首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
根据2015年上甸子区域大气本底站PM2.5样品采集数据,分析PM2.5质量浓度及其化学组分变化特征,应用质量闭合、后向轨迹、潜在源等方法分析其来源。结果表明:2015年上甸子站PM2.5质量浓度年平均值为44.9μg·m-3,春季、夏季、秋季、冬季均值分别为58.1、30.9、39.7、51.3μg·m-3,与2009—2010年相比分别降低了33%、56%、46%、9%。SO42-、NO-3和NH+4质量浓度年平均值分别为8.5±9.2、6.4±8.3、3.9±4.7μg·m-3,有机碳、元素碳浓度年平均值分别为8.9±6.3μg·m-3、1.6±1.2μg·m-3。NO-3与SO42-浓度日...  相似文献   

2.
近年来中国东北地区污染事件频发,为揭示该地区重污染天气分布特征,利用2014—2017年中国东北地区40个城市空气质量数据及对应的高低空天气形势资料,统计分析得到中国东北地区大气污染状况的变化特征以及区域重污染事件的天气学特征。结果表明:2015—2017年中国东北地区PM2.5和PM10年平均质量浓度呈下降趋势,其中PM2.5年平均质量浓度下降的更快,PM2.5最大值出现在辽宁和吉林中部地区约为90—100 μg·m-3,SO2年平均质量浓度较高值分布在辽宁西部地区约为50 μg·m-3,而NO2最大值出现在沈阳—长春—哈尔滨一带,约为45 μg·m-3,CO质量浓度最大值分布在东北沿海地区约为1.6 mg·m-3,相反中国东北地区O3年平均质量浓度呈上升趋势,最大值出现在沿海的大连及营口等地,约为100 μg·m-3。污染物浓度变化具有鲜明的季节变化特征,不同地区PM2.5和PM10与AQI最大值均出现在冬季,SO2冬季质量浓度最大值出现在沈阳(180 μg·m-3),NO2与CO冬季最大值出现在哈尔滨(80 μg·m-3,1.8 mg·m-3)。相反,O3最大值出现在夏季沈阳地区约为140—150 μg·m-3。重度污染级别(200 μg·m-3≤PM2.5 < 300 μg·m-3)和严重污染级别(PM2.5>300 μg·m-3)的空气质量表现出以哈尔滨为中心,向周围迅速减少,辽宁中部又略有增加的特征;中度污染(150 μg·m-3≤PM2.5 < 200 μg·m-3)的天数沈阳>哈尔滨>长春,轻度污染(100 μg·m-3≤PM2.5 < 150 μg·m-3)的天数是沈阳>长春>哈尔滨。引发中国东北地区重污染的天气形势大致可分为高压型,低压型和北高南低型3种,出现比例分别为62%、27%和11%;高压型850 hPa高压脊东移经过中国东北地区,地面处于高压南部或弱高压中心,有时在黑龙江北部或辽宁西南部连续有弱小的低压生成并快速东移过境;低压型850 hPa低压系统发展并东移经过中国东北地区,地面处于低压后弱高压中;北高南低型850 hPa和地面中国东北地区受北面高压和南面低压的共同影响。  相似文献   

3.
基于环境空气质量监测数据,本文分析了2022年6月14—18日高温热浪期间江苏省臭氧污染过程的时空变化特征,并结合天气形势、WRF-CMAQ模拟和典型城市大气超级站挥发性有机物(VOCs)在线监测数据进行了成因分析。结果表明:高温热浪期间,江苏省13个地级城市臭氧污染超标率达96.9%,中度污染超标率为27.6%,臭氧日最大8 h(MDA8 O3)峰值质量浓度高达260.0μg·m-3。南通市、无锡市、苏州市3个典型城市臭氧质量浓度的日变化特征显示,07—13时臭氧质量浓度增长率在27.9%~46.7%,多个时段净增量超过40.0μg·m-3。利用WRF-CMAQ模型对污染过程进行了数值模拟、过程分析和溯源分析。结果显示,典型城市白天小时平均光化学贡献在24.5~33.0μg·m-3之间,稳定高值的光化学贡献,叠加持续稳定或突发的传输贡献,导致此次高温热浪下臭氧质量浓度爆发式升高,出现峰值污染。在偏南风的影响下,省外污染源来自浙江省贡献最高,在13.9%~33.8%,其中无锡市和苏州市受浙江省外源影...  相似文献   

4.
2013年以来,北京市城区细颗粒物(PM2.5)质量浓度年均值呈逐年降低趋势,但PM2.5重污染事件仍旧频发,污染出现快速甚至爆发增长的成因和理化机制仍存在诸多不确定性。基于北京市城区2013~2020年常规气象要素、PM2.5及其化学组分观测资料,分析了PM2.5在缓慢、快速和爆发三种增长机制下的颗粒物浓度和组分的阈值及其与气象条件的相关关系。结果表明,2013~2020年,北京市城区PM2.5在增长时段(1~24 h间隔)中平均累积速率呈逐年放缓的趋势,大气污染累积阶段中缓慢增长的比重逐年升高。在判别标准逐渐严苛的前提下,爆发增长的比重逐年变化不大(4%~7%)。2013~2016年爆发增长的PM2.5浓度阈值为62μg m-3,2017年后,该阈值严苛至45μg m-3。82μg m-3为2018年以来极易出现PM2.5爆发增长的界限值,高于此值后爆发增长的概率将...  相似文献   

5.
利用2014—2020年河北沧州逐小时气象与环境监测数据,对沧州市臭氧(O3)污染加剧现状及其与气象因子的关系进行分析。结果表明:(1)沧州地区O3污染呈加剧态势,且O3已上升为该地区首要污染物;O3污染集中出现在5—9月,O3质量浓度日变化呈单峰单谷型,最大浓度出现在16:00前后;(2)5—9月O3日最大8 h平均质量浓度(简称“O3-8 h”)所处时段,平均气温、最高气温、相对湿度、总辐射辐照度与O3质量浓度的相关性较好,本站气压、水汽压和平均风速与O3质量浓度的相关性未通过显著性检验;(3)5—9月O3-8 h时段,当同时满足8 h平均气温高于30.9℃、最高气温高于32.7℃、平均相对湿度低于42.1%、平均总辐射辐照度高于505.8 W·m-2时,出现O3污染的概率达84%;(4)气象因子不是O3  相似文献   

6.
为了得到沙尘粒子和沙尘质量浓度的实时定量特征,利用Grimm180粒子仪在塔克拉玛干沙漠对沙尘暴进行了实时观测。通过分析Grimm180粒子仪在2018年5月20日和24日两次沙尘暴过程观测的数据得到:在浮尘、扬沙和沙尘暴期间,PM2.5的质量浓度值随时间变化不大,一般PM2.5浓度值<1500μg·m-3,而PM10在不同阶段的变化比较明显,数值在2000~6000μg·m-3。沙尘粒子谱和沙尘质量浓度谱的分布形状在浮尘、扬沙和沙尘暴基本相同,当粒子直径>0.35μm时,粒子数浓度随直径的增大近似符合M-P分布。从浮尘到扬沙再到沙尘暴,小粒子区(D≤1μm)的占比越来越小,而中粒子区(1μm10μm)的粒子数越来越多并且占比越来越大。当粒子直径为0.35μm左右时,粒子数浓度达到最大值;当粒子直径在25~32μm时,沙尘质量浓度的值最大。在浮尘和扬沙阶段,PM2.5/PM10>25%;每分钟1 L体积内的沙尘粒子总数大约是4×105,最大沙尘质量浓度<20μg·L-1。在沙尘暴阶段,PM2.5/PM10<15%;每分钟1 L体积内的沙尘粒子总数>5×105,最大沙尘质量浓度>25μg·L-1。这些结论为准确地分析沙尘暴的定量特征提供了科学依据。  相似文献   

7.
利用2015—2017年唐山市空气质量日空气质量指数、小时PM2.5浓度和气象数据,分析了唐山市重污染特征及PM2.5重污染生成、消散气象条件。结果表明:2015—2017年唐山市重污染天数为减少趋势,年平均重污染天数36 d。冬季发生重污染天数最多,秋季次之。重污染天气中首要污染物为PM2.5、PM10和O3,PM2.5为首要污染物占比87%,PM10占比6%,O3占比7%。小时PM2.5浓度与相对湿度、总云量、24 h变温正相关,与风速、气温、风向、1 h降水负相关。冬季相关性最好,其次是秋季和春季。90%PM2.5重污染相对湿度均为50%以上,冬季和秋季高达98%;风速大于4 m·s-1时,有0.7%的PM2.5达到重污染;降水对PM2.5有一定清除作用。升温、湿度增加和负变压有助于污染天气形成,生成过程中平均风速为1.8 m·s-1,主导风向为SW,其次是S、W。降温、湿度下降、正变压、降水有助于污染天气消散,消散过程中平均风速为3.1 m·s-1,主导风向为E,其次是NE、N。各方位3 m·s-1的风具有清除能力,偏北风具有较好清除能力,风速较其他方向风速小。  相似文献   

8.
利用气象与环境监测数据,结合后向轨迹和秸秆焚烧火点监测资料,从环流形势、气象要素、污染源和污染传输特征等方面,对哈尔滨2017年10月18-20日持续性重污染天气过程进行分析。结果表明:这次重污染过程连续48 h为重度或严重污染,首要颗粒物为PM2.5,PM2.5平均浓度为438 μg·m-3,局地PM2.5浓度高达1487 μg·m-3。重污染过程分为两个阶段,每个阶段主要污染物呈双峰分布。在重污染过程中,高空环流平直,浅槽前暖平流占主导地位,地面为弱低压均压场控制。地面风速小,平均风速仅为1.5 m·s-1,风速≤ 1.5 m·s-1静小风频率为71%,风场辐合,有利于污染物积聚。在重污染发展的过程中,地面相对湿度(RH)增大有利于颗粒物吸湿增长和污染加剧;在重污染减弱的过程中,PM2.5浓度减少至每阶段谷值时间比RH减小至谷值时间滞后4-5 h。在边界层内有逆温层顶高为200 m左右、逆温强度>2.0℃·(100 m)-1的贴地逆温层,层结稳定,垂直扩散条件差。污染物主要来源于秸秆焚烧,其次来源于取暖燃煤。静稳气象条件下本地污染物积累叠加远距离较高浓度的秸秆焚烧污染物输送导致哈尔滨这次重污染过程。  相似文献   

9.
利用嵌套网格空气质量数值预报模式NAQPMS探究一次典型区域传输过程关键源区气态前体物减排对天津无机气溶胶(IA)及PM2.5的影响。大尺度区域高精度的IA模拟数据显示,华北平原地区生成了高浓度的IA,向华东地区传输后,按顺时针方向又返回华北平原地区。这一往返式区域传输过程导致天津出现两次污染时段。利用耦合在NAQPMS中的在线污染物来源追踪方法量化了不同源区对天津IA的贡献,识别出华北平原地区是关键源区,日均贡献为57.6%~100%。在天津污染前1天和污染天对华北平原地区SO2、NH3和NOx减排30%分别开展敏感性试验,研究表明NH3减排导致天津IA和PM2.5最大下降率分别为30.8%和13.3%,是SO2减排对IA和PM2.5最大下降率的16倍和26.6倍,是NOx减排情景对IA和PM2.5最大下降率的7倍和6.4倍,成为降低天津污染水平最显著的前体物。SO2减排造成天津硝酸盐浓度上升,最大增长率为3.5%,根据热动力学平衡...  相似文献   

10.
利用西安市2016—2021年逐小时PM2.5浓度监测数据和气象观测数据,基于极端梯度提升机器学习算法模型(extreme Gradient Boosting, XGBoost),选择气象因子和时间因子作为特征变量,对西安市逐小时PM2.5浓度进行预报试验。结果表明:西安市PM2.5浓度与平均气温和能见度显著负相关,冬季PM2.5浓度与相对湿度和露点温度显著正相关,偏东风更易诱发重污染天气。西安市12月底至翌年1月初空气污染频发,但PM2.5浓度总体逐年降低。冬季PM2.5浓度的双峰形日变化最明显,最高值分别出现在凌晨和11时。西安市PM2.5浓度变化存在“周末效应”。模型能够较为真实地反映PM2.5浓度量级和演变趋势的变化,预报值与实况值之间的决定系数为0.77、平均绝对误差为12.79μg·m-3、均方根误差为18.68μg·m-3。模型秋冬季表现较为稳定,预报效果...  相似文献   

11.
为了监测北京奥运主场馆附近大气颗粒物的污染状况以及评估奥运污染源减排措施对北京大气颗粒物质量浓度变化的影响,利用颗粒物在线监测仪器TEOM于2007年和2008年夏季,在奥运主场馆附近的中国科学院遥感应用研究所办公楼楼顶对大气颗粒物PM10和PM2.5进行了连续同步观测。结果表明,2007年夏季监测点附近大气PM10与PM2.5质量浓度的平均值分别为153.9和71.2μg·m-3,而2008年夏季PM10与PM2.5质量浓度的平均值分别为85.2和52.8μg·m-3。与奥运前一年同时段相比,奥运时段大气PM10和PM2.5的质量浓度分别下降44.5%和25.1%。对比分析奥运前后的2次典型污染过程发现,空气相对湿度的增加和偏南气流输送的共同影响易造成大气颗粒物的累积增长,而降雨的湿清除作用和偏北气流则会使大气颗粒物浓度迅速降低。在相近的气象条件下,奥运前后的污染过程中,大气细粒子的日均增长速率分别为25.1和13.9μg·m-3·d-1,而大气粗粒子的日均增长速率分别为20.8和2.2μg·m-3·d-1,奥运时段污染累积过程中大气粗、细粒子的增长速率分别显著低于和略低于奥运前同时段污染过程中颗粒物的增长速率。污染源减排措施的实施是奥运期间大气颗粒物质量浓度降低的主要原因,从控制效果来看,奥运期间实施的污染源减排措施对大气粗粒子的控制效果明显好于大气细粒子。  相似文献   

12.
对2002年1月1日-2002年12月31日日照市环境监测中心提供的PM10(可吸入颗粒物)日平均浓度资料和对应时段的日照市地面气象资料做了深入的分析,揭示了污染物PM10变化特征及其随气象要素的变化规律。同时分析了主要污染物PM10与地面风速、风向间的相关关系,发现日照市大于等于3级的PM10污染日均出现在1-4月,地面风速对污染物PM10浓度有一定影响,当地面风速超过5m/s时,3级及以上污染日很少出现,当地面风速超过6.5m/s时,随着风速的提高,污染物浓度呈下降趋势。污染物浓度呈明显的季节变化,冬、春季节明显高于夏、秋季节。  相似文献   

13.
为了研究海南省三亚地区冬春季大气污染状况,于2011年12月—2013年4月的冬春季节在三亚鹿回头村(监测点位于三亚市郊,三面临海,周围没有工业污染源)开展了大气主要污染物(NOx、O3、PM2.5)的连续监测,利用观测数据对三亚地区冬春季大气污染变化特征进行分析.结果表明:三亚地区大气污染物浓度均低于国家一级标准的浓度值,NO、NO2、NOx、O3、PM2.5质量浓度的日平均值(平均值±标准差)分别为(2.1±2.2)、(5.2±3.4)、(7.3±3.8)、(59.8±28.4)和(17.5±14.3)μg·m-3.在污染物的日变化方面,NOx、PM2.5呈现典型的双峰型,其峰值分别出现在08:00和17:00,峰谷在13:00;O3的日变化为单峰型,峰值出现在13:00.通过后向轨迹分析发现,三亚地区大气污染物受局地源排放和外源输送的共同影响,来自陆地的气流易造成污染物的积累,而来自海上的气流则有利于污染物的清除.  相似文献   

14.
O_3和PM_(2.5)是影响长三角地区空气质量的主要污染物。利用2016年33个城市大气环境监测站6项污染物的小时浓度及4个省会城市的气象数据进行统计分析,研究了该地区O_3和PM_(2.5)浓度的时空分布特征及其影响因素。结果表明:长三角地区O_3年平均浓度为50~73μg·m~(-3),平均为61μg·m~(-3);除芜湖和宣城外,其余31城市均存在不同程度的超标状况,超标率为0.34%~18.86%,平均为5.68%。O_3在5月和9月达到浓度高值;四季O_3日变化均呈单峰型,峰值出现在15∶00,夏季O_3峰值浓度最高值为157μg·m~(-3)。O_3浓度沿海城市整体高于内陆城市;夏季宿迁—淮安—滁州片区O_3污染较重。O_3与NO_2、CO显著负相关,且与NO_2相关性较强;O_3与气温、日照时数显著正相关,与相对湿度、降水呈负相关。PM_(2.5)年平均浓度在25~62μg·m~(-3)范围内,平均为49μg·m~(-3);各城市均出现PM_(2.5)超标,滁州PM_(2.5)超标率最大,为23.91%。PM_(2.5)在3月和12、1月达到浓度峰值;其日变化呈双峰型,09∶00—10∶00和22∶00—23∶00达到峰值。冬季徐州PM_(2.5)浓度最高,为102μg·m~(-3)。PM_(2.5)与NO_2、CO、SO_2、PM_(10)显著正相关,与气温、风速、降水负相关。  相似文献   

15.
The photodissociation coefficient of NO2, J NO 2, has been measured from a balloon platform in the stratosphere. Results from two balloon flights are reported. High Sun values of J NO 2 measured were 10.5±0.3 and 10.3±0.3×10-3 s-1 at 24 and 32 km respectively. The decrease in J NO 2 at sunset was monitored in both flights. The measurements are found to be in good agreement with calculations of J NO 2 using a simplified isotropic multiple scattering computer routine.  相似文献   

16.
本文解读最近发布的政府间气候变化专门委员会(Intergovernmental Panel on Climate Change,IPCC)第六次气候变化评估报告(Sixth Assessment Report,AR6)关于空气污染-气候相互作用的主要新结论。在大气污染物的气候效应方面,AR6估算了大气污染物或其前体物排放变化导致的有效辐射强迫值(Effective Radiative Forcing,ERF),对评估大气污染治理可能产生的气候效应具有启示性意义。AR6也估算出1750—2019年间人为强迫导致的全球平均地表温度(Global mean Surface Air Temperature,GSAT)变化为1.29(0.99~1.65)℃,其中,均匀混合温室气体、臭氧、气溶胶导致的温度变化分别为1.58(1.17~2.17)℃、0.23(0.11~0.39)℃、-0.50(-0.22~-0.96)℃。气溶胶历史变化的气候效应中,起决定性作用的是由SO2排放变化通过气溶胶-云相互作用所产生的ERF (高信度),从而部分抵消了人为排放温室气体所引起的变暖(高信度)。在气候变化影响大气污染物方面,AR6首次评估获得了地表臭氧浓度对温度的敏感性,在偏远地区为-0.2 ~-2 nL·L-1·℃-1、在污染区为0.2 ~2 nL·L-1·℃-1。在大多数陆地区域,关于气候变化是增加还是减少PM2.5,目前模式结果结论的一致性较低。  相似文献   

17.
为了进一步了解青藏高原闪电的产生氮氧化物(LNOx)经由光化学反应对O3浓度变化及夏季O3低谷形成的可能影响,本文利用2005~2013年由OMI卫星得到的对流层NO2垂直浓度柱(NO2 VCD)、O3总浓度柱(TOC)和O3廓线以及星载光学瞬变探测器OTD和闪电成像仪LIS获取的总闪电数资料,对青藏高原和同纬度长江中下游地区的TOC和NO2 VCD月均值时空分布特征、闪电与NO2 VCD的相关性和O3的垂直分布特征及其与LNOx的关系进行了对比分析。结果表明,青藏高原的O3低谷主要出现在夏季和秋季,其TOC值比同纬度长江中下游地区低约10~15 DU(Dobson unit)。青藏高原NO2VCD总体较小,表现为夏高冬低的分布特征。青藏高原夏季O3浓度受南亚高压的影响总体呈减小趋势,但因强雷暴天气导致对流层中上部LNOx浓度升高,并随强上升气流向对流层顶输送,同时通过光化学反应使O3浓度增加,缩小了青藏高原和同纬度地区的O3浓度差,减缓了O3总浓度的下降,抑制了夏季O3低谷的进一步深化。  相似文献   

18.
利用江苏省大气环境监测站点的大气污染物监测数据,分析了2020年初新冠肺炎疫情管控期间(2—3月)主要大气污染物浓度的变化特征。结果显示,相比于2019、2020年疫情管控期间PM2.5、PM10、NO2、SO2、CO浓度的全省平均降幅分别为37.5%、36.9%、31.9%、28.2%和21.2%。严格管控期的2月和生产恢复期的3月,江苏省十三市PM2.5、PM10浓度同比降幅大致相当,呈现出较好的时间连续性和空间均匀性。但各市臭氧浓度同比变化呈现出较大的时空差异。空间上,沿江以南城市南京、无锡、常州、苏州和镇江五市臭氧浓度明显上升,而其他城市臭氧浓度以下降为主;时间上,2月南京等九市臭氧浓度上升,3月徐州等八市臭氧浓度持平或者下降。假设未发生新冠肺炎疫情以及未采取为阻断疫情蔓延而实施的种种举措,在仅考虑近年来大气污染防治政策持续实施的情况下,与预期降幅相比,疫情管控对NO2实况浓度降幅的影响最大,其次是PM2.5  相似文献   

19.
Four case studies are described, from a three-site field experiment in October/November 1991 using the Great Dun Fell flow-through reactor hill cap cloud in rural Northern England. Measurements of total odd-nitrogen nitrogen oxides (NO y ) made on either side of the hill, before and after the air flowed through the cloud, showed that 10 to 50% of the NO y , called NO z , was neither NO nor NO2. This NO z failed to exhibit a diurnal variation and was often higher after passage through cloud than before. No evidence of conversion of NO z to NO3 - in cloud was found. A simple box model of gas-phase chemistry in air before it reached the cloud, including scavenging of NO3 and N2O5 by aerosol of surface area proportional to the NO2 mixing ratio, shows that NO3 and N2O5 may build up in the boundary layer by night only if stable stratification insulates the air from emissions of NO. This may explain the lack of evidence for N2O5 forming NO3 - in cloud under well-mixed conditions in 1991, in contrast with observations under stably stratified conditions during previous experiments when evidence of N2O5 was found. Inside the cloud, some variations in the calculated total atmospheric loading of HNO2 and the cloud liquid water content were related to each other. Also, indications of conversion of NO x to NO z were found. To explain these observations, scavenging of NO x and HNO2 by cloud droplets and/or aqueous-phase oxidation of NO2 - by nitrate radicals are considered. When cloud acidity was being produced by aqueous-phase oxidation of NO x or SO2, NO3 - which had entered the cloud as aerosol particles was liberated as HNO3 vapour. When no aqueous-phase production of acidity was occurring, the reverse, conversion of scavenged HNO3 to particulate NO3 -, was observed.  相似文献   

20.
综合运用了多元资料(环境空气质量监测资料、地面气象观测资料、L波段雷达探空资料、风廓线雷达探空资料和再分析资料)和多种方法(后向轨迹追踪、聚类分析、潜在源区贡献法和数值模拟),研究了武汉地区特殊气象条件对重污染过程的影响,揭示了偏东小风所带来的外源污染物对形成严重污染日的贡献.主要研究结论如下:1)后向轨迹追踪分析表明,武汉地区严重污染日气流主要为来自安徽南部(47.5%)的偏东小风,模拟结果也显示偏东气流、偏北气流与局地环流共同作用,在武汉地区形成一个局地涡旋,成为反复污染带,加重了武汉地区的污染程度;2)利用潜在源区贡献法(PSCF)分析发现,武汉市秋冬季的潜在源区主要是安徽、江苏、山东、河南、湖南、江西以及武汉周边地区,因此在冬季大范围污染背景下,跨区域的联防联控(尤其是安徽南部地区)才能有效地减少武汉市秋冬季的重污染日.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号