceus)幼鱼渗透调节能力的变化。通过测定实验鱼的血清渗透压、鳃、肠、肾Na+-K+-ATPase和Ca2+-ATPase活力及血清离子含量的变化,探讨了褐牙鲆幼鱼应对水体Ca2+突变时的渗透调节机制。结果表明,海水盐度不变,Ca2+浓度在1.25~100mmol.L-1之间发生突变时,褐牙鲆幼鱼血清渗透压无显著变化,其主要通过调节鳃、肠、肾Na+-K+-ATPase和Ca2+-ATPase活力及改变血清Ca2+和Mg2+含量来维持体液离子的动态平衡。  相似文献   

10.
将海水鱼类黑鲷Sparusmacrocephalus从盐度为26.6的海水直接转入淡水,考察渗透压的急剧降低对黑鲷的生长激素(growthhormone,GH)及其受体(growthhormonereceptor,GHR)等生理指标的影响。研究发现:(1)黑鲷从海水直接转入淡水后48h有33%的鱼死亡,对照组无死亡现象;(2)黑鲷在转入淡水48h内其血清生长激素(GH)含量、肝脏及鳃中GHR及GHRmRNA含量与对照组均无显著差异;(3)黑鲷在转入淡水48h后其肾脏中GHR含量较对照组显著升高(p<0.05),肾脏中GHRmRNA含量在24h及48h显著高于对照组(p<0.05)。结果表明,从GH含量看,黑鲷从海水环境到淡水低渗环境与鲑鳟鱼类从淡水到海水环境的适应性调节机制有差异,而黑鲷肾脏中GHR的含量变化可能参与黑鲷对外界环境渗透压的这种急剧降低的适应性调节。  相似文献   

11.
作者通过渗透压计分别测定各溶液的渗透压值,通过CASA精子分析系统,测定精子运动参数,分析、比较了渗透压、pH、葡萄糖及离子溶液对夏牙鲆(Paralichthys dentatus)精子激活及运动特征的影响。结果表明:夏牙鲆精子激活的渗透压范围为581~1260 mosm/kg;在特定的渗透压范围内(单位为mosm/kg),A组(581~650),B组(762~877),C组(931~1060),D组(1117~1260)中,与NaCl和KCl溶液相比较,葡萄糖溶液可以显著提高夏牙鲆精子激活后的运动率;在相对高渗条件下(1091~1180),经Ca Cl2400、EGTA400和无Ca~(2+)人工海水激活的夏牙鲆精子运动率存在显著差异;且夏牙鲆精子最适的激活p H范围是7~7.5。综上,激活剂的渗透压决定了夏牙鲆精子能否激活并显著影响了激活后精子的运动率,同时葡萄糖、外源Ca2+及p H均在一定程度上影响了精子的运动率。  相似文献   

12.
金钱鱼肾细胞系的建立及生长特性研究   总被引:1,自引:0,他引:1  
金钱鱼(Scatophagus argus)是一种重要的广盐性海水养殖鱼类,可直接在海水、淡水、咸淡水等不同环境中正常生长。为研究金钱鱼独特的渗透调节机制,本文研究了金钱鱼肾细胞的原代和传代条件及其生长特性,结果表明:原代肾细胞在含有20%胎牛血清(FBS)的L-15培养基里贴壁和生长较好,添加10ng/mL的碱性成纤维细胞因子(basic fibroblast growth factor)bFGF能明显促进细胞增殖,传代细胞采用含有10%胎牛血清的L-15培养基,细胞生长迅速,3—4d即可传代。金钱鱼肾细胞为成纤维样细胞,命名为SK细胞,目前已传至22代。扩增第11代SK细胞的细胞色素氧化酶I(COI)基因,比对结果证明此细胞系来源于金钱鱼。采用CCK-8法检测第12代细胞在低渗(95,137,200mmol/kg),等渗(330mmol/kg)和高渗(430,550mmol/kg)中的增殖情况,结果发现肾细胞在137—430mm/kg的渗透压范围内均可增殖,说明金钱鱼肾细胞对渗透压的耐受性较强。本试验首次建立了金钱鱼肾细胞系,并初步证明了肾细胞对盐度有较强的耐受性,为今后渗透压调节的深入研究奠定了基础。  相似文献   

13.
研究3个温度下(5℃、15℃、25℃),扁额原细首纽虫在外界渗透压变化时体内渗透压的的变化以及手术(切头和中切)对其渗透压调节能力的影响。结果显示,温度对扁额原细首纽虫的渗透压调节具有较大影响。在25℃、96 h内,当纽虫处于低渗环境(盐度10和20)时,其体内渗透压先降后升,当其处于高渗环境(盐度40)时,其体内渗透压先升后降,表现为1个渗透压调节者。在15℃和5℃,纽虫的体内渗透压基本上是随着环境的渗透压变化而变化,表现为1个渗透压随变者。手术对扁额原细首纽虫的渗透压调节能力具有明显的影响。去头纽虫丧失了调节渗透压的能力,其体内渗透压随着环境渗透压变化而变化。当纽虫被中切为两段时,具有头部的身体前部能像完整纽虫一样调节其体内渗透压,而身体后段的渗透压随环境的渗透压变化而变化,没有明显的调节能力。结果显示头部器官(脑神经节)对这种纽虫维持渗透压调节能力是必要的,该纽虫可能通过神经内分泌来调控其渗透压调节。  相似文献   

14.
从60年代起,许多国家开始了海水淡化的研究。通常的做法是用传统的锅炉脱盐淡化法。有些先进的国家建起了巨大的核能淡化厂或者是太阳能淡化海水厂,但设备复杂,投资昂贵,成本太高。近十多年来,国外的一些植物学家又为海水淡化开辟了一条新途径——利用红树的吸盐功能使海水淡化。这种做法成本很低,又能美化环境。红树生长在中美洲及北美南部的气温较高地区,种类繁多,树体高  相似文献   

15.
基于潮流能直驱式海水淡化系统的建模与仿真   总被引:1,自引:1,他引:0       下载免费PDF全文
提出使用捕能系统捕获潮流能带动低压海水泵把低压海水转换为高压海水进行海水淡化,并对海水淡化过程中的浓海水进行能量回收。潮流能海水淡化关键在于提高效率和进入海水淡化系统时的海水压力的稳定。潮流能海水淡化系统采用直驱方式和能量回收系统提高了潮流能转换效率,而且系统中的高、低压蓄能器对海水淡化过程中海水压力起着稳定的作用。基于线性流体力学理论,推导出潮流能直驱式海水淡化系统的数学模型,模型考虑了水液压系统内部件的滑动摩擦力和泄露量。并对数学模型在系统压力、产水量和产水比能耗等方面进行仿真。仿真结果达到系统压力稳定、产水比能耗低。  相似文献   

16.
广盐性硬骨鱼能够在盐度变化很大的环境中生存。淡水渗透压约为0.1×10-3渗mol/kg,海水的渗透压约为1000×10 -3渗mol/kg[7],而硬骨鱼体内的渗透压为250×10-3~500×10-3渗mol/kg,因此 ,在高渗环境下 ,鱼会丢失水分 ,而当通过肠道大量吸收水分的同时又会有许多盐分随之进入体内 ,此外 ,高渗环境中各种离子也会通过鳃和皮肤被动地扩散到体内。鱼体内过多的盐分会被鳃等渗透调节器官排出体外 ,从而达到水和离子的平衡。相反 ,在低渗环境中 ,鱼会丢失盐分 ,同时又有水分扩散到体内 ,此时除了…  相似文献   

17.
用氧电极测定了8种近海底栖红藻在不同浓度人工海水中光合活性的变化。结果表明,不同种类的红藻对渗透压冲击的抵抗能力差别很大,这可能与其分布在潮间带的范围比较广泛有关。光合速率多数在正常浓度的海水中最高。在溶液浓度下降时,光合作用急剧下降。这点与红藻大部分生长在低潮带和潮下带有密切关系。文中尚就三大类底栖海藻对溶液浓度变化的适应能力进行了概括和比较,并联系其居住地的特点进行了讨论。  相似文献   

18.
液压技术在海洋开发机器上的应用前景廖谟圣(上海石油天然气总公司)1引言我们的地球被百分之七十一的海水覆盖,海洋总面积为三亿六千一百多万平方km。浩瀚的海洋,是人类生命的摇篮,海水中的生物资源是人类越来越重要的蛋白质来源;海洋的潮汐、温差、波力的巨大能...  相似文献   

19.
AREVIEWONTHEEFFECTSOFWATERTEMPERATURE,SALINITY,DISSOLVEDOXYGENINESTUARYONCRUSTACEAN河口区是一个生态环境因子变动较大的区。这里潮汐涨落明显,盐度、温度变动较大;表层盐度小,底层盐度大。涨潮时盐度增高,落潮时盐度变低,盐度有季节性变化,春季冬季盐度变小;夏季盐度近海水较远海水高。河口区水温变化较沿海及外海大,河流中带有大量的泥沙与有机碎屑物质在这里沉淀下来。河口区生物群落结构主要由:河口区特有种,海洋进来的种类和具有较强渗透压调节能力的淡水种组成。它是一些重要海洋…  相似文献   

20.
杨黎军 《海洋信息》1999,(10):19-21
农业,从区域上讲,可分为陆地淡水农业和海洋海水农业两大类。海水灌溉种植业或海水灌溉农业是海水农业的一个基本组成部分,是指用海水灌溉的种植业、林业及其相关产品加工业,这是近期发展起来的一种新兴海洋产业。它所发展的空间,是沿海的滩涂潮间带、盐碱地和湿地,是传统农业不易开发利用的荒漠地带。目前,世界约有5亿多亩盐碱荒地,开发潜力巨大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号