首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 185 毫秒
1.
Thermodynamic modelling of metamorphic rocks increases the possibilities of deciphering prograde paths that provide important insights into early orogenic evolution. It is shown that the chloritoid–staurolite transition is not only an indicator of temperature on prograde P–T paths, but also a useful indicator of pressure. The approach is applied to the Moravo‐Silesian eastern external belt of the Bohemian Massif, where metamorphic zones range from biotite to staurolite‐sillimanite. In the staurolite zone, inclusions of chloritoid occur in garnet cores, while staurolite is included at garnet rims and is widespread in the matrix. Chloritoid XFe = 0.91 indicates transition to staurolite at 5 kbar and 550 °C and consequently, an early transient prograde geothermal gradient of 29 °C km?1. The overall elevated thermal evolution is then reflected in the prograde transition of staurolite to sillimanite and in the achievement of peak temperature of 660 °C at a relatively low pressure of 6.5 kbar. To the south and to the west of the studied area, high‐grade metamorphic zones record a prograde path evolution from staurolite to kyanite and development of sillimanite on decompression. Transition of chloritoid to staurolite was reported in two places, with chloritoid XFe = 0.75–0.80, occurring at 8–10 kbar and 560–580 °C, and indicating a transient prograde geothermal gradient of 16–18 °C km?1. These data show variable barric evolutions along strike and across the Moravo‐Silesian domain. Elevated prograde geothermal gradient coincides with areas of Devonian sedimentation and volcanism, and syn‐ to late Carboniferous intrusions. Therefore, we interpret it as a result of heat inherited from Devonian rifting, further fuelled by syntectonic Carboniferous intrusions.  相似文献   

2.
The sequential growth of biotite, garnet, staurolite, kyanite, andalusite, cordierite and fibrolitic sillimanite, their microstructural relationships, foliation intersection axes preserved in porphyroblasts (FIAs), geochronology, P–T pseudosection (MnNCKFMASH system) modelling and geothermobarometry provide evidence for a P–T–t–D path that changes from clockwise to anticlockwise with time for the Balcooma Metamorphic Group. Growth of garnet at ~530 °C and 4.6 kbar during the N–S‐shortening event that formed FIA 1 was followed by staurolite, plagioclase and kyanite growth. The inclusions of garnet in staurolite porphyroblasts that formed during the development of FIAs 2 and 3 plus kyanite growth during FIA 3 reflect continuous crustal thickening from c. 443 to 425 Ma during an Early Silurian Benambran Orogenic event. The temperature and pressure increased during this time from ~530 °C and 4.6 kbar to ~630 °C and 6.2 kbar. The overprinting of garnet‐, staurolite‐ and kyanite‐bearing mineral assemblages by low‐pressure andalusite and cordierite assemblages implies ~4‐kbar decompression during Early Devonian exhumation of the Greenvale Province.  相似文献   

3.
The assumption of oxygen isotope and major element equilibrium during prograde metamorphism was tested using staurolite‐grade pelitic schists that have undergone sequential porphyroblast growth and multiple episodes of recrystallization of matrix minerals and foliation development. Textural relationships are used to infer a metamorphic history that involves garnet growth followed by staurolite growth, with each porphyroblast growth event followed by at least one period of recrystallization of matrix minerals. Conventional geothermobarometry using Qtz–Grt–Pl–Ms–Bt ± St equilibria yields peak P–T conditions of c. 625 °C at 9–11 kbar, consistent with KMnFMASH petrogenetic grid predictions for stability of the assemblage Grt + St + Bt. Qtz–Grt oxygen isotope fractionations yield apparent temperatures of c. 590 °C and Qtz–St fractionations yield an apparent temperature of c. 595 °C. Diffusional modelling indicates that quartz isotopic compositions were reset by c. 30 °C via retrograde isotopic diffusional exchange with micas. The isotopic temperatures appear to be in excellent agreement with one another, and suggest oxygen isotope equilibrium was attained between garnet and staurolite at c. 625 °C. However, the agreement of Qtz–Grt and Qtz–Str isotopic temperatures is not consistent with petrographic observations (garnet grew before staurolite) and petrogenetic grid constraints that predict that garnet grows over a temperature interval of c. 525–550 °C. Given that: (i) oxygen diffusion rates in staurolite and garnet are slow enough to render an individual porphyroblast effectively closed to exchange after it forms; and (ii) matrix minerals are able to exchange isotopes via recrystallization during each period of deformation; garnet and staurolite could not have simultaneously achieved oxygen isotope equilibrium with each other or with minerals in the recrystallized matrix. Thus, the Qtz–Grt fractionations, which yield apparent temperatures that are in apparent agreement with peak metamorphic temperature and apparent temperatures for Qtz–St fractionations, cannot be fractionations resulting from equilibrium isotopic exchange. Instead, they are apparent fractionations between porphyroblasts formed at different temperature and times in the prograde P–T–D path, and quartz that recrystallized and exchanged with micas and plagioclase during several phases of deformation.  相似文献   

4.
Eclogite, felsic orthogneiss and garnet–staurolite metapelite occur in a 5 km long profile in the area of Mi?dzygórze in the Orlica–?nie?nik dome (Bohemian Massif). Petrographic observations and mineral equilibria modelling, in the context of detailed structural work, are used to document the close juxtaposition of high‐pressure and medium‐pressure rocks. The structural succession in all lithologies shows an early shallow‐dipping fabric, S1, that is folded by upright folds and overprinted by a heterogeneously developed subvertical foliation, S2. Late recumbent folds associated with a weak shallow‐dipping axial‐plane cleavage, S3, occur locally. The S1 fabric in the eclogite is defined by alternation of garnet‐rich (grs = 22–29 mol.%) and omphacite‐rich (jd = 33–36 mol.%) layers with oriented muscovite (Si = 3.26–3.31 p.f.u.) and accessory kyanite, zoisite, rutile and quartz, indicating conditions of ~19–22 kbar and ~700–750 °C. The assemblage in the retrograde S2 fabric is formed by amphibole, plagioclase, biotite and relict rutile surrounded by ilmenite and sphene that is compatible with decompression and cooling from ~9 kbar and ~730 °C to 5–6 kbar and 600–650 °C. The S3 fabric contains in addition domains with albite, chlorite, K‐feldspar and magnetite indicating cooling to greenschist facies conditions. The metapelites are composed of garnet, staurolite, muscovite, biotite, quartz, ilmenite and chlorite. Chemical zoning of garnet cores that contain straight ilmenite and staurolite inclusion trails oriented perpendicular to the external S2 fabric indicates prograde growth, from ~5 kbar and ~520 °C to ~7 kbar and ~610 °C, during the formation of the S1 fabric. Inclusion trails parallel with the S2 fabric at garnet and staurolite rims are interpreted to be a continuation of the prograde path to ~7.5 and ~630 °C in the S2 fabric. Matrix chlorite parallel to the S2 foliation indicates that the subvertical fabric was still active below 550 °C. The axial planar S2 fabrics developed during upright folding are associated with retrogression of the eclogite under amphibolite facies conditions, and with prograde evolution in the metapelites, associated with their juxtaposition. The shared part of the eclogite and metapelite PT paths during the development of the subvertical fabric reflects their exhumation together.  相似文献   

5.
The staurolite–biotite–garnet–cordierite–andalusite–plagioclase–muscovite–quartz metapelitic mineral assemblage has been frequently interpreted in the literature as a result of superimposition of various metamorphic events, for example, in polymetamorphic sequences. The assemblage was identified in schists from the Ancasti metamorphic complex (Sierras Pampeanas of Argentina) where previous authors have favoured the polymetamorphic genetic interpretation. A pseudosection in the MnNCKFMASH system for the analysed XRF bulk composition predicts the stability of the sub‐assemblage staurolite–biotite–garnet–plagioclase–muscovite–quartz, and the compositional isopleths also agree with measured mineral compositions. Nevertheless, the XRF pseudosection does not predict any field with staurolite, andalusite and cordierite being stable together. As a result of more detailed modelling making use of the effective bulk composition concept, our interpretation is that the staurolite–biotite–garnet–plagioclase–muscovite–quartz sub‐assemblage was present at peak metamorphic conditions, 590 °C and 5.2 kbar, but that andalusite and cordierite grew later along a continuous P–T path. These minerals are not in mutual contact and are observed in separate microstructural domains with different proportions of staurolite. These domains are explained as a result of local reaction equilibrium subsystems developed during decompression and influenced by the previous peak crystal size and local modal distribution of staurolite porphyroblasts that have remained metastable. Thus, andalusite and cordierite grew synchronously, although in separate microdomains, and represent the decompression stage at 565 °C and 3.5 kbar.  相似文献   

6.
Eclogite boudins occur within an orthogneiss sheet enclosed in a Barrovian metapelite‐dominated volcano‐sedimentary sequence within the Velké Vrbno unit, NE Bohemian Massif. A metamorphic and lithological break defines the base of the eclogite‐bearing orthogneiss nappe, with a structurally lower sequence without eclogite exposed in a tectonic window. The typical assemblage of the structurally upper metapelites is garnet–staurolite–kyanite–biotite–plagioclase–muscovite–quartz–ilmenite ± rutile ± silli‐manite and prograde‐zoned garnet includes chloritoid–chlorite–paragonite–margarite, staurolite–chlorite–paragonite–margarite and kyanite–chlorite–rutile. In pseudosection modelling in the system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O (NCKFMASH) using THERMOCALC, the prograde path crosses the discontinuous reaction chloritoid + margarite = chlorite + garnet + staurolite + paragonite (with muscovite + quartz + H2O) at 9.5 kbar and 570 °C and the metamorphic peak is reached at 11 kbar and 640 °C. Decompression through about 7 kbar is indicated by sillimanite and biotite growing at the expense of garnet. In the tectonic window, the structurally lower metapelites (garnet–staurolite–biotite–muscovite–quartz ± plagioclase ± sillimanite ± kyanite) and amphibolites (garnet–amphibole–plagioclase ± epidote) indicate a metamorphic peak of 10 kbar at 620 °C and 11 kbar and 610–660 °C, respectively, that is consistent with the other metapelites. The eclogites are composed of garnet, omphacite relicts (jadeite = 33%) within plagioclase–clinopyroxene symplectites, epidote and late amphibole–plagioclase domains. Garnet commonly includes rutile–quartz–epidote ± clinopyroxene (jadeite = 43%) ± magnetite ± amphibole and its growth zoning is compatible in the pseudosection with burial under H2O‐undersaturated conditions to 18 kbar and 680 °C. Plagioclase + amphibole replaces garnet within foliated boudin margins and results in the assemblage epidote–amphibole–plagioclase indicating that decompression occurred under decreasing temperature into garnet‐free epidote–amphibolite facies conditions. The prograde path of eclogites and metapelites up to the metamorphic peak cannot be shared, being along different geothermal gradients, of about 11 and 17 °C km?1, respectively, to metamorphic pressure peaks that are 6–7 kbar apart. The eclogite–orthogneiss sheet docked with metapelites at about 11 kbar and 650 °C, and from this depth the exhumation of the pile is shared.  相似文献   

7.
Aluminous reaction textures in orthoamphibole-bearing rocks from the Froland area, Bamble, south Norway, record the prograde pressure–temperature path of the high-grade Kongsbergian Orogeny (c. 1600–1500 Ma) and the low–mid amphibolite facies overprint during the Sveconorwegian Orogeny (c. 1100–1000 Ma). The rocks contain anthophyllite/gedrite, garnet, cordierite, biotite, quartz, andalusite, kyanite, Cr-rich staurolite, tourmaline, ilmenite, rutile and corundum in a variety of parageneses. The P–T path is deduced from petrographic observations, mineral chemistry and zoning, geothermometry and (N)FMASH equilibria. The results indicate the sequence of metamorphic stages outlined below. (a) An M1 phase characterized by the presence of strongly deformed andalusite, gedrite and tourmaline. (b) An M2 phase with the development of kyanite after andalusite and the growth of staurolite associated with strong Na–Al–Mg zoning in orthoamphibole, indicating an increase in pressure (4 8 kbar) and temperature (500° 650°C). (c) Pressure decrease at high P (6–7 kbar) and high T (600–700 °C) during M3a with the production of cordierite ° Corundum between kyanite, staurolite and orthoamphibole and cordierite growth between corundum and orthoamphibole. (d) Temperature increase to 740 ± 60 °C and 7 kbar; static growth of garnet (M3b) at the metamorphic climax (peak T). The heat supply necessary to explain the temperature increase between the M3a and M3b phases is correlated with synkinematic enderbitic–charnockitic and basic intrusions in the Arendal granulite facies terrain. (e) M3b metamorphic conditions were followed by an initial isobaric cooling path (early M4) and late-stage pressure decrease (late M4). Early M4 conditions of 6–7 kbar and 550–600 °C, assuming PH2O < Ptotal are indicated by a retrograde talc–kyanite–quartz assemblage in late quartz–cordierite veins. Late M4 conditions of 3–4 kbar and 420–530 °C are inferred from a kyanite–andalusite–chlorite–quartz assemblage in vein-cordierite. The M1–M3 stages are interpreted as being the result of the same metamorphic P–T path, which was caused by both tectonic and magmatic thickening. A prolonged crustal residence time is proposed for the Bamble sector before uplift during the later stages of M4 occurred.  相似文献   

8.
The Soursat metamorphic complex (SMC) in northwestern Iran is part of the Sanandaj-Sirjan metamorphic belt.The complex is composed of different metamorphic and plutonic rocks,but is dominated by metape...  相似文献   

9.
The thermal histories of Himalayan leucogranites provide critical information for unravelling the post-collisional geodynamics of the Himalayas. The Ramba Dome is located at the intersection of the Tethyan Himalayan leucogranite belt with the Yadong–Gulu Rift and hosts several generations of granitic intrusions. Of these intrusions, the 8-Ma two-mica granites and garnet leucogranite dykes are the youngest of Himalayan leucogranites. In this study, we focus on the carbonaceous staurolite schist located ~1.3 km from the intrusion to constrain the thermal history of the aureole that marked the cessation of leucogranite magmatism. The schist contains euhedral garnet and staurolite porphyroblasts in a foliated matrix of muscovite + biotite + chlorite + plagioclase + quartz + graphite. The staurolite shows minor compositional variations from the inclusion-free core to the inclusion-rich rim. By contrast, the garnet features a distinctive bell-shaped Mn profile and increasing Mg# from the garnet core to rims. In a graphite-bearing equilibrium phase diagram for a modified bulk composition with garnet cores removed, the garnet rim composition suggests a peak temperature of ~550°C, consistent with an independent thermometer based on the Raman spectra of carbonaceous materials (RSCM; 548 ± 9°C). The P–T condition lies within the narrow low-variance field bracketed by the staurolite-in and chlorite-out boundaries, indicating minimal overstepping of staurolite nucleation and growth. On the other hand, the garnet core composition indicates 520°C at 2.5 kbar, about 40°C higher than the predicted garnet-in boundary (~480°C). This apparent temperature overstep corresponds to a small chemical affinity (<5 kJ/mol 12 O) for garnet nucleation, comparable to previous estimates. The sharp boundaries of the high-Ca sector zoning in the core indicate limited diffusion modification (~1.5 Ma if at the peak temperature). The short thermal pulse involves advective heat transfer by leucogranite emplacement, followed by rapid cooling toward the end of Himalayan magmatism and rapid exhumation likely facilitated by the Yadong–Gulu Rift.  相似文献   

10.
A section of the orogenic middle crust (Orlica‐?nie?nik Dome, Polish/Czech Central Sudetes) was examined to constrain the duration and significance of deformation (D) and intertectonic (I) phases. In the studied metasedimentary synform, three deformation events produced an initial subhorizontal foliation S1 (D1), a subsequent subvertical foliation S2 (D2) and a late subhorizontal axial planar cleavage S3 (D3). The synform was intruded by pre‐, syn‐ and post‐D2 granitoid sheets. Crystallization–deformation relationships in mica schist samples document I1–2 garnet–staurolite growth, syn‐D2 staurolite breakdown to garnet–biotite–sillimanite/andalusite, I2–3 cordierite blastesis and late‐D3 chlorite growth. Garnet porphyroblasts show a linear Mn–Ca decrease from the core to the inner rim, a zone of alternating Ca–Y‐ and P‐rich annuli in the inner rim, and a Ca‐poor outer rim. The Ca–Y‐rich annuli probably reflect the occurrence of the allanite‐to‐monazite transition at conditions of the staurolite isograd, whereas the Ca‐poor outer rim is ascribed to staurolite demise. The reconstructed PT path, obtained by modelling the stability of parageneses and garnet zoning, documents near‐isobaric heating from ~4 kbar/485 °C to ~4.75 kbar/575 °C during I1–2. This was followed by a progression to 4–5 kbar/580–625 °C and a subsequent pressure decrease to 3–4 kbar during D2. Pressure decrease below 3 kbar is ascribed to I2–3, whereas cooling below ~500 °C occurred during D3. In the dated mica schist sample, garnet rims show strong Lu enrichment, oscillatory Lu zoning and a slight Ca increase. These features are also related to allanite breakdown coeval with staurolite appearance. As Lu‐rich garnet rims dominate the Lu–Hf budget, the 344 ± 3 Ma isochron age is ascribed to garnet crystallization at staurolite grade, near the end of I1–2. For the dated sample of amphibole–biotite granitoid sheet, a Pb–Pb single zircon evaporation age of 353 ± 1 Ma is related to the onset of plutonic activity. The results suggest a possible Devonian age for D1, and a Carboniferous burial‐exhumation cycle in mid‐crustal rocks that is broadly coeval with the exhumation of neighbouring HP rocks during D2. In the light of published ages, a succession of telescoping stages with time spans decreasing from c. 10 to 2–3 Ma is proposed. The initially long period of tectonic quiescence (I1–2 phase, c. 10 Ma) inferred in the middle crust contrasts with contemporaneous deformation at deeper levels and points to decoupled PTD histories within the orogenic wedge. An elevated gradient of ~30 °C km?1 and assumed high heating rates of c. 20 °C Ma?1 are explained by the protracted intrusion of granitoid sheets, with or without deformation, whereas fast vertical movements (2–3 Ma, D2 phase) in the crust require the activity of deformation phases.  相似文献   

11.
This study focuses on metapelites of the Polinik complex in the Kreuzeck Mts. southeast of the Tauern Window, Eastern Alps, where kyanite — staurolite — garnet gneisses host eclogites and high pressure (HP) amphibolites of the Austroalpine basement. The stable mineral assemblage is garnet — staurolite — biotite — kyanite — quartz. Estimated metamorphic conditions from conventional geothermobarometry are 654±30 °C and 0.9±0.08 GPa, and Average P-T values calculated by THERMOCALC, are 665±15 °C at 0.77±0.09 GPa. Formation of the present mineral association in gneisses is related to the exhumation (D2) stage of hosted eclogites/HP amphibolites within a lateral strike-slip zone.  相似文献   

12.
Thermobarometric data and compositional zoning of garnet show the discontinuities of both metamorphic pressure conditions at peak‐T and P–T paths across the Main Central Thrust (MCT), which juxtaposes the high‐grade Higher Himalayan Crystalline Sequences (HHCS) over the low‐grade Lesser Himalaya Sequences (LHS) in far‐eastern Nepal. Maximum recorded pressure conditions occur just above the MCT (~11 kbar), and decrease southward to ~6 kbar in the garnet zone and northward to ~7 kbar in the kyanite ± staurolite zone. The inferred nearly isothermal loading path for the LHS in the staurolite zone may have resulted from the underthrusting of the LHS beneath the HHCS. In contrast, the increasing temperature path during both loading and decompression (i.e. clockwise path) from the lowermost HHCS in the staurolite to kyanite ± staurolite transitional zone indicates that the rocks were fairly rapidly buried and exhumed. Exhumation of the lowermost HHCS from deeper crustal depths than the flanking regions, recording a high field pressure gradient (~1.2–1.6 kbar km?1) near the MCT, is perhaps caused by ductile extrusion along the MCT, not the emplacement along a single thrust, resulting in the P–T path discontinuities. These observations are consistent with the overall scheme of the model of channel flow, in which the outward flowing ‘HHCS’ and inward flowing ‘LHS’ are juxtaposed against each other and are rapidly extruded together along the ‘MCT’. A rapid exhumation by channel flow in this area is also suggested by a nearly isothermal decompression path inferred from cordierite corona surrounding garnet in gneiss of the upper HHCS. However, peak metamorphic temperatures show a progressive increase of temperature structurally upward (~570–740 °C) near the MCT and roughly isothermal conditions (~710–810 °C) in the upper structural levels of the HHCS. The observed field temperature gradient is much lower than those predicted in channel flow models. However, the discrepancy could be resolved by taking into account heat advection by melt and/or fluid migration, as these can produce low or nearly no field temperature gradient in the exhumed midcrust, as observed in nature.  相似文献   

13.
Kyanite and staurolite occur in the Tananao Metamorphic Complex as submicron inclusions in almandine‐rich garnet from a metamorphosed palaeosol weathering horizon, near Hoping, eastern Taiwan. Quartz, rutile/brookite and zircon are also found as associated submicron inclusions in garnet. Employing the reaction ilmenite+kyanite+quartz=almandine+rutile, and the breakdown of staurolite and quartz as thermobarometers, these submicron‐scale minerals formed at >8.3–8.8 kbar and < 660–690 °C. This P–T estimate is different from that (i.e. 5–7 kbar and 530–550 °C) derived from matrix minerals, which include almandine‐rich garnet, muscovite, chlorite, chloritoid, plagioclase, quartz and ilmenite. These results suggest that submicron inclusions in garnet‐like materials may record portions of the otherwise undocumented prograde path or provide information about previous metamorphic events and thus yield new insights into orogenic belts.  相似文献   

14.
The textural and chemical evolution of allanite and monazite along a well‐constrained prograde metamorphic suite in the High Himalayan Crystalline of Zanskar was investigated to determine the P–T conditions for the crystallization of these two REE accessory phases. The results of this study reveals that: (i) allanite is the stable REE accessory phase in the biotite and garnet zone and (ii) allanite disappears at the staurolite‐in isograd, simultaneously with the occurrence of the first metamorphic monazite. Both monazite and allanite occur as inclusions in staurolite, indicating that the breakdown of allanite and the formation of monazite proceeded during staurolite crystallization. Staurolite growth modelling indicates that staurolite crystallized between 580 and 610 °C, thus setting the lower temperature limit for the monazite‐forming reaction at ~600 °C. Preservation of allanite and monazite inclusions in garnet (core and rim) constrains the garnet molar composition when the first monazite was overgrown and subsequently encompassed by the garnet crystallization front. Garnet growth modelling and the intersection of isopleths reveal that the monazite closest to the garnet core was overgrown by the garnet advancing crystallization front at 590 °C, which establishes an upper temperature limit for monazite crystallization. Significantly, the substitution of allanite by monazite occurs in close spatial proximity, i.e. at similar P–T conditions, in all rock types investigated, from Al‐rich metapelites to more psammitic metasedimentary rocks. This indicates that major silicate phases, such as staurolite and garnet, do not play a significant role in the monazite‐forming reaction. Our data show that the occurrence of the first metamorphic monazite in these rocks was mainly determined by the P–T conditions, not by bulk chemical composition. In Barrovian terranes, dating prograde monazite in metapelites thus means constraining the time when these rocks reached the 600 °C isotherm.  相似文献   

15.
The distribution and textural features of staurolite–Al2SiO5 mineral assemblages do not agree with predictions of current equilibrium phase diagrams. In contrast to abundant examples of Barrovian staurolite–kyanite–sillimanite sequences and Buchan‐type staurolite–andalusite–sillimanite sequences, there are few examples of staurolite–sillimanite sequences with neither kyanite nor andalusite anywhere in the sequence, despite the wide (~2.5 kbar) pressure interval in which they are predicted. Textural features of staurolite–kyanite or staurolite–andalusite mineral assemblages commonly imply no reaction relationship between the two minerals, at odds with the predicted first development (in a prograde sense) of kyanite or andalusite at the expense of staurolite in current phase diagrams. In a number of prograde sequences, the incoming of staurolite and either kyanite, in Barrovian sequences, or andalusite, in Buchan‐type sequences, is coincident or nearly so, rather than kyanite or andalusite developing upgrade of a significant staurolite zone as predicted. The width of zones of coexisting staurolite and either kyanite, in Barrovian sequences, or andalusite, in Buchan‐type sequences, is much wider than predicted in equilibrium phase diagrams, and staurolite commonly persists upgrade until its demise in the sillimanite zone. We argue that disequilibrium processes provide the best explanation for these mismatches. We suggest that kyanite (or andalusite) may develop independently and approximately contemporaneously with staurolite by metastable chlorite‐consuming reactions that occur at lower P–T conditions than the thermodynamically predicted staurolite‐to‐kyanite/andalusite reaction, a process that involves only modest overstepping (<15°C) of the stable chlorite‐to‐staurolite reaction and which is favoured, in the case of kyanite, by advantageous nucleation kinetics. If so, the pressure difference between Barrovian kyanite‐bearing sequences and Buchan andalusite‐bearing sequences could be ~1 kbar or less, in better agreement with the natural record. The unusual width of coexistence of staurolite and Al2SiO5 minerals, in particular kyanite and andalusite, can be accounted for by a combination of lack of thermodynamic driving force for conversion of staurolite to kyanite or andalusite, sluggish dissolution of staurolite, and possibly the absence of a fluid phase to catalyse reaction. This study represents an example of how kinetic controls on metamorphic mineral assemblage development have to be considered in regional as well as contact metamorphism.  相似文献   

16.
Fan‐shaped polycrystalline staurolite porphyroblasts, 3–4 cm in length and 0.5 cm in width, occur together with centimetre‐sized euhedral prismatic staurolite porphyroblasts in pelitic schists of the Littleton Formation on the western overturned limb of the Bolton syncline in eastern Connecticut. The fans consist of intergrown planar splays of [001] elongated prisms, which are crudely radial from a single apex. The apical angles of the radial groupings range up to 70°. The orientations of the individual staurolite prisms are related by a rigid rotation about an axis perpendicular to the fan plane. The zone axes [001] always lie in the plane of the fan. Although the angle between the [100] zone axes of the individual prisms is uniform in each fan, it ranges from +30° to ?30° in different fans. Internally, the fans display: (i) remnants of a passively captured Si foliation defined by disc‐shaped quartz blebs (type 1 inclusions) and layers of very fine carbonaceous material and tabular ilmenite platelets; (ii) bent staurolite blades and undulose extinction along low‐angle (010) subgrain boundaries near the apex of the fans; (iii) wedge‐shaped dilatational zones containing equigranular inclusion‐free quartz, mica and staurolite, and (iv) growth‐related quartz inclusion trails roughly perpendicular to a crystal face (type 2 inclusions). The Si inclusion trails are typically perpendicular to the fan surface, radiate parallel to the blades, and show little to no curvature except at the very edge of the fans where they abruptly curve through nearly 90° into parallelism with an external Se foliation. Careful examination of the three‐dimensional geometry of fans based on U‐stage measurements, serial sections and two‐circle optical goniometric measurements permits a detailed reconstruction of their sequential development. The origin of a fan involves limited intracrystalline deformation and brittle crack dilation, spalling, rotation, and growth of small marginal fragments and of new staurolite along wedge‐shaped zones along the Si inclusion surfaces. Fans preferentially develop in porphyroblasts in which Si is subparallel to the 010 cleavage. These internal features reflect the rotation and deformation of a brittle porphyroblast relative to syn‐growth shear stresses.  相似文献   

17.
Late Variscan granites intruded Brioverian (Upper Proterozoic) and Lower Paleozoic pelitic sequences to the north of the South Armorican shear zone. In the vicinity of the granites, Brioverian garnet micaschists contain pre/syn-S2 assemblages with garnet + staurolite and post-S2 assemblages with staurolite ± andalusite. Andalusite appeared pre/syn- and post-S2 in garnet-free micaschists. The garnets in the Brioverian micaschists are zoned with increasing Mg and decreasing Mn and Ca from core to inner rim. Only poor garnet zonations occur in Paleozoic hornfelses of enclaves in the Rostrenen granite. The results of a microstructurally controlled application of garnet–biotite geothermometers and garnet–plagioclase geobarometers are similar to P–T trends obtained by the Gibbs method of garnet zonation modelling in the system NCFMnMASH. The P–T paths of a pre/syn-S2 regional metamorphism are clockwise between 500–550°C/8 kbar and 700°C/5 kbar, followed by cooling decompression. They contrast with isobaric contact metamorphism between 500 and 700°C at 2.5–3 kbar in Paleozoic hornfelses. This points to a two-stage Variscan metamorphism with a pre-granitic pressure-dominated event in the Brioverian micaschists, followed by Late Variscan contact metamorphism, and suggests the existence of a pre-granitic tectonic boundary between the micaschists and overlying low-grade sequences.  相似文献   

18.
Amphibolite facies mafic rocks that consist mainly of hornblende, plagioclase and quartz may also contain combinations of chlorite, garnet, epidote, and, more unusually, staurolite, kyanite, sillimanite, cordierite and orthoamphiboles. Such assemblages can provide tighter constraints on the pressure and temperature evolution of metamorphic terranes than is usually possible from metabasites. Because of the high variance of most of the assemblages, the phase relationships in amphibolites depend on rock composition, in addition to pressure, temperature and fluid composition. The mineral equilibria in the Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O (NCFMASH) model system demonstrate that aluminium content is critical in controlling the occurrence of assemblages involving hornblende with aluminous minerals such as sillimanite, kyanite, staurolite and cordierite. Except in aluminous compositions, these assemblages are restricted to higher pressures. The iron to magnesium ratio (XFe), and to a lesser extent, sodium to calcium ratio, have important roles in determining which (if any) of the aluminous minerals occur under particular pressure–temperature conditions. Where aluminous minerals occur in amphibolites, the P–T–X dependence of their phase relationships is remarkably similar to that in metapelitic rocks. The mineral assemblages of Fe‐rich amphibolites are typically dominated by garnet‐ and staurolite‐bearing assemblages, whereas their more Mg‐rich counterparts contain chlorite and cordierite. Assemblages involving staurolite–hornblende can occur over a wide range of pressures (4–10 kbar) at temperatures of 560–650 °C; however, except in the more aluminous, iron‐rich compositions, they occupy a narrow pressure–temperature window. Thus, although their occurrence in ‘typical’ amphibolites may be indicative of relatively high pressure metamorphism, in more aluminous compositions their interpretation is less straightforward.  相似文献   

19.
In the low‐pressure, high‐temperature metamorphic rocks of western Maine, USA, staurolite porphyroblasts grew at c. 400 Ma, very late during the regional orogenesis. These porphyroblasts, which preserve straight inclusion trails with small thin‐section‐scale variation in pitch, were subsequently involved in the strain and metamorphic aureole of the c. 370 Ma Mooselookmeguntic pluton. The aureole shows a progressive fabric intensity gradient from effectively zero emplacement‐related deformation at the outer edge of the aureole ~2900 m (map distance) from the pluton margin to the development of a pervasive emplacement‐related foliation adjacent to the pluton. The development of this pervasive foliation spanned all stages of crenulation cleavage development, which are preserved at different distances from the pluton. The spread of inclusion‐trail pitches in the staurolite porphyroblasts, as measured in two‐dimensional (2‐D) thin sections, increases nonlinearly from ~16° to 75° with increasing strain in the aureole. These data provide clear evidence for rotation of the staurolite porphyroblasts relative to one another and to the developing crenulation cleavage. The data spread is qualitatively modelled for both pure and simple shear, and both solutions match the data reasonably well. The spread of inclusion‐trail orientations (40–75°) in the moderately to highly strained rocks is similar to the spread reported in several previous studies. We consider it likely that the sample‐scale spread in these previous studies is also the result of porphyroblast rotation relative to one another. However, the average inclusion‐trail orientation for a single sample may, in at least some instances, reflect the original orientation of the overgrown foliation.  相似文献   

20.
Microprobe analyses of the minerals from an unusual chloritoid-staurolite-garnet (+ muscovite + quartz + ilmenite) assemblage from the sillimanite (fibrolite) zone of Sini, India are presented and the petrological significance of the paragenesis is discussed. The X Mg in the different minerals from the chloritoid-staurolite-bearing rock varies in the order, muscovite > chlorite > chloritoid > staurolite > garnet > ilmenite, and from the associated sillimanite-bearing schists: muscovite > biotite > staurolite > garnet rim > garnet core > ilmenite. A graphical representation of the mineral compositions in an AFM projection displays a consistent topology if the effects of non-AFM components such as Zn in the staurolite and Mn in the garnet are taken into account. Petrographic and mineralogical data are consistent with a prograde formation of the chloritoid-staurolite-garnet assemblage. It is suggested that the paragenesis has been formed at similar PT conditions to the associated sillimanite (fibrolite)-staurolite-garnet-mica schists. These conditions are estimated to be 600–625°C/6±0.5 Kb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号