首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
This study uses multiple sea surface temperature(SST) datasets to perform a parallel comparison of three super El Ni os and their effects on the stratosphere. The results show that, different from ordinary El Ni os, warm SST anomalies appear earliest in the western tropical Pacific and precede the super El Ni o peak by more than 18 months. In the previous winter,relative to the mature phase of El Ni o, as a precursor, North Pacific Oscillation-like circulation anomalies are observed. A Pacific–North America(PNA) teleconnection appears in the extratropical troposphere during the mature phase, in spite of the subtle differences between the intensities, as well as the zonal position, of the PNA lobes. Related to the negative rainfall response over the tropical Indian Ocean, the PNA teleconnection in the winter of 1997/98 is the strongest among the three super El Ni os. The northern winter stratosphere shows large anomalies in the polar cap temperature and the circumpolar westerly, if the interferences from other factors are linearly filtered from the circulation data. Associated with the positive PNA response in a super El Ni o winter, positive polar cap temperature anomalies and circumpolar easterly anomalies,though different in timing, are also observed in the mature winters of the three super El Ni os. The stratospheric polar vortex in the next winter relative to the 1982/83 and 1997/98 events is also anomalously weaker and warmer, and the stratospheric circulation conditions remain to be seen in the coming winter following the mature phase of the 2015/16 event.  相似文献   

2.
The 2015/16 super El Ni?o event has been widely recognized as comparable to the 1982/83 and 1997/98 El Ni?o events.This study examines the main features of upper-ocean dynamics in this new super event,contrasts them to those in the two historical super events,and quantitatively compares the major oceanic dynamical feedbacks based on a mixed-layer heat budget analysis of the tropical Pacific.During the early stage,this new event is characterized by an eastward propagation of SST anomalies and a weak warm-pool El Ni?o;whereas during its mature phase,it is characterized by a weak westward propagation and a westward-shifted SST anomaly center,mainly due to the strong easterly wind and cold upwelling anomalies in the far eastern Pacific,as well as the westward anomalies of equatorial zonal current and subsurface ocean temperature.The heat budget analysis shows that the thermocline feedback is the most crucial process inducing the SST anomaly growth and phase transition of all the super events,and particularly for this new event,the zonal advective feedback also exerts an important impact on the formation of the strong warming and westward-shifted pattern of SST anomalies.During this event,several westerly wind burst events occur,and oceanic Kelvin waves propagate eastwards before being maintained over eastern Pacific in the mature stage.Meanwhile,there is no evidence for westward propagation of the off-equatorial oceanic Rossby waves though the discharging process of equatorial heat during the development and mature stages.The second generation El Ni?o prediction system of the Beijing Climate Center produced reasonable event real-time operational prediction during 2014–16,wherein the statistical prediction model that considers the preceding oceanic precursors plays an important role in the multi-method ensemble prediction of this super.  相似文献   

3.
Many previous studies have demonstrated that the boreal winters of super El Nino events are usually accompanied by severely suppressed Madden-Julian oscillation(MJO) activity over the western Pacific due to strong descending motion associated with a weakened Walker Circulation. However, the boreal winter of the 2015/16 super El Nino event is concurrent with enhanced MJO activity over the western Pacific despite its sea surface temperature anomaly(SSTA)magnitude over the Nino 3.4 region being comparable to the SSTA magnitudes of the two former super El Nino events(i.e.,1982/83 and 1997/98). This study suggests that the MJO enhanced over western Pacific during the 2015/16 super El Nino event is mainly related to its distinctive SSTA structure and associated background thermodynamic conditions. In comparison with the previous super El Nino events, the warming SSTA center of the 2015/16 super El Nino is located further westward, and a strong cold SSTA is not detected in the western Pacific. Accordingly, the low-level moisture and air temperature(as well as the moist static energy, MSE) tend to increase in the central-western Pacific. In contrast, the low-level moisture and MSE show negative anomalies over the western Pacific during the previous super El Nino events.As the MJO-related horizontal wind anomalies contribute to the further westward warm SST-induced positive moisture and MSE anomalies over the western tropical Pacific in the boreal winter of 2015/16, stronger moisture convergence and MSE advection are generated over the western Pacific and lead to the enhancement of MJO convection.  相似文献   

4.
Analysis has been implemented of 1970-1992 tropical Pacific wind stress anomaly and sea surface temperature anomaly (SSTA) datasets, indicating that quasi-biennial oscillation (QBO) of the tropical Pacific WS and SSTA is featured both by a standing and a progressive form, the former emerging in the most intense centers of action and the latter travelling east- or west-ward out of the SSTA sources. Results show that the SSTA is in the warm (cold) phase as zonal component of euqatorial wind stress anomaly gets weakened (reinforced) and the QBO of wind stress anomaly is well related to the El Nino cycle.  相似文献   

5.
The features of the MJO during two types of El Ni no events are investigated in this paper using the daily NCEP-2reanalysis data, OLR data from NOAA, and Real-time Multivariate MJO index for the period 1979–2012. The results indicate that the MJO exhibits distinct features during eastern Pacific(EP) El Ni no events, as compared to central Pacific(CP) El Ni no events. First, the intensity of the MJO is weakened during EP El Ni no winters from the tropical eastern Indian Ocean to the western Pacific, but enhanced during CP El Ni no winters. Second, the range of the MJO eastward propagation is different during the two types of El Ni no events. During EP El Ni no winters, the MJO propagates eastwards to 120?W, but only to 180?during CP El Ni no winters. Finally, the frequency in eight phases of the MJO may be affected by the two types of El Ni no. Phases 2 and 3 display a stronger MJO frequency during EP El Ni no winters, but phases 4 and 5 during CP El Ni no winters.  相似文献   

6.
Previous studies suggest that the atmospheric precursor of El Ni ?no–Southern Oscillation(ENSO) in the extratropical Southern Hemisphere(SH) might trigger a quadrapole sea surface temperature anomaly(SSTA) in the South Pacific and subsequently influence the following ENSO. Such a quadrapole SSTA is referred to as the South Pacific quadrapole(SPQ).The present study investigated the relationships between the atmospheric precursor signal of ENSO and leading modes of atmospheric variability in the extratropical SH [including the SH annular mode(SAM), the first Pacific–South America(PSA1) mode, and the second Pacific–South America(PSA2) mode]. The results showed that the atmospheric precursor signal in the extratropical SH basically exhibits a barotropic wavenumber-3 structure over the South Pacific and is significantly correlated with the SAM and the PSA2 mode during austral summer. Nevertheless, only the PSA2 mode was found to be a precursor for the following ENSO. It leads the SPQ-like SSTA by around one month, while the SAM and the PSA1 mode do not show any obvious linkage with either ENSO or the SPQ. This suggests that the PSA2 mode may provide a bridge between the preceding circulation anomalies over the extratropical SH and the following ENSO through the SPQ-like SSTA.  相似文献   

7.
The role of halted “baroclinic modes” in the central equatorial Pacific is analyzed. It is found that dominant anomaly signals corresponding to “baroclinic modes” occur in the upper layer of the equatorial Pacific, in a two-and-a-half layer oceanic model, in assimilated results of a simple OGCM and in the ADCP observation of TAO. A second “baroclinic mode” is halted in the central equatorial Pacific corresponding to a positive SST anomaly while the first “baroclinic mode” propagates eastwards in the eastern equatorial Pacific. The role of the halted second “baroclinic mode” in the central equatorial Pacific is explained by a staged ocean-atmosphere interaction mechanism in the formation of El Ni?no: the westerly bursts in boreal winter over the western equatorial Pacific generate the halted second “baroclinic mode” in the central equatorial Pacific, leading to the increase of heat content and temperature in the upper layer of the central Pacific which induces the shift of convection from over the western equatorial Pacific to the central equatorial Pacific; another wider, westerly anomaly burst is induced over the western region of convection above the central equatorial Pacific and the westerly anomaly burst generates the first “baroclinic mode” propagating to the eastern equatorial Pacific, resulting in a warm event in the eastern equatorial Pacific. The mechanism presented in this paper reveals that the central equatorial Pacific is a key region in detecting the possibility of ENSO and, by analyzing TAO observation data of ocean currents and temperature in the central equatorial Pacific, in predicting the coming of an El Ni?no several months ahead.  相似文献   

8.
The climatology and interannual variability of sea surface salinity(SSS) and freshwater flux(FWF) in the equatorial Pacific are analyzed and evaluated using simulations from the Beijing Normal University Earth System Model(BNU-ESM).The simulated annual climatology and interannual variations of SSS, FWF, mixed layer depth(MLD), and buoyancy flux agree with those observed in the equatorial Pacific. The relationships among the interannual anomaly fields simulated by BNU-ESM are analyzed to illustrate the climate feedbacks induced by FWF in the tropical Pacific. The largest interannual variations of SSS and FWF are located in the western-central equatorial Pacific. A positive FWF feedback effect on sea surface temperature(SST) in the equatorial Pacific is identified. As a response to El Ni ?no–Southern Oscillation(ENSO),the interannual variation of FWF induces ocean processes which, in turn, enhance ENSO. During El Ni ?no, a positive FWF anomaly in the western-central Pacific(an indication of increased precipitation rates) acts to enhance a negative salinity anomaly and a negative surface ocean density anomaly, leading to stable stratification in the upper ocean. Hence, the vertical mixing and entrainment of subsurface water into the mixed layer are reduced, and the associated El Ni ?no is enhanced. Related to this positive feedback, the simulated FWF bias is clearly reflected in SSS and SST simulations, with a positive FWF perturbation into the ocean corresponding to a low SSS and a small surface ocean density in the western-central equatorial Pacific warm pool.  相似文献   

9.
State-of-the-art climate models have long-standing intrinsic biases that limit their simulation and projection capabilities.Significantly weak ENSO asymmetry and weakly nonlinear air–sea interaction over the tropical Pacific was found in CMIP5(Coupled Model Intercomparison Project, Phase 5) climate models compared with observation. The results suggest that a weak nonlinear air–sea interaction may play a role in the weak ENSO asymmetry. Moreover, a weak nonlinearity in air–sea interaction in the models may be associated with the biases in the mean climate—the cold biases in the equatorial central Pacific. The excessive cold tongue bias pushes the deep convection far west to the western Pacific warm pool region and suppresses its development in the central equatorial Pacific. The deep convection has difficulties in further moving to the eastern equatorial Pacific, especially during extreme El Ni o events, which confines the westerly wind anomaly to the western Pacific. This weakens the eastern Pacific El Ni o events, especially the extreme El Ni o events, and thus leads to the weakened ENSO asymmetry in climate models. An accurate mean state structure(especially a realistic cold tongue and deep convection) is critical to reproducing ENSO events in climate models. Our evaluation also revealed that ENSO statistics in CMIP5 climate models are slightly improved compared with those of CMIP3. The weak ENSO asymmetry in CMIP5 is closer to the observation. It is more evident in CMIP5 that strong ENSO activities are usually accompanied by strong ENSO asymmetry, and the diversity of ENSO amplitude is reduced.  相似文献   

10.
Decadal and interannual variability of the Indian Ocean Dipole   总被引:2,自引:1,他引:1  
This study investigates the decadal and interannual variability of the Indian Ocean Dipole (IOD). It is found that the long-term IOD index displays a decadal phase variation. Prior to 1920 negative phase dominates but after 1960 positive phase prevails. Under the warming background of the tropical ocean, a larger warming trend in the western Indian Ocean is responsible for the decadal phase variation of the IOD mode. Due to reduced latent heat loss from the local ocean, the western Indian Ocean warming may be caused by the weakened Indian Ocean westerly summer monsoon. The interannual air-sea coupled IOD mode varies on the background of its decadal variability. During the earlier period (1948-1969), IOD events are characterized by opposing SST anomaly (SSTA) in the western and eastern Indian Ocean, with a single vertical circulation above the equatorial Indian Ocean. But in the later period (1980-2003), with positive IOD dominating, most IOD events have a zonal gradient perturbation on a uniform positive SSTA. However, there are three exceptionally strong positive IOD events (1982, 1994, and 1997), with opposite SSTA in the western and eastern Indian Ocean, accompanied by an El Nifio event. Consequently, two anomalous reversed Walker cells are located separately over the Indian Ocean and western-eastern Pacific; the one over the Indian Ocean is much stronger than that during other positive IOD events.  相似文献   

11.
The impact of surface sensible heating over the Tibetan Plateau(SHTP) on the western Pacific subtropical high(WPSH)with and without air–sea interaction was investigated in this study. Data analysis indicated that SHTP acts as a relatively independent factor in modulating the WPSH anomaly compared with ENSO events. Stronger spring SHTP is usually followed by an enhanced and westward extension of the WPSH in summer, and vice versa. Numerical experiments using both an AGCM and a CGCM confirmed that SHTP influences the large-scale circulation anomaly over the Pacific, which features a barotropic anticyclonic response over the northwestern Pacific and a cyclonic response to the south. Owing to different background circulation in spring and summer, such a response facilitates a subdued WPSH in spring but an enhanced WPSH in summer. Moreover, the CGCM results showed that the equatorial low-level westerly at the south edge of the cyclonic anomaly brings about a warm SST anomaly(SSTA) in the equatorial central Pacific via surface warm advection.Subsequently, an atmospheric Rossby wave is stimulated to the northwest of the warm SSTA, which in turn enhances the atmospheric dipole anomalies over the western Pacific. Therefore, the air–sea feedbacks involved tend to reinforce the effect of SHTP on the WPSH anomaly, and the role of SHTP on general circulation needs to be considered in a land–air–sea interaction framework.  相似文献   

12.
An operational weather forecast model, coupled to an oceanic model, was used to predict the initiation and propagation of two major Madden–Julian Oscillation(MJO) events during the dynamics of the MJO(DYNAMO)campaign period. Two convective parameterization schemes were used to understand the sensitivity of the forecast to the model cumulus scheme. The first is the Tiedtke(TDK) scheme, and the second is the Simplified Arakawa–Schubert(SAS) scheme. The TDK scheme was able to forecast the MJO-1 and MJO-2 initiation at 15-and45-day lead, respectively, while the SAS scheme failed to predict the convection onset in the western equatorial Indian Ocean(WEIO). The diagnosis of the forecast results indicates that the successful prediction with the TDK scheme is attributed to the model capability to reproduce the observed intraseasonal outgoing longwave radiation–sea surface temperature(OLR–SST) relationship. On one hand, the SST anomaly(SSTA) over the WEIO was induced by surface heat flux anomalies associated with the preceding suppressed-phase MJO. The change of SSTA, in turn,caused boundary layer convergence and ascending motion, which further induced a positive column-integrated moist static energy(MSE) tendency, setting up a convectively unstable stratification for MJO initiation. The forecast with the SAS scheme failed to reproduce the observed OLR–SST–MSE relation. The propagation characteristics differed markedly between the two forecasts. Pronounced eastward phase propagation in the TDK scheme is attributed to a positive zonal gradient of the MSE tendency relative to the MJO center, similar to the observed, whereas a reversed gradient appeared in the forecast with the SAS scheme with dominant westward propagation. The difference is primarily attributed to anomalous vertical and horizontal MSE advection.  相似文献   

13.
The atmospheric and oceanic conditions before the onset of EP El Ni?o and CP El Ni?o in nearly 30 years are compared and analyzed by using 850 hPa wind, 20℃ isotherm depth, sea surface temperature and the Wheeler and Hendon index. The results are as follows: In the western equatorial Pacific, the occurrence of the anomalously strong westerly winds of the EP El Ni?o is earlier than that of the CP El Ni?o. Its intensity is far stronger than that of the CP El Ni?o. Two months before the El Ni?o, the anomaly westerly winds of the EP El Ni?o have extended to the eastern Pacific region, while the westerly wind anomaly of the CP El Ni?o can only extend to the west of the dateline three months before the El Ni?o and later stay there. Unlike the EP El Ni?o, the CP El Ni?o is always associated with easterly wind anomaly in the eastern equatorial Pacific before its onset. The thermocline depth anomaly of the EP El Ni?o can significantly move eastward and deepen. In addition, we also find that the evolution of thermocline is ahead of the development of the sea surface temperature for the EP El Ni?o. The strong MJO activity of the EP El Ni?o in the western and central Pacific is earlier than that of the CP El Ni?o. Measured by the standard deviation of the zonal wind square, the intensity of MJO activity of the EP El Ni?o is significantly greater than that of the CP El Ni?o before the onset of El Ni?o.  相似文献   

14.
The characteristics of 30-60 day oscillation (hereafter called LFO ) of the outgoing longwave radiation data (OLR) and its relations to the interannual oscillations of the sea surface temperature (SST) are investigated by using the daily OLR data for the period from January, 1979 to December, 1987 and the corresponding monthly SST data. II is found that the LFO the band the interannual oscillations of the SST monthly anomaly (SSTA) interact each oth-er and they all relate to the occurrence and development of El Nino events closely. Before El Nino event happens, it contributes to the SST’s warming up and to the SST’s quasi-biennial oscillation (called QBO for brevity) and three and half years oscillation (called SO for short) being in warm water phase in the equatorial central and eastern Pacific (ECP and EEP) that the LFO in the equatorial western Pacific (EWP) enhances and propagates eastward; When El Nino event takes place, the LFO, SSTA and SSTA’s QBO and SO in the EEP interact and strengthen each other; But the warmer SST and the SSTA’s QBO and SO in the warm water phase in the EEP contribute to the LFO's weak-ening in the equatorial Pacific. Moreover, these contribute to the SST in the EEP becoming cold and the SSTA’s QBO and SO in the EWP being in cold water phase and then impel the El Nino event to end.  相似文献   

15.
This paper compares data from linearized and nonlinear Zebiak–Cane model, as constrained by observed sea surface temperature anomaly(SSTA), in simulating central Pacific(CP) and eastern Pacific(EP) El Nio. The difference between the temperature advections(determined by subtracting those of the linearized model from those of the nonlinear model),referred to here as the nonlinearly induced temperature advection change(NTA), is analyzed. The results demonstrate that the NTA records warming in the central equatorial Pacific during CP El Nio and makes fewer contributions to the structural distinctions of the CP El Nio, whereas it records warming in the eastern equatorial Pacific during EP El Nio, and thus significantly promotes EP El Nio during El Nio–type selection. The NTA for CP and EP El Nio varies in its amplitude,and is smaller in CP El Nio than it is in EP El Nio. These results demonstrate that CP El Nio are weakly modulated by small intensities of NTA, and may be controlled by weak nonlinearity; whereas, EP El Nio are significantly enhanced by large amplitudes of NTA, and are therefore likely to be modulated by relatively strong nonlinearity. These data could explain why CP El Nio are weaker than EP El Nio. Because the NTA for CP and EP El Nio differs in spatial structures and intensities, as well as their roles within different El Nio modes, the diversity of El Nio may be closely related to changes in the nonlinear characteristics of the tropical Pacific.  相似文献   

16.
With the Zebiak–Cane model, the present study investigates the role of model errors represented by the nonlinear forcing singular vector(NFSV) in the "spring predictability barrier"(SPB) phenomenon in ENSO prediction. The NFSV-related model errors are found to have the largest negative effect on the uncertainties of El Nio prediction and they can be classified into two types: the first is featured with a zonal dipolar pattern of SST anomalies(SSTA), with the western poles centered in the equatorial central–western Pacific exhibiting positive anomalies and the eastern poles in the equatorial eastern Pacific exhibiting negative anomalies; and the second is characterized by a pattern almost opposite to the first type. The first type of error tends to have the worst effects on El Nin?o growth-phase predictions, whereas the latter often yields the largest negative effects on decaying-phase predictions. The evolution of prediction errors caused by NFSVrelated errors exhibits prominent seasonality, with the fastest error growth in spring and/or summer; hence,these errors result in a significant SPB related to El Nin?o events. The linear counterpart of NFSVs, the(linear) forcing singular vector(FSV), induces a less significant SPB because it contains smaller prediction errors. Random errors cannot generate an SPB for El Nio events. These results show that the occurrence of an SPB is related to the spatial patterns of tendency errors. The NFSV tendency errors cause the most significant SPB for El Nio events. In addition, NFSVs often concentrate these large value errors in a few areas within the equatorial eastern and central–western Pacific, which likely represent those areas sensitive to El Nio predictions associated with model errors. Meanwhile, these areas are also exactly consistent with the sensitive areas related to initial errors determined by previous studies. This implies that additional observations in the sensitive areas would not only improve the accuracy of the initial field but also promote the reduction of model errors to greatly improve ENSO forecasts.  相似文献   

17.
The different patterns of SST changes under the +8.5 W m-2 Representative Concentration Pathway(RCP8.5) projected by the latest two versions of the Flexible Global Ocean-Atmosphere-Land System model(FGOALS-g2 and FGOALS-s2; grid-point version 2 and spectral version 2, respectively), and the potential mechanisms for their formation are studied in this paper. The results show that, although both FGOALS-g2 and FGOALS-s2 project global warming patterns, FGOALS-g2(FGOALS-s2) projects a La Nia-like(an El Nio-like) mean warming pattern with weakest(strongest) warming over the central(eastern) equatorial Pacific for 2081–2100 relative to 1986–2005 under RCP8.5. A mixed layer heat budget analysis shows that the projected tropical Pacific Ocean warming in both models is primarily caused by atmospheric forcing. The main differences in the heating terms contributing to the SST changes between the two models are seen in the downward longwave radiation and ocean forcing. The minimum SST warming over the equatorial Pacific in FGOALS-g2 is attributed to the local minimum heating of downward longwave radiation and maximum cooling of ocean forcing. In contrast, the maximum SST warming over the equatorial Pacific in FGOALS-s2 is due to the maximum warming of downward longwave radiation, and the contribution of ocean forcing is minor. The minimum SST warming over the equatorial Pacific in FGOALS-g2 emerges around the 2050 s, before when the SST over the equatorial Pacific is warmer than that over the extra-equatorial Pacific. In FGOALS-s2, the SST difference shows a continuous increasing trend for 2006– 2100. Further examination of the oceanic and atmospheric circulation changes is needed to reveal the process responsible for the longwave radiation and ocean forcing difference between the two models.  相似文献   

18.
Increased evidence has shown the important role of Atlantic sea surface temperature(SST) in modulating the El Nio-Southern Oscillation(ENSO). Persistent anomalies of summer Madden-Julian Oscillation(MJO) act to link the Atlantic SST anomalies(SSTAs) to ENSO. The Atlantic SSTAs are strongly correlated with the persistent anomalies of summer MJO, and possibly affect MJO in two major ways. One is that an anomalous cyclonic(anticyclonic) circulation appears over the tropical Atlantic Ocean associated with positive(negative) SSTA in spring, and it intensifies(weakens) the Walker circulation. Equatorial updraft anomaly then appears over the Indian Ocean and the eastern Pacific Ocean, intensifying MJO activity over these regions. The other involves a high pressure(low pressure) anomaly associated with the North Atlantic SSTA tripole pattern that is transmitted to the mid-and low-latitudes by a circumglobal teleconnection pattern, leading to strong(weak) convective activity of MJO over the Indian Ocean. The above results offer new viewpoints about the process from springtime Atlantic SSTA signals to summertime atmospheric oscillation, and then to the MJO of tropical atmosphere affecting wintertime Pacific ENSO events, which connects different oceans.  相似文献   

19.
Optimal precursor perturbations of El Ni?o in the Zebiak-Cane model were explored for three different cost functions. For the different characteristics of the eastern-Pacific(EP) El Ni?o and the central-Pacific(CP) El Ni?o, three cost functions were defined as the sea surface temperature anomaly(SSTA) evolutions at prediction time in the whole tropical Pacific, the Ni?o3 area, and the Ni?o4 area. For all three cost functions, there were two optimal precursors that developed into El Ni?o events, called Precursor I and Precursor Ⅱ. For Precursor Ⅰ, the SSTA component consisted of an east-west(positive-negative) dipole spanning the entire tropical Pacific basin and the thermocline depth anomaly pattern exhibited a tendency of deepening for the whole of the equatorial Pacific. Precursor I can develop into an EP-El Ni?o event, with the warmest SSTA occurring in the eastern tropical Pacific or into a mixed El Ni?o event that has features between EP-El Ni?o and CP-El Ni?o events. For Precursor Ⅱ, the thermocline deepened anomalously in the eastern equatorial Pacific and the amplitude of deepening was obviously larger than that of shoaling in the central and western equatorial Pacific. Precursor Ⅱ developed into a mixed El Ni?o event. Both the thermocline depth and wind anomaly played important roles in the development of Precursor Ⅰ and Precursor Ⅱ.  相似文献   

20.
Although there has been a considerable amount of research conducted on the East Asian winter-mean climate, subseasonal surface air temperature(SAT) variability reversals in the early and late winter remain poorly understood. In this study,we focused on the recent winter of 2014/15, in which warmer anomalies dominated in January and February but colder conditions prevailed in December. Moreover, Arctic sea-ice cover(ASIC) in September–October 2014 was lower than normal,and warmer sea surface temperature(SST) anomalies occurred in the Ni ?no4 region in winter, together with a positive Pacific Decadal Oscillation(PDO|+) phase. Using observational data and CMIP5 historical simulations, we investigated the PDO|+ phase modulation upon the winter warm Ni ?no4 phase(autumn ASIC reduction) influence on the subseasonal SAT variability of East Asian winter. The results show that, under a PDO|+ phase modulation, warm Ni ?no4 SST anomalies are associated with a subseasonal delay of tropical surface heating and subsequent Hadley cell and Ferrel cell intensification in January–February, linking the tropical and midlatitude regions. Consistently, the East Asian jet stream(EAJS) is significantly decelerated in January–February and hence promotes the warm anomalies over East Asia. Under the PDO|+ phase,the decrease in ASIC is related to cold SST anomalies in the western North Pacific, which increase the meridional temperature gradient and generate an accelerated and westward-shifted EAJS in December. The westward extension of the EAJS is responsible for the eastward-propagating Rossby waves triggered by declining ASIC and thereby favors the connection between ASIC and cold conditions over East Asia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号