首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用Zebiak-Cane模式和季节内振荡(Madden-Julian Oscillation,MJO)的参数化表述以及条件非线性最优扰动(Conditional Nonlinear Optimal Perturbation,CNOP)方法,分析了以ENSO事件为基态的CNOP型初始误差的空间结构增长规律。结果表明,参数化的MJO对CNOP型初始误差的发展影响较小,其影响主要是使中东太平洋的海表面温度异常增大。CNOP型初始误差比由MJO不确定性产生的模式误差的影响大,前者可能是造成ENSO事件预报不确定性的主要误差来源。由于CNOP型初始误差的局地性,本结论可用来指导ENSO的目标观测和适应性资料同化。  相似文献   

2.
With the Zebiak-Cane model and a parameterized stochastic representation of intraseasonal forcing, the impact of the uncertainties of Madden-Jullian Oscillation (MJO) on the ??Spring Predictability Barrier (SPB)?? for El Ni?o-Southern Oscillation (ENSO) prediction is studied. The parameterized form of MJO forcing is added physically to the Zebiak-Cane model to obtain the so-called Zebiak-Cane-MJO model and then the effects of initial error, stochastic model error, and their joint error mode on the SPB associated with El Ni?o prediction are estimated. The results show that the model errors caused by stochastic MJO forcing could hardly lead to a significant SPB while initial errors can do; furthermore, the joint error mode of initial error and model error associated with the stochastic MJO forcing can also lead to a significant SPB. These demonstrate that the initial error is probably the main error source of the SPB, which may provide a theoretical foundation of data assimilation for ENSO forecasts.  相似文献   

3.
With the Zebiak-Cane (ZC) model, the initial error that has the largest effect on ENSO prediction is explored by conditional nonlinear optimal perturbation (CNOP). The results demonstrate that CNOP-type errors cause the largest prediction error of ENSO in the ZC model. By analyzing the behavior of CNOPtype errors, we find that for the normal states and the relatively weak E1 Nifio events in the ZC model, the predictions tend to yield false alarms due to the uncertainties caused by CNOP. For the relatively strong E1 Nino events, the ZC model largely underestimates their intensities. Also, our results suggest that the error growth of E1 Nifio in the ZC model depends on the phases of both the annual cycle and ENSO. The condition during northern spring and summer is most favorable for the error growth. The ENSO prediction bestriding these two seasons may be the most difficult. A linear singular vector (LSV) approach is also used to estimate the error growth of ENSO, but it underestimates the prediction uncertainties of ENSO in the ZC model. This result indicates that the different initial errors cause different amplitudes of prediction errors though they have same magnitudes. CNOP yields the severest prediction uncertainty. That is to say, the prediction skill of ENSO is closely related to the types of initial error. This finding illustrates a theoretical basis of data assimilation. It is expected that a data assimilation method can filter the initial errors related to CNOP and improve the ENSO forecast skill.  相似文献   

4.
With the Zebiak-Cane (ZC) model, the initial error that has the largest effect on ENSO prediction is explored by conditional nonlinear optimal perturbation (CNOP). The results demonstrate that CNOP-type errors cause the largest prediction error of ENSO in the ZC model. By analyzing the behavior of CNOP- type errors, we find that for the normal states and the relatively weak EI Nino events in the ZC model, the predictions tend to yield false alarms due to the uncertainties caused by CNOP. For the relatively strong EI Nino events, the ZC model largely underestimates their intensities. Also, our results suggest that the error growth of EI Nino in the ZC model depends on the phases of both the annual cycle and ENSO. The condition during northern spring and summer is most favorable for the error growth. The ENSO prediction bestriding these two seasons may be the most difficult. A linear singular vector (LSV) approach is also used to estimate the error growth of ENSO, but it underestimates the prediction uncertainties of ENSO in the ZC model. This result indicates that the different initial errors cause different amplitudes of prediction errors though they have same magnitudes. CNOP yields the severest prediction uncertainty. That is to say, the prediction skill of ENSO is closely related to the types of initial error. This finding illustrates a theoretical basis of data assimilation. It is expected that a data assimilation method can filter the initial errors related to CNOP and improve the ENSO forecast skill.  相似文献   

5.
Within a theoretical ENSO model, the authors investigated whether or not the errors superimposed on model parameters could cause a significant ``spring predictability barrier' (SPB) for El Nino events. First, sensitivity experiments were respectively performed to the air--sea coupling parameter, α and the thermocline effect coefficient μ. The results showed that the uncertainties superimposed on each of the two parameters did not exhibit an obvious season-dependent evolution; furthermore, the uncertainties caused a very small prediction error and consequently failed to yield a significant SPB. Subsequently, the conditional nonlinear optimal perturbation (CNOP) approach was used to study the effect of the optimal mode (CNOP-P) of the uncertainties of the two parameters on the SPB and to demonstrate that the CNOP-P errors neither presented a unified season-dependent evolution for different El Nino events nor caused a large prediction error, and therefore did not cause a significant SPB. The parameter errors played only a trivial role in yielding a significant SPB. To further validate this conclusion, the authors investigated the effect of the optimal combined mode (i.e. CNOP error) of initial and model errors on SPB. The results illustrated that the CNOP errors tended to have a significant season-dependent evolution, with the largest error growth rate in the spring, and yielded a large prediction error, inducing a significant SPB. The inference, therefore, is that initial errors, rather than model parameter errors, may be the dominant source of uncertainties that cause a significant SPB for El Nino events. These results indicate that the ability to forecast ENSO could be greatly increased by improving the initialization of the forecast model.  相似文献   

6.
The limits of predictability of El Niño and the Southern Oscillation (ENSO) in coupled models are investigated based on retrospective forecasts of sea surface temperature (SST) made with the National Centers for Environmental Prediction (NCEP) coupled forecast system (CFS). The influence of initial uncertainties and model errors associated with coupled ENSO dynamics on forecast error growth are discussed. The total forecast error has maximum values in the equatorial Pacific and its growth is a strong function of season irrespective of lead time. The largest growth of systematic error of SST occurs mainly over the equatorial central and eastern Pacific and near the southeastern coast of the Americas associated with ENSO events. After subtracting the systematic error, the root-mean-square error of the retrospective forecast SST anomaly also shows a clear seasonal dependency associated with what is called spring barrier. The predictability with respect to ENSO phase shows that the phase locking of ENSO to the mean annual cycle has an influence on the seasonal dependence of skill, since the growth phase of ENSO events is more predictable than the decay phase. The overall characteristics of predictability in the coupled system are assessed by comparing the forecast error growth and the error growth between two model forecasts whose initial conditions are 1 month apart. For the ensemble mean, there is fast growth of error associated with initial uncertainties, becoming saturated within 2 months. The subsequent error growth follows the slow coupled mode related the model’s incorrect ENSO dynamics. As a result, the Lorenz curve of the ensemble mean NINO3 index does not grow, because the systematic error is identical to the same target month. In contrast, the errors of individual members grow as fast as forecast error due to the large instability of the coupled system. Because the model errors are so systematic, their influence on the forecast skill is investigated by analyzing the erroneous features in a long simulation. For the ENSO forecasts in CFS, a constant phase shift with respect to lead month is clear, using monthly forecast composite data. This feature is related to the typical ENSO behavior produced by the model that, unlike the observations, has a long life cycle with a JJA peak. Therefore, the systematic errors in the long run are reflected in the forecast skill as a major factor limiting predictability after the impact of initial uncertainties fades out.  相似文献   

7.
热带大气季节内振荡(MJO)实时监测预测业务   总被引:8,自引:2,他引:6  
贾小龙  袁媛  任福民  张勤 《气象》2012,38(4):425-431
参考目前国际上普遍认可的Wheeler和Hendon设计的MJO监测指标,设计了适合开展实时业务监测的MJO计算方法,初步在国家气候中心建立了逐日的MJO实时监测业务,通过与国外同类监测结果的比较分析表明,监测指标可以很好地描述MJO的强度和传播特征,与国外同类监测产品有很好的一致性。另外,引入了两种统计方法进行了针对MJO指数的实时预测,对预测结果的检验表明,对MJO在两周内有较好的预测技巧,其中利用滞后线性回归方法(PCL)的预测技巧要高于自回归模型(ARM)。  相似文献   

8.
Predictions of the Madden?CJulian oscillation (MJO) are assessed using a 10-member ensemble of hindcasts from POAMA, the Australian Bureau of Meteorology coupled ocean?Catmosphere seasonal prediction system. The ensemble of hindcasts was initialised from observed atmosphere and ocean initial conditions on the first of each month during 1980?C2006. The MJO is diagnosed using the Wheeler-Hendon Real-time Multivariate MJO (RMM) index, which involves projection of daily data onto the leading pair of eigenmodes from an analysis of zonal winds at 200 and 850?hPa and outgoing longwave radiation (OLR) averaged about the equator. Forecasts of the two component (RMM1 and RMM2) index are quantitatively compared with observed behaviour derived from NCEP reanalyses and satellite OLR using the bivariate correlation skill, root-mean-square error (RMSE), and measures of the MJO amplitude and phase error. Comparison is also made with a simple vector autoregressive (VAR) prediction model of RMM as a benchmark. Using the full hindcast set, we find that the MJO can be predicted with the POAMA ensemble out to about 21?days as measured by the bivariate correlation exceeding 0.5 and the bivariate RMSE remaining below ~1.4 (which is the value for a climatological forecast). The VAR model, by comparison, drops to a correlation of 0.5 by about 12?days. The prediction limit from POAMA increases by less than 2?days for times when the MJO has large initial amplitude, and has little sensitivity to the initial phase of the MJO. The VAR model, on the other hand, shows a somewhat larger increase in skill for times of strong MJO variability and has greater sensitivity to initial phase, with lower skill for times when MJO convection is developing in the Indian Ocean. The sensitivity to season is, however, greater for POAMA, with maximum skill occurring in the December?CJanuary?CFebruary season and minimum skill in June?CJuly?CAugust. Examination of the MJO amplitudes shows that individual POAMA members have slightly above observed amplitude after a spin-up of about 10?days, whereas examination of the MJO phase error reveals that the model has a consistent tendency to propagate the MJO slightly slower than observed. Finally, an estimate of potential predictability of the MJO in POAMA hindcasts suggests that actual MJO prediction skill may be further improved through continued development of the dynamical prediction system.  相似文献   

9.
This study evaluates performance of Madden–Julian oscillation (MJO) prediction in the Beijing Climate Center Atmospheric General Circulation Model (BCC_AGCM2.2). By using the real-time multivariate MJO (RMM) indices, it is shown that the MJO prediction skill of BCC_AGCM2.2 extends to about 16–17 days before the bivariate anomaly correlation coefficient drops to 0.5 and the root-mean-square error increases to the level of the climatological prediction. The prediction skill showed a seasonal dependence, with the highest skill occurring in boreal autumn, and a phase dependence with higher skill for predictions initiated from phases 2–4. The results of the MJO predictability analysis showed that the upper bounds of the prediction skill can be extended to 26 days by using a single-member estimate, and to 42 days by using the ensemble-mean estimate, which also exhibited an initial amplitude and phase dependence. The observed relationship between the MJO and the North Atlantic Oscillation was accurately reproduced by BCC_AGCM2.2 for most initial phases of the MJO, accompanied with the Rossby wave trains in the Northern Hemisphere extratropics driven by MJO convection forcing. Overall, BCC_AGCM2.2 displayed a significant ability to predict the MJO and its teleconnections without interacting with the ocean, which provided a useful tool for fully extracting the predictability source of subseasonal prediction.  相似文献   

10.
ENSO机理及其预测研究   总被引:19,自引:0,他引:19  
李崇银  穆穆  周广庆 《大气科学》2008,32(4):761-781
资料分析研究表明ENSO(El Ni?o和La Ni?a)实际上是热带太平洋次表层海温距平的循环,而次表层海温距平的循环是赤道西太平洋异常纬向风所驱动的,赤道西太平洋的异常纬向风又主要由异常东亚冬季风所激发。因此可以将ENSO的机理视为主要是由东亚季风异常造成的赤道西太平洋异常纬向风所驱动的热带太平洋次表层海温距平的循环。同时分析还表明,热带西太平洋大气季节内振荡(ISO)的明显年际变化,作为一种外部强迫,对ENSO循环起着十分重要的作用;El Ni?o的发生同大气ISO的明显系统性东传有关。资料分析也表明,El Ni?o持续时间的长短与大气环流异常有密切关系。 用非线性最优化方法研究El Ni?o-南方涛动(ENSO)事件的可预报性问题,揭示了最容易发展成ENSO事件的初始距平模态,即条件非线性最优扰动(CNOP)型初始距平;找出能够导致显著春季可预报性障碍(SPB),且对ENSO预报结果有最大影响的一类初始误差——CNOP型初始误差,进而探讨耦合过程的非线性在SPB研究中的重要作用,提出了关于ENSO事件发生SPB的一种可能机制;用CNOP方法揭示了ENSO强度的不对称现象,探讨ENSO不对称性的年代际变化问题,提出ENSO不对称性年代际变化的一种机制;建立了关于ENSO可预报性的最大可预报时间下界、最大预报误差上界和最大允许初始误差下界的三类可预报性问题,分别从三个方面揭示ENSO事件的春季可预报性障碍现象,比较有效地量化了模式ENSO事件的可预报性。 利用中国科学院大气物理研究所地球流体力学数值模拟国家重点实验室的ENSO预测系统,研究了海洋资料同化在ENSO预测中的应用,该系统可以同时对温、盐剖面资料和卫星高度计资料进行同化。并且在模式中采用次表层上卷海温的非局地参数化方法,可有效地改进ENSO模拟水平。采用集合卡曼滤波(Ensemble Kalman Filter,EnKF)同化方法以及在集合资料同化中“平衡的”多变量模式误差扰动方法为集合预报提供更加精确和协调的初始场,ENSO预报技巧得到提高。  相似文献   

11.
MJO预报研究进展   总被引:9,自引:5,他引:4       下载免费PDF全文
热带大气季节内振荡 (Madden-Julian oscillation,MJO) 是次季节-季节时间尺度气候变率的支配模态。它不仅对低纬度地区天气气候产生重要影响,还能够通过经向传播和激发大气遥相关波列对中高纬度地区产生影响,是延伸期尺度最重要的可预报性来源。因此,MJO预报是次季节-季节气候预测中极为重要的部分,近年来受到国际学术界广泛关注。该文回顾了MJO预报发展历史,概述了当前国际上主要科研业务机构的MJO预报发展现状。目前基于统计方法和气候模式的MJO预报研究取得了较大进展,特别是多个耦合气候模式和一种基于时空投影方法的统计模型均能够显著提升MJO预报技巧 (有效预报可达20 d以上)。该文还介绍了中国气象局国家气候中心在MJO预报技术发展和业务系统研制方面的新进展,当前基于第2代大气环流模式的MJO业务预报填补了国内空白,技巧为16~17 d,而耦合气候模式试验的技巧已达到约20 d。总体来看,利用耦合模式预报MJO是未来发展的主要方向,其中,面向MJO的模式初始化和集合预报新方法研究将是关注重点。  相似文献   

12.
基于MJO的延伸预报   总被引:30,自引:3,他引:27  
丁一汇  梁萍 《气象》2010,36(7):111-122
近10年来,2~4周的延伸预报成为天气和气候业务预报发展的一个方向。目前比较有效的方法是根据季节内振荡的传播,尤其是MJO振荡(30~60天周期)的传播来制作延伸期预报。国际上一些天气-气候预报中通过数年的业务试验已取得了初步结果。作者首先介绍了MJO振荡及季风的季节内振荡(MISO)特征,并从季节内振荡与中纬度相互作用的角度讨论了制作延伸预报的理论依据;进一步对延伸预报的可预报性、预报方法及国内外业务应用进展进行了综述,并以江淮梅雨为例探讨了我国延伸预报的可预报性及信号;最后阐述了延伸预报的发展趋势。  相似文献   

13.
The initial errors constitute one of the main limiting factors in the ability to predict the El Nio–Southern Oscillation(ENSO) in ocean–atmosphere coupled models. The conditional nonlinear optimal perturbation(CNOP) approach was employed to study the largest initial error growth in the El Nio predictions of an intermediate coupled model(ICM). The optimal initial errors(as represented by CNOPs) in sea surface temperature anomalies(SSTAs) and sea level anomalies(SLAs) were obtained with seasonal variation. The CNOP-induced perturbations, which tend to evolve into the La Nia mode, were found to have the same dynamics as ENSO itself. This indicates that, if CNOP-type errors are present in the initial conditions used to make a prediction of El Nio, the El Nio event tends to be under-predicted. In particular, compared with other seasonal CNOPs, the CNOPs in winter can induce the largest error growth, which gives rise to an ENSO amplitude that is hardly ever predicted accurately. Additionally, it was found that the CNOP-induced perturbations exhibit a strong spring predictability barrier(SPB) phenomenon for ENSO prediction. These results offer a way to enhance ICM prediction skill and, particularly,weaken the SPB phenomenon by filtering the CNOP-type errors in the initial state. The characteristic distributions of the CNOPs derived from the ICM also provide useful information for targeted observations through data assimilation. Given the fact that the derived CNOPs are season-dependent, it is suggested that seasonally varying targeted observations should be implemented to accurately predict ENSO events.  相似文献   

14.
数值天气预报和气候预测的可预报性问题   总被引:29,自引:7,他引:29  
考察由初始状态误差和模式中参数误差所引起的预报结果的不确定性。提出了数值天气预报与气候预测中三类可预报性问题,即,最大可预报时间,最大预报误差,初值与参数的最大允许误差。然后将这三类问题化成了对应的非线性优化问题,给出了处理此类非线性优化问题的思路,并且有数值方法对Lorenz模型研究了这三类问题。  相似文献   

15.
Climate variability modes, usually known as primary climate phenomena, are well recognized as the most important predictability sources in subseasonal–interannual climate prediction. This paper begins by reviewing the research and development carried out, and the recent progress made, at the Beijing Climate Center (BCC) in predicting some primary climate variability modes. These include the El Niño–Southern Oscillation (ENSO), Madden–Julian Oscillation (MJO), and Arctic Oscillation (AO), on global scales, as well as the sea surface temperature (SST) modes in the Indian Ocean and North Atlantic, western Pacific subtropical high (WPSH), and the East Asian winter and summer monsoons (EAWM and EASM, respectively), on regional scales. Based on its latest climate and statistical models, the BCC has established a climate phenomenon prediction system (CPPS) and completed a hindcast experiment for the period 1991–2014. The performance of the CPPS in predicting such climate variability modes is systematically evaluated. The results show that skillful predictions have been made for ENSO, MJO, the Indian Ocean basin mode, the WPSH, and partly for the EASM, whereas less skillful predictions were made for the Indian Ocean Dipole (IOD) and North Atlantic SST Tripole, and no clear skill at all for the AO, subtropical IOD, and EAWM. Improvements in the prediction of these climate variability modes with low skill need to be achieved by improving the BCC’s climate models, developing physically based statistical models as well as correction methods for model predictions. Some of the monitoring/prediction products of the BCC-CPPS are also introduced in this paper.  相似文献   

16.
In this study, the retrospective predictions of ENSO (El Niño and Southern Oscillation) were performed for the period from 1881 to 2000 using a hybrid coupled model, which is an ocean general circulation model coupled to a linear statistical atmospheric model, and using a newly developed initialization scheme of SST assimilation by Ensemble Kalman Filter. With the retrospective predictions of the past 120 years, some important issues of ENSO predictability (measured by correlation and RMSE skills of NINO3 sea surface temperature anomaly index) were studied including decadal/interdecadal variations in ENSO predictability and the mechanisms responsible for these variations. Emphasis was placed on investigating the relationship between ENSO predictability and various characteristics of ENSO system such as the signal strength, the irregularity of periodicity, the noise and the nonlinearity. It is found that there are significant decadal/interdecadal variations in the prediction skills of ENSO during the past 120 years. The ENSO events were more predictable during the late nineteenth and the late twentieth centuries. The decadal/interdecadal variations of prediction skills are strongly related to the strength of sea-surface temperature anomaly (SSTA) signals, especially to the strength of SSTA signals at the frequencies of 2–4 year periods. The SSTA persistence, dominated by SSTA signals at frequencies over 4-year periods, also has a positive relationship to prediction skills. The high-frequency noise, on the other hand, has a strong inverse relationship to prediction skills, suggesting that it also probably plays an important role in ENSO predictability.  相似文献   

17.
穆穆  段晚锁  徐辉  王波 《大气科学进展》2006,23(6):992-1002
Considering the limitation of the linear theory of singular vector (SV), the authors and their collaborators proposed conditional nonlinear optimal perturbation (CNOP) and then applied it in the predictability study and the sensitivity analysis of weather and climate system. To celebrate the 20th anniversary of Chinese National Committee for World Climate Research Programme (WCRP), this paper is devoted to reviewing the main results of these studies. First, CNOP represents the initial perturbation that has largest nonlinear evolution at prediction time, which is different from linear singular vector (LSV) for the large magnitude of initial perturbation or/and the long optimization time interval. Second, CNOP, rather than linear singular vector (LSV), represents the initial anomaly that evolves into ENSO events most probably. It is also the CNOP that induces the most prominent seasonal variation of error growth for ENSO predictability; furthermore, CNOP was applied to investigate the decadal variability of ENSO asymmetry. It is demonstrated that the changing nonlinearity causes the change of ENSO asymmetry. Third, in the studies of the sensitivity and stability of ocean’s thermohaline circulation (THC), the nonlinear asymmetric response of THC to finite amplitude of initial perturbations was revealed by CNOP. Through this approach the passive mechanism of decadal variation of THC was demonstrated; Also the authors studies the instability and sensitivity analysis of grassland ecosystem by using CNOP and show the mechanism of the transitions between the grassland and desert states. Finally, a detailed discussion on the results obtained by CNOP suggests the applicability of CNOP in predictability studies and sensitivity analysis.  相似文献   

18.
The impact of initialization and perturbation methods on the ensemble prediction of the boreal summer intraseasonal oscillation was investigated using 20-year hindcast predictions of a coupled general circulation model. The three perturbation methods used in the present study are the lagged-averaged forecast (LAF) method, the breeding method, and the empirical singular vector (ESV) method. Hindcast experiments were performed with a prediction interval of 10 days for extended boreal summer (May–October) seasons over a 20 year period. The empirical orthogonal function (EOF) eigenvectors of the initial perturbations depend on the individual perturbation method used. The leading EOF eigenvectors of the LAF perturbations exhibit large variances in the extratropics. Bred vectors with a breeding interval of 3 days represent the local unstable mode moving northward and eastward over the Indian and western Pacific region, and the leading EOF modes of the ESV perturbations represent planetary-scale eastward moving perturbations over the tropics. By combining the three perturbation methods, a multi-perturbation (MP) ensemble prediction system for the intraseasonal time scale was constructed, and the effectiveness of the MP prediction system for the Madden and Julian oscillation (MJO) prediction was examined in the present study. The MJO prediction skills of the individual perturbation methods are all similar; however, the MP‐based prediction has a higher level of correlation skill for predicting the real-time multivariate MJO indices compared to those of the other individual perturbation methods. The predictability of the intraseasonal oscillation is sensitive to the MJO amplitude and to the location of the dominant convective anomaly in the initial state. The improvement in the skill of the MP prediction system is more effective during periods of weak MJO activity.  相似文献   

19.
运用K均值聚类法将冬季北大西洋及欧洲地区的天气流型分为4种不同的流型。研究了不同阶段8种不同位相的热带季节内振荡(MJO)与这4种流型的年际变化的关系。通过一系列的对比试验发现,K均值聚类法划分得到的不同位相的北大西洋涛动(NAO)的天数能很好地反映NAO指数;无论是在1978~1990年(简称为P1阶段)还是在1991~2010年(简称为P2阶段),MJO第3(6)位相影响NAO正(负)位相;但在P1阶段存在NAO的位相转换,当MJO处于第1位相时,NAO由弱的负位相转换为正位相,当MJO处于第6位相时, NAO由正位相转换为负位相;而在P2阶段NAO并没有明显的位相转换,当MJO处于第1位相时,NAO由偶极子结构转换为波列结构。  相似文献   

20.
A four-dimensional variational (4D-Var) data assimilation method is implemented in an improved intermediate coupled model (ICM) of the tropical Pacific. A twin experiment is designed to evaluate the impact of the 4D-Var data assimilation algorithm on ENSO analysis and prediction based on the ICM. The model error is assumed to arise only from the parameter uncertainty. The “observation” of the SST anomaly, which is sampled from a “truth” model simulation that takes default parameter values and has Gaussian noise added, is directly assimilated into the assimilation model with its parameters set erroneously. Results show that 4D-Var effectively reduces the error of ENSO analysis and therefore improves the prediction skill of ENSO events compared with the non-assimilation case. These results provide a promising way for the ICM to achieve better real-time ENSO prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号