首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Hydrothermal iron ores at Divri?i, east Central Anatolia, are contained in two orebodies, the magnetite-rich A-kafa and the limonitic B-kafa (resources of 133.8 Mt with 56% Fe and 0.5% Cu). The magnetite ores are hosted in serpentinites of the Divri?i ophiolite at the contact with plutons of the Murmano complex. Hydrothermal biotite from the Divri?i A-kafa yield identical weighted mean plateau ages of 73.75?±?0.62 and 74.34?±?0.83 Ma (2σ). This biotite represents a late alteration phase, and its age is a minimum age for the magnetite ore. Similar magnetite ores occur at Hasançelebi and Karakuz, south of Divri?i. There, the iron ores are hosted in volcanic or subvolcanic rocks, respectively, and are associated with a voluminous scapolite ± amphibole ± biotite alteration. At Hasançelebi, biotite is intergrown with parts of the magnetite, and both minerals formed coevally. The weighted mean plateau ages of hydrothermal biotite of 73.43?±?0.41 and 74.92?±?0.39 Ma (2σ), therefore, represent mineralization ages. Hydrothermal biotite from a vein cutting the scapolitized host rocks south of the Hasançelebi prospect has a weighted mean plateau age of 73.12?±?0.75 Ma (2σ). This age, together with the two biotite ages from the Hasançelebi ores, constrains the minimum age of the volcanic host rocks, syenitic porphyry dikes therein, and the scapolite alteration affecting both rock types. Pyrite and calcite also represent late hydrothermal stages in all of these magnetite deposits. The sulfur isotope composition of pyrite between 11.5 and 17.4‰ δ34S(VCDT) points towards a non-magmatic sulfur source of probably evaporitic origin. Calcite from the Divri?i deposit has δ18O(VSMOV) values between +15.1 and +26.5‰ and δ13C(VPDB) values between ?2.5 and +2.0‰, which are compatible with an involvement of modified marine evaporitic fluids during the late hydrothermal stages, assuming calcite formation temperatures of about 300°C. The presence of evaporite-derived brines also during the early stages is corroborated by the pre-magnetite scapolite alteration at Divri?i, and Hasançelebi-Karakuz, and with paleogeographic and paleoclimatic reconstructions. The data are compatible with a previously proposed genetic model for the Divri?i deposit in which hydrothermal fluids leach and redistribute iron from ophiolitic rocks concomitant with the cooling of the nearby plutons.  相似文献   

2.
The Middle Cretaceous Cornucopia stock in the Blue Mountains of northeastern Oregon is a small composite intrusion consisting of hornblende biotite tonalite, biotite trondhjemite, and three cordierite two mica trondhjemite units. Unusual magnetite + biotite-rich tonalitic rocks are associated with the Crater Lake cordierite trondhjemite, the youngest of the intrusions. Oxide-rich tonalites are characterized by high Fe (~47-68 wt% total Fe as FeO), low SiO2 (<36 wt%), and enrichments in HFSE and REE (La(N)=361-903). Oxide-rich tonalites appear in a variety of forms, including composite dikes and sheets, in which they are associated with leucocratic tonalite. Leucotonalite is lower in SiO2 (60-72 wt%) than Crater Lake trondhjemite, and generally has DREE contents and Eu anomalies intermediate between the oxide-rich tonalite and Crater Lake compositions. Oxide-rich tonalites crosscut, and are crosscut by, shear zones in the host trondhjemite, indicating their emplacement late in the pluton's crystallization history. Granitic dikes crosscut the composite dikes in all localities. Geochemical considerations and sedimentary-like structures, such as load casts and bedding of magnetite-rich assemblages in the composite dikes and sheets, are suggestive of crystal settling from an Fe-rich parental magma. The Fe-rich liquid parental to the oxide-rich tonalite-leucotonalite pairs formed by extensive, in-situ, plagioclase + quartz-dominated crystallization of strongly peraluminous trondhjemite. Early magnetite saturation in the trondhjemite was suppressed, either because the parental trondhjemitic magma had a lower initial total Fe content or because it had a lower ferric-ferrous ratio, possibly reflecting a lower oxygen fugacity. Accumulation of magnetite from Fe-rich residual magma is a viable mechanism for the concentration of iron, and the subsequent formation of Fe-rich rocks, in calcic siliceous intrusions. Apparently, Fe-enrichment can occur locally in calcic magmas, and is not restricted to rocks of mafic tholeiitic or anorthositic affinity.  相似文献   

3.
A Permo-Triassic pelite-carbonate rock series (with interacalated metabasitic rocks) in the Cordilleras Béticas, Spain, was metamorphosed during the Alpine metamorphism at high pressures (P min near 18 kbar). The rocks show well preserved sedimentary features of evaporites such as pseudomorphs of talc, of kyanite-phengitetalc-biotite, and of quartz after sulfate minerals, and relicts of baryte, anhydrite, NaCl, and KCl, indicating a salt-clay mixture of illite, chlorite, talc, and halite as the original rock. The evaporitic metapelites have a whole rock composition characterized by high Mg/(Mg+Ca) ratios>0.7, variable alkaline and Sr, Ba, contents, but are mostly K2O rich (<8.8 wt%). The F (<2600 ppm), Cl (<3600 ppm), and P2O5 (<0.24 wt%) contents are also high. The pelitic member of this series is a fine grained biotite rock. Kyanite-phengite-talc-biotite aggregates in pseudomorphs developed in the high pressure stage. Albite-rich plagioclase was formed when the rocks crossed the albite stability curve in the early stages of the uplift. Scapolite, rich in NaCl (Ca/(Ca+Na) mol% 24–40) and poor in SO4, with Cl/(Cl+CO3) ratios between 0.6 and 0.8, formed as porphyroblasts, sometimes replacing up to 60% of the rock in a late stage of metamorphism (between 10 and 5 kbar, near 600°C). No reaction with albite is observed, and the scapolite formed from biotite by: $$\begin{gathered} Al - biotite + CaCO_3 + NaCl + SiO_2 \hfill \\ = Al - poor biotite + scapolite + MgCO_3 + KCl \hfill \\ + MgCl_2 + H_2 O \hfill \\ \end{gathered}$$ Calculated fluid composition in equilibrium with scapolite indicates varying salt concentrations in the fluid. Distribution of Cl and F in biotite and apatite also indicates varying fluid compositions.  相似文献   

4.
加拿大Sullivan矿床是世界上最典型的SEDEX型Pb-Zn-Ag矿床。对该矿床中产出的几个特征矿物,如硼矿物电气石,富氯的方柱石和黑云母,富钡的钾长石和白云母,及富锰的石榴子石、绿泥石、碳酸盐和钛铁矿进行了研究。指出这些矿物的存在反映了该矿床产出的物理化学环境。提出成矿流体可能淋滤了深部存在的非海相蒸发岩层,层状硫化物矿石可能形成于海底高盐度热卤水池中。  相似文献   

5.
吉林延边安图县海沟地区的海沟岩群系1/5万区域地质调查新建的特殊岩石地层单位(Speciallithostrati-graphicunits),由3个岩组构成:团结岩组为碎屑岩夹大理岩;东方红岩组为一套中酸性火山熔岩及其火山碎屑岩夹凝灰质砂岩;四岔子岩组为一套含铁岩系,主要由黑云变粒岩、斜长角闪岩夹磁铁石英岩组成。三者的接触关系均为断层接触,而且四周为元古代、早古生代的花岗岩所侵吞,属华北板块北缘东段残留的的构造岩片堆积产物,其时代为中元古代。这个岩组的建立,对探讨华北板块北缘东段中元古代地层划分和对比、陆缘裂谷的形成演化与成矿作用的关系以及新元古代Rodinia超大陆的形成等均具有重要的意义。  相似文献   

6.
Abstract: The southern segment of the Da Hinggan Mountains is a well‐known tin–polymetallic metallogenic belt of North China with Jurassic‐Cretaceous volcanic–plutonic rocks widespread. Principally because of this, most of the deposits are regarded as epigenetic hydrothermal deposits in genetic connection with the Mesozoic magmatism. But nearly 90 % of the deposits occur in Permian strata, and show concordant stratiform mineralization with a spatial distribution constrained by sedimentary facies of the Permian strata. A close association between mineralization and Permian strata is recognizable. The Huanggang Fe‐Sn deposit was regarded as a standard skarn‐type deposit formed by magmatic hydrothermal solutions in connection with Mesozoic granites. But there are abundant fabrics indicating submarine hydrothermal exhalation both in magnetite ores and in skarns, including bedding/lamination, soft–deformation, synsedimentary brecciation, and collo‐form fabrics. The magnetite orebodies and skarn‐bodies are predominantly concordant stratiform, and extend nearly 20 km along certain stratigraphic horizon, that is, the upper section of the Lower‐Permian submarine volcanic rocks. The Mesozoic granitic rocks crosscut the magnetite and skarn zone. Instead of skarnization, they show strong greisenization associated with cassiterite‐quartz veins, distinct from the magnetite skarn‐ore with disseminated tin in the Permian rocks. The Dajing Sn‐polymetallic deposit is generally regarded as subvolcanic‐hydrothermal origin, principally because of the close spatial association between ores and some of the Mesozoic subvolcanic dikes (called rhyolitic porphyry). Detailed geological, fabric, petrographical and mineralogical study demonstrates that this very kind of subvolcanic rocks is actually a new type of exhalites (called ‘siderite‐sericite chert’ according to its mineral assemblage), formed by hydrothermal sedimentation during the evolution of the Later‐Permian lacustrine basin. There are, however, indeed some rhyolitic porphyry dikes that crosscut orebod–ies. The orebodies and their associated exhalite predate, and thus have no genetic relation, to the Mesozoic magmatic process. We thus conclude that subaqueous exhalative mineralization did occur during the basin evolution at the Permian time in the southern segment of the Da Hinggan Mountains, which is ignored and poorly understood, but might be as important as the hydrothermal mineralization connected with the Mesozoic magmatism.  相似文献   

7.
Numerous Fe–Cu deposits are hosted in the late Paleoproterozoic Dongchuan and Dahongshan Groups in the Kangdian region, SW China. The Dongchuan Group is composed of siltstone, slate, and dolostone with minor volcanic rocks, whereas the Dahongshan Group has undergone lower amphibolite facies metamorphism and consists of quartz mica-schist, albitite, quartzite, marble and amphibolite with local migmatite. Deposits in the Dongchuan Group are commonly localized in the cores of anticlines, in fault bends and intersections, and at lithological contacts. Orebodies are closely associated with breccias, which are locally derived from the host rocks. Fe-oxides (magnetite and/or hematite) and Cu-sulfides (chalcopyrite, bornite) form disseminated, vein-like and massive ores, and typically fill open spaces in the host rocks. The deposits have extensive albite alteration and local K-feldspar alteration overprinted by quartz, carbonate, sericite and chlorite. Deposits in the Dahongshan Group have orebodies sub-parellel to stratification and show crude stratal partitioning of metals. Fe-oxide ores occur as massive and/or banded replacements within the breccia pipes, whereas Cu-sulfide ores occur predominantly as disseminations and veinlets within mica schists and massive magnetite ores. Ore textures suggest that Cu-sulfides formed somewhat later than Fe-oxides, but are possibly within the same mineralization event. Both ore minerals predated regional Neoproterozoic metamorphism. Both orebodies and host rocks have undergone extensive alteration of albite, scapolite, amphibole, biotite, sericite and chlorite. Silica and carbonate alterations are also widespread. Ore-hosting strata have a LA-ICP-MS zircon U–Pb age of 1681 ± 13 Ma, and a dolerite dyke cutting the Fe-oxide orebodies has an age of 1659 ± 16 Ma. Thus, the mineralization age of the Dahongshan deposit is constrained at between the two. All ores from the two groups have high Fe and low Ti, with variable Cu contents. Locally they are rich in Mo, Co, V, and REE, but all are poor in Pb and Zn. Sulfides from the Fe–Cu deposits have δ34S values mostly in the range of +2 to +6 per mil, suggesting a mix of several sources due to large-scale leaching of the strata with the involvement of evaporites. Isotopic dating and field relationships suggest that these deposits formed in the late Paleoproterozoic. Ore textures, mineralogy and alteration characteristics are typical of IOCG-type deposits and thus define a major IOCG metallogenic province with significant implications for future exploration.  相似文献   

8.
Mineral assemblages, rock and mineral chemistry, and mineral reactions, in calc-silicate rocks from Koduru area, Andhra Pradesh, India are discussed. Mineralogical and bulk chemical differences indicate 3 calc-silicate rock types — type I with K feldspar+calcite+wollastonite+quartz+scapolite+diopsidess +andraditess+sphene, has relatively high rock oxidation ratios. Type II is a highly calcic variety with high rock MgFe ratios, and has K feldspar+calcite+wollastonite+quartz+scapolite + diopsidess±grossularitess+sphene+zoisite. Type III has K feldspar +calcite+wollastonite+quartz+scapolite+diopsidess +sphene+hornblende+magnetite, and has relatively low oxidation ratio and low MgFe ratio. The 3 calc-silicate rock types have originated as mixtures of limestone/dolomite/marl.Diopside was produced by a reaction involving Ca-amphibole +calcite+quartz, and reversed during retrogression. Andraditess in type I rocks was produced at the expense of hedenbergitic component of pyroxene in a continuous reaction as a consequence of increase in the oxygen content of the original sediment relative to type III. Calcite+quartz reacted to give wollastonite. During cooling an influx of water caused scapolite to alter to zoisite.  相似文献   

9.
The Callie deposit is the largest (6.0 Moz Au) of several gold deposits in the Dead Bullock Soak goldfield of the Northern Territory’s Tanami Region, 550 km northwest of Alice Springs. The Callie ore lies within corridors, up to 180 m wide, of sheeted en echelon quartz veins where they intersect the 500-m-wide hinge of an ESE-plunging F1 anticlinorium. The host rocks are the Blake beds, of the Paleoproterozoic Dead Bullock Formation, which consist of a > 350-m-thick sequence of lower greenschist facies graphitic turbidites and mudstones overlying in excess of 100 m of thickly bedded siltstones and fine sandstones. The rocks are Fe-rich and dominated by assemblages of chlorite and biotite, both of which are of hydrothermal and metamorphic origin. A fundamental characteristic of the hydrothermal alteration is the removal of graphite, a process which is associated with bleaching and the development of bedding-parallel bands of coarse biotite augen. Gold is found only in quartz veins and only where they cut decarbonized chloritic rock with abundant biotite augen and no sulfide minerals. Auriferous quartz veins differ from barren quartz veins by the presence of ilmenite, apatite, xenotime, and gold and the absence of sulfide minerals. The assemblage of gold–ilmenite–apatite–xenotime indicates a linked genesis and mobility of Ti, P, and Y in the mineralizing fluids. Geochemical analysis of samples throughout the deposit shows that gold only occurs in sedimentary rocks with high FeO/(FeO+Fe2O3) and low C/(C+CO2) ratios (> 0.8 and < 0.2, respectively). This association can be explained by reactions that convert C from reduced graphitic host rocks into CO2 and reduce ferric iron in the host rocks to ferrous iron in biotite and chlorite. These reactions would increase the CO2 content of the fluid, facilitating the transport of Ti, P, and Y from the host rocks into the veins. Both CO2 and CH4 produced by reaction of H2O with graphite, effervesced under the lower confining pressures in the veins. This would have partitioned H2S into the vapor phase, destabilizing Au–bisulfide complexes; the loss of CO2 and H2S from the aqueous phase caused precipitation of gold, ilmenite, apatite, and xenotime. It is proposed that this process was the main control on gold precipitation. Oxidization of iron in the very reduced wall rocks, resulting in reduction of the fluid, provided a second mechanism of gold precipitation in previously decarbonized rocks, contributing to the high grades in some samples. Although sulfide minerals, especially arsenopyrite, did form during the hydrothermal event, host rock sulfidation reactions did not play a role in gold precipitation because gold is absent near rocks or veins containing sulfide minerals. Sulfide minerals likely formed by different mechanisms from those associated with gold deposition. Both the fold architecture and subsequent spatially coincident sinistral semibrittle shearing ensured that the ore fluids were strongly focused into the hinges of the anticlines. Within the anticlines, a reactive cap of fine-grained, graphitic, reduced Fe-rich turbidites above more permeable siltstones and fine sandstones impeded fluid flow ensuring efficient removal of graphite, and the associated effervescence of CO2 from the fluid caused the precipitation of gold. Exploration for similar deposits should focus on the intersection of east–west shear zones with folds and Fe-rich graphitic host rocks.  相似文献   

10.
通过1:25万区域地质调查,对西乌珠穆沁旗-林西地区石炭纪-二叠纪地层进行了岩石地层学研究与重新归并划分,并进行了生物地层、层序地层及不整合面地层的多重地层划分与对比.研究了测区各地层的基本层序、沉积环境和沉积相,将石炭纪-二叠纪地层划分为3个沉积层序,建立了岩石地层和年代地层格架.石炭纪-早二叠世本巴图组(CPb)、格根敖包组(CPg)和阿木山组(CPa)三者为石炭纪-二叠纪西乌珠穆沁旗海槽同期异相地层的观点,能很好地解释这几套地层的相互关系.寿山沟组(P1ss)地层呈超覆不整合覆于以前地层或地质体之上;大石寨组(P2ds)为达到最大海泛面时海(水)下火山喷发的产物;哲斯组(P2z)是海盆地萎缩期的沉积产物.  相似文献   

11.
岩浆-热液系统中铁的富集机制探讨   总被引:25,自引:17,他引:8  
与岩浆-热液系统有关的铁矿类型有岩浆型钒钛磁铁矿床、玢岩铁矿、矽卡岩型铁矿和海相火山岩型铁矿,与这些铁矿有关的岩浆岩从基性-超基性、中性到中酸性岩均有,其中岩浆型钒钛磁铁矿床与基性-超基性深成侵入岩有关,形成于岩浆阶段,主要与分离结晶作用有关,但是厚大的富铁矿石的形成则可归结于原始的富铁钛苦橄质岩浆、分离结晶作用、多期次的岩浆补充以及流动分异等联合过程。钒钛磁铁矿石产于岩体下部还是上部与母岩浆的氧逸度有关:高的氧逸度导致磁铁矿早期结晶而使得其堆积于岩体的下部,相反,低氧逸度则导致低品位的浸染状矿石产于岩体的上部。虽然野外一些证据表明,元古宙斜长岩中的磷铁矿石可能是不混溶作用形成的,但是目前尚无实验证据。某些玢岩铁矿的一些磷灰石-磁铁矿石可能与闪长质岩浆同化混染了地壳中的磷导致的不混溶作用有关。除此之外,其他各类与岩浆作用有关的铁矿床均与岩浆后期的岩浆-热液作用有关。这些不同类型铁矿床的蚀变和矿化过程具有相似性,反映了它们形成过程具有相似的物理化学条件。成矿实验以及流体包裹体研究表明,岩浆-流体转换过程中出溶流体的数量以及成分受多种因素控制,其中岩浆分离结晶作用以及碳酸盐地层和膏盐层的混染可导致出溶的流体中Cl浓度的升高。早期高氧逸度环境可以使得硫以SO42-形式存在,抑制硫与铁的结合形成黄铁矿,有利于铁在早期以Cl的络合物发生迁移。大型富铁矿的形成需要一个长期稳定的流体对流循环系统,而岩浆的多期侵位或岩浆房以及在相对封闭的环境中(需要一个不透水层)一个有利于流体循环的断裂/裂隙系统是形成一个长期稳定的流体对流循环系统的必要条件。但是由于不同地质环境,流体中铁的卸载方式和位置会有明显差别,由此导致不同的矿石结构构造和不同的矿体产状。  相似文献   

12.
碧口群是一套发生在台地与裂谷之间的裂谷边缘型沉积,各类岩石之间具有规律性的相变特征,按岩石类型及组合特征可划分为7个组级岩石地层单位。根据该群不整合在志留纪茂县群或水晶组之上,被中泥盆统—石炭系略阳组连续沉积覆盖,以及自身所产化石(Amphisitespulcher,Bairdiasp.,Desquamatiasp.,Schizophoriasp.等),将其时代确定为早—中泥盆世。  相似文献   

13.
孙云堂 《云南地质》2011,30(3):321-322,311
曼远铁矿以磁铁矿、赤铁矿、磁赤铁矿为主,赋存于澜沧群勐井山组上段中部。该组地层中夹多层中性—基性火山岩、火山凝灰岩,属典型的火山沉积变质型铁矿。  相似文献   

14.
李石 《矿床地质》1984,3(2):94-98
神农架铁矿位于华中第一高峰——鄂西神农架原始林区。目前发现具有工业价值的矿区主要有两个:一个在铁厂河,另一个在大神农架主峰附近(图1)。铁矿露头一般在标高2000—2500米以上。虽然该铁矿沉积形成于元古代,但由于它至今几乎未受变质,使它具有独特的矿石类型,以区别于一般前寒武纪沉积变质铁矿,因此人们专称它为神农架式。现将该铁矿特征简要报道如下。  相似文献   

15.
四川省盐边县北部稗子田地区的专留系发育良好,牙形刺化石极为丰富,与上覆泥盆系连续沉积,并呈整合接触。该剖面为我国扬子区较为理想的志留纪地层剖面,其代表和反映了扬子区西部一种新的断陷盆地碳酸盐岩沉积类型,丰富了区内志留系的研究内容。笔者详细记述了稗子田专留系至下泥盆统下部剖面的岩性特征和生物化石的垂直分布状部,在此基础上建立和完善区内新的地层系统,提出地层划分的对比依据和建议。新方案除对志留系底的黑  相似文献   

16.
In the Idaho cobalt belt, originally exhalative, stratiform mineralization within the Proterozoic Yellow-jacket Formation has become increasingly coarse-grained and remobilized toward the northwest in the direction of increasing regional metamorphic grade. The Idaho cobalt belt is located about 40 km west of Salmon, Idaho in the northwestern United States. The most important deposit in the district is the Blackbird mine which produced copper-cobalt ore sporadically from the early 1900's until about 1960. The Iron Creek deposit at the southeast end of the belt has undergone greenschist fades, biotite zone metamorphism; zones of disseminated, veinlet and massive sulfides lie more or less parallel to bedding of quartzites and phyllites. The main ore minerals are chalcopyrite and cobaltiferous pyrite. Toward the northwest at the Blackpine mine, remobilization has concentrated most of the mineralization into relatively thin concordant and discordant veins containing chalcopyrite, pyrite and arsenopyrite. The cobalt is reported to occur within arsenopyrite. Further northwest at the Blackbird mine where the Yellowjacket formation has been metamorphosed to the lower amphibolite facies, zones of disseminated and coarse-grained vein ores lie approximately along the same stratigraphic zone. Chalcopyrite, cobaltite, arsenopyrite, pyrite and pyrrhotite are the dominant ore minerals. Up to 0.22 oz. Au/ton was present in some of the ore. In addition, tourmaline-bearing sedimentary rocks (tourmalinites) are associated with some of the Blackbird ores. The Salmon Canyon deposit at the northwest end of the belt has undergone upper amphibolite facies, sillimanite zone metamorphism. In these garnet-sillimanite gneisses, chalcopyrite is found as coarse blebs and cobaltite as large porphyroblastic crystals. Gold occurs in amounts up to 0.02 oz. Au/ton.Elsewhere in the world the two most similar districts are the cobalt-bearing portion of the Zambian-Zairian Copperbelt of central Africa where Proterozoic Roan sedimentary rocks contain stratiform copper-cobalt ore-bodies over a distance of more than 500 kilometers, and the Sheep Creek district of Meagher County, Montana, which contains strata-bound copper-cobalt mineralization.The Idaho cobalt belt is a strata-bound copper-cobalt district hosted by the Proterozoic Yellowjacket Formation and located in east-central Idaho within Lemhi County, approximately 40 kilometers west of Salmon, Idaho, northwestern United States (Fig. 1). Of the four main deposits described here (from southeast to northwest, the Iron Creek, Blackpine, Blackbird, and the Salmon Canyon deposits), the Blackbird mine is the most important in the district. It was discovered in 1893 and sporadically produced copper and cobalt until about 1960.The Yellowjacket Formation has undergone an increasing degree of metamorphism toward the northwest. The deposits are largely strata-bound in a belt over 50 km in length, strongly suggesting a syngenetic mode of origin. However, the proximity of the district to satellitic granitic plutons of the Idaho batholith has prompted many investigators to suggest an epigenetic hydrothermal origin (Anderson 1947 and Purdue 1975). Remobilization of some of the mineralization into veins at the Blackbird mine, where most of the previous work has been concentrated, has also suggested an epigenetic origin. A more district-wide view of the mineralization points to a strong degree of stratigraphic control.  相似文献   

17.
A large number of the Carlin-type gold deposits occur in the Longtan Formation in southwestern Guizhou Province. The Longtan Formation contains abundant basalt, tuff and siliceous rocks. All rocks of the Long-tan Formation are enriched in gold, which were deposited in a limited platform environment in the transition zone from marine to continental. The process of sedimentation was accompanied by the eruption of Emeishan basalt and hydrothermal deposition controlled by co-sedimentary submarine deep faults in the west, which led to the formation of a peculiar gold-bearing formation with coal series strata. This formation controlled the occurrence of the Carlin-type gold deposits in southwestern Guizhou Province. In response to the remobilization of the Emei mantle plume during the Yanshanian period, As, Au and other ore-forming materials were continuously extracted by deeply circulating waters from the Emeishan basalt and coal seams, thereafter forming ore-forming hydrothermal solutions. When these elements were transported in the coal seams, large amounts of As, Au and other elements were enriched in pyrite within the coal seams, thus forming high-As coal and Carlin-type gold deposits in the Longtan Formation coal series strata.  相似文献   

18.
周伟  朱凝 《云南地质》2012,(1):66-68
里竹山铁矿赋存在马邓岩群外麦地岩组中,成矿与区内基性火山岩(玄武岩)相关,矿石与围岩均具有相似特征。后期热变质作用、叠加改造作用并未完全改变其原岩结构构造特征,属于构造和海底基性火山喷发有关的沉积变质型磁铁矿床。  相似文献   

19.
Compositions of immiscible liquids in volcanic rocks   总被引:8,自引:5,他引:8  
Immiscible liquids, preserved as chemically distinct, glassy globules, (Si-rich and Fe-rich) occur in many tholeiitic basalts and some alkaline and calcalkaline lavas. The glasses typically form part of a dark mesostasis containing skeletal magnetite crystals. In thick flows, the Si-rich liquid may crystallize to granophyric patches, and the Ferich one to aggregates of hedenbergite, magnetite, and accessory phases. The mesostases containing these immiscible phases constitute from 20% of a primitive olivine tholeiite (MgO=7.5%) to 50% of a highly fractionated quartz tholeiite (MgO=2.8%), but may be less if the rock is oxidized. Abundant ferric iron promotes early crystallization of magnetite and prevents the iron enrichment necessary to reach the immiscibility field; thus, aa flows rarely exhibit immiscibility, whereas the more reduced pahoehoe ones do.Alumina and alkalis are concentrated in the Si-rich liquid, whereas the remainder of the major elements are concentrated in the Fe-rich melt; but the partitioning of Fe, Mg, Ca, and P is less pronounced in alkaline rocks than in tholeiites. Conjugate liquids have compositions of granite and Fe-rich pyroxenite, though the Si-rich melt in alkaline rocks is more syenitic and the Fe-rich one contains considerable normative alkali feldspar. The liquids coexist with plagioclase and augite of, respectively, An50 and Ca34Mg19Fe47 compositions in tholeiites, and An40 and Ca42Mg29Fe29 in alkaline rocks. Immiscibility is not restricted to K-rich residual liquids, but the miscibility gap is narrower for Na-rich compositions. In tholeiitic basalts with 52% SiO2, the Na2O/K2O ratios in conjugate liquids are equal, but at lower silica contents the Si-rich liquid is relatively more sodic, whereas at higher silica contents it is relatively more potassic. This may explain the association of sodic granites with mid ocean ridge basalts.Immiscible liquids are present in sufficient amounts in so many volcanic rocks that magma unmixing should be considered a viable means of differentiation during the late stages of fractionation of common magmas, at least at low pressures.  相似文献   

20.
青海祁漫塔格地区位于东昆仑造山带西段,是我国近些年来的重点找矿地区之一。本文对区内与虎头崖矿床I矿带(Fe)、野马泉矿床(Fe)、虎头崖矿床VI矿带(Zn)和卡而却卡矿床B区(Cu)有关的花岗质岩石开展了矿物学研究。结果显示,虎头崖矿床I矿带的斜长石以奥长石为主(An15.0-24.1);虎头崖矿床VI矿带的斜长石主要为钠长石和奥长石(An8.7-20.8);卡而却卡矿床B区的斜长石主要是中长石(An33.8-42.2);野马泉矿床的斜长石主要为奥长石和中长石(An26.2-48.4)。角闪石为典型的钙角闪石,其中,虎头崖矿床I矿带的角闪石属铁浅闪石;卡而却卡矿床B区的角闪石为镁角闪石和铁角闪石。各矿床(带)的黑云母普遍富Fe、Ti、F、Cl,属典型的铁黑云母。矿物学特征显示,各矿床(带)的黑云母结晶于相似的高氧逸度条件下,但在结晶温度和挥发份组成等方面存在差异。黑云母的结晶温度和氧逸度特征与各矿床类型之间未表现出明显的规律性特征。结合前人的研究成果可知,岩浆结晶的温度和氧逸度可能不是控制本区矽卡岩矿床成矿作用类型的主要因素。黑云母的挥发份组成与各成矿元素间表现出明显的规律性特征,其中,以Fe为主的虎头崖矿床I矿带和野马泉矿床的岩浆流体特征基本一致,表现出相对富Cl、贫H2O、F的特点;以Zn为主的虎头崖矿床VI矿带的岩浆流体相对富F贫H2O、Cl;以Cu为主的卡而却卡矿床B区的岩浆流体相对富Cl、H2O贫F,说明岩浆流体不同的挥发份组成可能与不同的矿床类型之间存在密切的联系。综合地质特征和矿物学特征可知,岩浆流体的挥发份组成可能是控制青海祁漫塔格地区矽卡岩矿床成矿作用类型多样性的重要因素之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号