首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report new calculations of the cooling rate of primordial gas by the HD molecule, taking into account its ro-vibrational structure. The HD cooling function is calculated including radiative and collisional transitions for   J ≤ 8  rotational levels, and for the vibrational levels v = 0, 1, 2 and 3. The ro-vibrational level population is calculated from the balance equation assuming steady state. The cooling function is evaluated in the ranges of the kinetic temperatures, T k, from 102 to  2 × 104 K  and the number densities, n H, from 1 to  108 cm−3  . We find that the inclusion of collisional ro-vibrational transitions increases significantly the HD cooling efficiency, in particular for high densities and temperatures. For   n H≳ 105  and   T k∼ 104 K  the cooling function becomes more than an order of magnitude higher than previously reported. We give also the HD cooling rate in the presence of the cosmic microwave radiation field for radiation temperatures of 30, 85 and 276 K (redshifts of 10, 30 and 100). The tabulated cooling functions are available at http://www.cifus.uson.mx/Personal_Pages/anton/DATA/HD_cooling/HD_cool.html . We discuss the relevance to explore the effects of including our results into models and simulations of galaxy formation, especially in the regime when gas cools down from temperatures above ∼3000 K.  相似文献   

2.
We explore the implications of a possible cosmic-ray (CR) background generated during the first supernova explosions that end the brief lives of massive Population III stars. We show that such a CR background could have significantly influenced the cooling and collapse of primordial gas clouds in minihaloes around redshifts of   z ∼ 15–20  , provided the CR flux was sufficient to yield an ionization rate greater than about 10−19 s−1 near the centre of the minihalo. The presence of CRs with energies  ≲107  eV would indirectly enhance the molecular cooling in these regions, and we estimate that the resulting lower temperatures in these minihaloes would yield a characteristic stellar mass as low as  ∼10 M  . CRs have a less-pronounced effect on the cooling and collapse of primordial gas clouds inside more massive dark matter haloes with virial masses  ≳108 M  at the later stages of cosmological structure formation around   z ∼ 10–15  . In these clouds, even without CR flux the molecular abundance is already sufficient to allow cooling to the floor set by the temperature of the cosmic microwave background.  相似文献   

3.
We investigate the properties of the first galaxies at   z ≳ 10  with highly resolved numerical simulations, starting from cosmological initial conditions and taking into account all relevant primordial chemistry and cooling. A first galaxy is characterized by the onset of atomic hydrogen cooling, once the virial temperature exceeds  ≃104 K  , and its ability to retain photoheated gas. We follow the complex accretion and star formation history of a  ≃5 × 107 M  system by means of a detailed merger tree and derive an upper limit on the number of Population III (Pop III) stars formed prior to its assembly. We investigate the thermal and chemical evolution of infalling gas and find that partial ionization at temperatures  ≳104 K  catalyses the formation of  H2  and hydrogen deuteride, allowing the gas to cool to the temperature of the cosmic microwave background. Depending on the strength of radiative and chemical feedback, primordial star formation might be dominated by intermediate-mass Pop III stars formed during the assembly of the first galaxies. Accretion on to the nascent galaxy begins with hot accretion, where gas is accreted directly from the intergalactic medium and shock heated to the virial temperature, but is quickly accompanied by a phase of cold accretion, where the gas cools in filaments before flowing into the parent halo with high velocities. The latter drives supersonic turbulence at the centre of the galaxy and could lead to very efficient chemical mixing. The onset of turbulence in the first galaxies thus likely marks the transition to Pop II star formation.  相似文献   

4.
We find that at redshifts   z ≳ 10, HD  line cooling allows strongly shocked primordial gas to cool to the temperature of the cosmic microwave background (CMB). This temperature is the minimum value attainable via radiative cooling. Provided that the abundance of HD, normalized to the total number density, exceeds a critical level of  ∼10−8  , the CMB temperature floor is reached in a time which is short in comparison to the Hubble time. We estimate the characteristic masses of stars formed out of shocked primordial gas in the wake of the first supernovae, and resulting from the virialization of dark matter haloes during hierarchical structure formation to be  ∼10 M  . In addition, we show that cooling by HD enables the primordial gas in relic H  ii regions to cool to temperatures considerably lower than those reached via H2 cooling alone. We confirm that HD cooling is unimportant in cases where the primordial gas does not go through an ionized phase, as in the formation process of the very first stars in   z ≳ 20  minihaloes of mass  ∼106 M  .  相似文献   

5.
We propose a model for the source of the X-ray background (XRB) in which low-luminosity active nuclei ( L  ∼ 1043 erg s−1) are obscured ( N  ∼ 1023 cm−2) by nuclear starbursts within the inner ∼ 100 pc. The obscuring material covers most of the sky as seen from the central source, rather than being distributed in a toroidal structure, and hardens the averaged X-ray spectrum by photoelectric absorption. The gas is turbulent with velocity dispersion ∼ few × 100 km s−1 and cloud–cloud collisions lead to copious star formation. Although supernovae tend to produce outflows, most of the gas is trapped in the gravity field of the star-forming cluster itself and the central black hole. A hot ( T  ∼ 106 − 107 K) virialized phase of this gas, comprising a few per cent of the total obscuring material, feeds the central engine of ∼ 107 M⊙ through Bondi accretion, at a sub-Eddington rate appropriate for the luminosity of these objects. If starburst-obscured objects give rise to the residual XRB, then only 10 per cent of the accretion in active galaxies occurs close to the Eddington limit in unabsorbed objects.  相似文献   

6.
We discuss the evolution of the magnetic flux density and angular velocity in a molecular cloud core, on the basis of three-dimensional numerical simulations, in which a rotating magnetized cloud fragments and collapses to form a very dense optically thick core of  >5 × 1010 cm−3  . As the density increases towards the formation of the optically thick core, the magnetic flux density and angular velocity converge towards a single relationship between the two quantities. If the core is magnetically dominated its magnetic flux density approaches  1.5( n /5 × 1010 cm−3)1/2 mG  , while if the core is rotationally dominated the angular velocity approaches  2.57 × 10−3 ( n /5 × 1010 cm−3)1/2 yr−1  , where n is the density of the gas. We also find that the ratio of the angular velocity to the magnetic flux density remains nearly constant until the density exceeds  5 × 1010 cm−3  . Fragmentation of the very dense core and emergence of outflows from fragments will be shown in the subsequent paper.  相似文献   

7.
HD molecules can be an important cooling agent of the primordial gas behind the shock waves originated through merging of the dark matter haloes at epochs when the first luminous objects formed. We study the necessary conditions for the HD cooling to switch on in the low-temperature range   T < 200 K  . We show that these conditions are fulfilled in merging haloes with total (dark matter and baryon) mass in excess of   M cr∼ 107[(1 + z )/20]−2 M  . Haloes with masses   M > M cr  may be the sites of low-mass star formation.  相似文献   

8.
Coulomb corrections to the equation of state of degenerate matter are usually neglected in high-temperature regimes, owing to the inverse dependence of the plasma coupling constant, Γ, on temperature. However, nuclear statistical equilibrium matter is characterized by a large abundance by mass of large- Z (iron group) nuclei. It is found that Coulomb corrections to the ion ideal gas equation of state of matter in nuclear statistical equilibrium are important at temperatures T ≲5–10×109 K and densities ρ ≳108 g cm−3. At a temperature T =8.5×109 K and a density ρ =8×109 g cm−3, the neutronization rate is larger by ≳28 per cent when Coulomb corrections are included. However, the conductive velocity of a thermonuclear deflagration wave in C–O drops by ∼16 per cent when Coulomb corrections to the heat capacity are taken into account. The implications for SNIa models and nucleosynthesis, and also for the accretion-induced collapse of white dwarfs, are discussed. Particularly relevant is the result that the minimum density for collapse of a white dwarf to a neutron star is shifted down to 5.5–6×109 g cm−3, a value substantially lower than previously thought.  相似文献   

9.
The origin of rovibrational H2 emission in the central galaxies of cooling flow clusters is poorly understood. Here we address this issue using data from our near-infrared spectroscopic survey of 32 of the most line-luminous such systems, presented in the companion paper by Edge et al.
We consider excitation by X-rays from the surrounding intracluster medium (ICM), ultra-violet (UV) radiation from young stars, and shocks. The   v = 1–0  K -band lines with upper levels within  104 K  of the ground state appear to be mostly thermalized (implying gas densities  ≳105 cm−3  ), with the excitation temperature typically exceeding 2000 K, as found earlier by Jaffe, Bremer & van der Werf. Together with the lack of strong   v = 2–0  lines in the H -band, this rules out UV radiative fluorescence.
Using the cloudy photoionization code, we deduce that the H2 lines can originate in a population of dense clouds, exposed to the same hot  ( T ∼ 50 000 K)  stellar continuum as the lower density gas which produces the bulk of the forbidden optical line emission in the Hα-luminous systems. This dense gas may be in the form of self-gravitating clouds deposited directly by the cooling flow, or may instead be produced in the high-pressure zones behind strong shocks. Furthermore, the shocked gas is likely to be gravitationally unstable, so collisions between the larger clouds may lead to the formation of globular clusters.  相似文献   

10.
The cluster 3C 129 is classified as a rich cluster. An analysis of the properties of the cluster 3C 129 from ROSAT PSPC and HRI, Einstein IPC, and EXOSAT ME observations is presented. The mean temperature from a joint fit of the ROSAT PSPC and EXOSAT ME data is 5.5(±0.2) keV. The luminosity is 0.6×1044 erg s−1 in 0.2–2.4 keV and 2.7×1044 erg s−1 in 0.2–10 keV. We find a cooling flow with a rate of ∼84 M yr−1. The central gas density is 6×10−3 cm−3, and the ICM mass is 3.6×1013 M. The total cluster mass is ∼5×1014 M. The X-ray morphology shows an east–west elongation, which is evidence for a recent merger event. The radio source 3C 129.1 is located near the X-ray centre. Another cluster member galaxy (the radio galaxy 3C 129) is a prototype of head-tailed radio galaxies, and is located in the west part of the cluster. The tail points along the gradient of intracluster gas pressure. There are no significant point X-ray sources associated with the AGNs of the two radio galaxies.  相似文献   

11.
We present J , H and K -band spectroscopy of Cygnus A, spanning 1.0–2.4 μm in the rest-frame and hence several rovibrational H2, H recombination and [Fe  ii ] emission lines. The lines are spatially extended by up to 6 kpc from the nucleus, but their distinct kinematics indicate that the three groups (H, H2 and [Fe  ii ]) are not wholly produced in the same gas. The broadest line, [Fe  ii ] λ 1.644, exhibits a non-Gaussian profile with a broad base (FWHM≃1040 km s−1), perhaps because of the interaction with the radio source. Extinctions to the line-emitting regions substantially exceed earlier measurements based on optical H recombination lines.
Hard X-rays from the quasar nucleus are likely to dominate the excitation of the H2 emission. The results of Maloney, Hollenbach & Tielens are thus used to infer the total mass of gas in H2 v=1–0 S(1)-emitting clouds as a function of radius, for gas densities of 103 and 105 cm−3, and stopping column densities N H=1022–1024 cm−2. Assuming azimuthal symmetry, at least 2.3×108 M of such material is present within 5 kpc of the nucleus, if the line-emitting clouds see an unobscured quasar spectrum. Alternatively, if the bulk of the X-ray absorption to the nucleus inferred by Ueno et al. actually arises in a circumnuclear torus, the implied gas mass rises to ∼1010 M. The latter plausibly accounts for 109 yr of mass deposition from the cluster cooling flow, for which within this radius.  相似文献   

12.
We present the results of a long (∼93 ks) XMM–Newton observation of the bright BL-Lac object  PKS 0548-322 ( z = 0.069)  . Our Reflection Grating Spectrometer (RGS) spectrum shows a single absorption feature at an observed wavelength  λ= 23.33 ± 0.01 Å  , which we interpret as O  vi Kα absorption at   z = 0.058  , i.e. ∼3000 km s−1 from the background object. The observed equivalent width of the absorption line, ∼30 mÅ, coupled with the lack of the corresponding absorption edge in the EPIC pn data, implies a column density of   N O VI∼ 2 × 1016 cm−2  and turbulence with a Doppler velocity parameter   b > 100 km s−1  . Within the limitations of our RGS spectrum, no O  vii or O  v Kα absorption are detected. Under the assumption of ionization equilibrium by both collisions and the extragalactic background, this is only marginally consistent if the gas temperature is  ∼2.5 × 105 K  , with significantly lower or higher values being excluded by our limits on O  v or O  vii . If confirmed, this would be the first X-ray detection of a large amount of intervening warm absorbing gas through O  vi absorption. The existence of such a high column density absorber, much stronger than any previously detected one in O  vi , would place stringent constraints on the large-scale distribution of baryonic gas in the Universe.  相似文献   

13.
Chandra X-ray Observatory observations of the powerful, peculiar radio galaxy 3C 123 have resulted in an X-ray detection of the bright eastern hotspot, with a 1-keV flux density of ∼5 nJy. The X-ray flux and spectrum of the hotspot are consistent with the X-rays being inverse-Compton scattering of radio synchrotron photons by the population of electrons responsible for the radio emission ('synchrotron self-Compton emission') if the magnetic fields in the hotspot are close to their equipartition values. 3C 123 is thus the third radio galaxy to show X-ray emission from a hotspot which is consistent with being in equipartition. Chandra also detects emission from a moderately rich cluster surrounding 3C 123, with L X(2–10 keV)=2×1044 erg s−1 and kT ∼5 keV, and absorbed emission from the active nucleus, with an inferred intrinsic column density of 1.7×1022 cm−2 and an intrinsic 2–10 keV luminosity of 1044 erg s−1.  相似文献   

14.
Using MERLIN with 0.2-arcsec resolution we have observed neutral hydrogen absorption against the central region of the starburst galaxy NGC 3628. The central region resolves into ∼16 continuum components at 1.4 GHz. From comparison with published 15-GHz data, we infer that these components are supernova remnants, although three components may be consistent with a weak active galactic nucleus. Neutral hydrogen absorption is seen against the continuum emission with column densities ∼1022 cm−2. The absorption appears to be from two separate absorbing structures. Assuming a simple morphology, the main velocity structure can be attributed to a ring of neutral gas with a radius 130 pc rotating around a central starburst with a velocity gradient of 1270 km s−1 kpc−1. From simple assumptions, the mass interior to this ring is 0.9 × 109 M. The second absorption structure may represent outflow from the starburst region or a large-scale galactic structure. Alternatively the absorption structure may be non-axisymmetric, such as a bar.  相似文献   

15.
We address the degree and rapidity of generation of small-scale power over the course of structure formation in cosmologies where the primordial power spectrum is strongly suppressed beyond a given wavenumber. We first summarize the situations where one expects such suppressed power spectra and point out their diversity. We then employ an exponential cut-off, which characterizes warm dark matter (WDM) models, as a template for the shape of the cut-off and focus on damping scales ranging from 106 to  109  h −1 M  . Using high-resolution simulations, we show that the suppressed part of the power spectrum is quickly (re)generated and catches up with both the linear and the non-linear evolution of the unsuppressed power spectrum. From   z = 2  onwards, a power spectrum with a primordial cut-off at  109  h −1 M  becomes virtually indistinguishable from an evolved cold dark matter (CDM) power spectrum. An attractor such as that described in Zaldarriaga, Scoccimarro & Hui for power spectra with different spectral indices also emerges in the case of truncated power spectra. Measurements of   z ∼ 0  non-linear power spectra at  ∼100  h −1 kpc  cannot rule out the possibility of linear power spectra damped below  ∼109  h −1 M  . Therefore, WDM or scenarios with similar features should be difficult to exclude in this way.  相似文献   

16.
Galaxy merger simulations have explored the behaviour of gas within the galactic disc, yet the dynamics of hot gas within the galaxy halo have been neglected. We report on the results of high-resolution hydrodynamic simulations of colliding galaxies with metal-free hot halo gas. To isolate the effect of the halo gas, we simulate only the dark matter halo and the hot halo gas over a range of mass ratios, gas fractions and orbital configurations to constrain the shocks and gas dynamics within the progenitor haloes. We find that (i) a strong shock is produced in the galaxy haloes before the first passage, increasing the temperature of the gas by almost an order of magnitude to   T ∼ 106.3 K  . (ii) The X-ray luminosity of the shock is strongly dependent on the gas fraction; it is  ≳1039 erg s−1  for halo gas fractions larger than 10 per cent. (iii) The hot diffuse gas in the simulation produces X-ray luminosities as large as  1042 erg s−1  . This contributes to the total X-ray background in the Universe. (iv) We find an analytic fit to the maximum X-ray luminosity of the shock as a function of merger parameters. This fit can be used in semi-analytic recipes of galaxy formation to estimate the total X-ray emission from shocks in merging galaxies. (v) ∼10–20 per cent of the initial gas mass is unbound from the galaxies for equal-mass mergers, while 3–5 per cent of the gas mass is released for the 3:1 and 10:1 mergers. This unbound gas ends up far from the galaxy and can be a feasible mechanism to enrich the intergalactic medium with metals.  相似文献   

17.
We report here on multifrequency radio observations of the pulsed emission from PSR B1259−63 around the time of the closest approach (periastron) to its B2e companion star. There was a general increase in the dispersion measure (DM) and scatter-broadening of the pulsar, and a decrease in the flux density towards periastron although fluctuation in these parameters were seen on time-scales as short as minutes. The pulsed emission disappeared 16 d prior to periastron and remained undetectable until 16 d after periastron.
The observations are used to determine the parameters of the wind from the Be star. We show that a simple model, in which the wind density varies with radius as r −2, provides a good fit to the data. The wind is highly turbulent with an outer scale of ≤1010 cm and an inner scale perhaps as small as 104 cm, a mean density of ∼106 cm−3 and a velocity of ∼2000 km s−1 at a distance of ∼50 stellar radii. We find a correlation between DM variations and the pulse scattering times, suggesting that the same electrons are responsible for both effects.  相似文献   

18.
RX J1856.5−3754 is one of the brightest nearby isolated neutron stars (INSs), and considerable observational resources have been devoted to it. However, current models are unable to satisfactorily explain the data. We show that our latest models of a thin, magnetic, partially ionized hydrogen atmosphere on top of a condensed surface can fit the entire spectrum, from X-rays to optical, of RX J1856.5−3754, within the uncertainties. In our simplest model, the best-fitting parameters are an interstellar column density   N H≈ 1 × 1020 cm−2  and an emitting area with   R ≈ 17 km  (assuming a distance to RX J1856.5−3754 of 140 pc), temperature   T ≈ 4.3 × 105 K  , gravitational redshift   z g ∼ 0.22  , atmospheric hydrogen column   y H≈ 1 g cm−2  , and magnetic field   B ≈ (3–4) × 1012 G  ; the values for the temperature and magnetic field indicate an effective average over the surface. We also calculate a more realistic model, which accounts for magnetic field and temperature variations over the NS surface as well as general relativistic effects, to determine pulsations; we find that there exist viewing geometries that produce pulsations near the currently observed limits. The origin of the thin atmospheres required to fit the data is an important question, and we briefly discuss mechanisms for producing these atmospheres. Our model thus represents the most self-consistent picture to date for explaining all the observations of RX J1856.5−3754.  相似文献   

19.
We have searched for molecular absorption lines at millimetre wavelengths in 11 gravitational lens systems discovered in the JVAS/CLASS surveys of flat spectrum radio sources. Spectra of only one source 1030+074 were obtained in the 3-, 2- and 1.3-mm bands at the frequencies corresponding to common molecular transitions of CO and HCO+ as continuum emission was not found in any of the other sources. We calculated upper limits to the column density in molecular absorption for 1030+074, using an excitation temperature of 15 K, to be N CO<6.3×1013 cm−2 and N HCO+<1.3×1011 cm−2 , equivalent to hydrogen column density of the order N H<1018 cm−2 , assuming standard molecular abundances. We also present the best upper limits of the continuum at the lower frequency for the other 10 gravitational lenses.  相似文献   

20.
We explore possibilities of collapse and star formation in Population III objects exposed to the external ultraviolet background (UVB) radiation. Assuming spherical symmetry, we solve self-consistently radiative transfer of photons, non-equilibrium H2 chemistry and gas hydrodynamics. Although the UVB does suppress the formation of low-mass objects, the negative feedback turns out to be weaker than previously suggested. In particular, the cut-off scale of collapse drops significantly below the virial temperature T vir∼104 K at weak UV intensities ( J 21≲10−2) , owing to both self-shielding of the gas and H2 cooling. Clouds above this cut-off tend to contract highly dynamically, further promoting self-shielding and H2 formation. For plausible radiation intensities and spectra, the collapsing gas can cool efficiently to temperatures well below 104 K before rotationally supported and the final H2 fraction reaches ∼ 10−3.
Our results imply that star formation can take place in low-mass objects collapsing in the UVB. The threshold baryon mass for star formation is ∼ 109 M for clouds collapsing at redshifts z ≲3 , but drops significantly at higher redshifts. In a conventional cold dark matter universe, the latter coincides roughly with that of the 1 σ density fluctuations. Objects near and above this threshold can thus constitute 'building blocks' of luminous structures, and we discuss their links to dwarf spheroidal/elliptical galaxies and faint blue objects. These results suggest that the UVB can play a key role in regulating the star formation history of the Universe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号