首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Alpi Apuane region of the Northern Apennines appears to have been deformed within a large-scale, low-angle shear zone with an overthrust sense of movement. The presence of mineral stretching lineations, folds progressively rotated into the X strain direction, and schistosities which intersect the nappe boundaries at small angles suggest that a component of shear strain occurred during the deformation. The strain ratios and orientations on two-dimensional sections have been determined from deformed marble breccias, reduction spots, and oncalites. Data from three or more non-perpendicular, non-principal sections have been combined to determine the finite strain ellipsoids at 33 sites within the shear zone.The finite strains have been separated into components of simple shear (γ), longitudinal strain (λ), and volume change (Δ). Algebraic expressions have been derived and graphs constructed which enable components of γ, γ and Δ, and γ and λ to be determined directly from a knowledge of strain ratio (R) within the shear zone and the angle (θ) between the principal strain direction and the shear zone boundary. The Alpi Apuane data indicate that neither simple shear alone, nor simple shear with volume change can satisfactorily explain the observed strains. Consideration of simple shear plus longitudinal strain leads to a general relationship in which the value of shear increases, and the values of longitudinal strain change along a SW-NE profile across the zone. Integration of the resulting shear strain-distance curves gives a minimum displacement of 4 km within the shear zone. Combination of the finite strains with the total time of deformation known from K/Ar studies leads to average strain rates from 1.4 to 9.6 × 10−15 sec−1.A characteristic flat-ramp-flat geometry initially formed the boundaries of what was later to develop into the overthrust shear zone, and deformation of the underlying crystalline basement is believed to have occurred by ductile shearing. Estimates of 21% crustal shortening for the region suggest that the crustal thickness prior to deformation was approximately 20 km in this part of the Northern Apennines.  相似文献   

2.
Khalil Sarkarinejad   《Tectonophysics》2007,442(1-4):49-65
The Ghouri area in southwest Iran exposes a cross section through the Zagros orogenic belt. The area provides an opportunity to investigate quantitative finite strain (Rs), kinematic vorticity number (Wk), proportions of pure shear and simple shear components, sense of shear indicators, steeply plunging lineations, and other moderate to steeply plunging stretching lineations in a transpressional zone. Based on a classical strain analysis of deformed microfossils with oblate strain ellipsoid shape, the Zagros orogenic belt is classified as a pure-shear dominated zone of transpression, but asymmetry of shear-sense indicators suggests that a significant component of simple shear was involved along the deformation zone boundaries. The long axes of the microfossils and stretched pebbles of a deformed conglomerate were used to indicate the stretching direction in this zone. The stretching lineations have a steep to moderate plunge but a constant strain magnitude. Characteristics of dextral inclined transpressional kinematics in the Zagros continental collision zone were quantified and indicate an estimated k-value < 1, an angle between the maximum horizontal axis of the instantaneous strain ellipsoid and the zone boundary (θ = 32°), asymmetrical dextral shear-sense indicators, and an angle of relative plate motion (α = 25°).  相似文献   

3.
“Hard” carbon-based Pennsylvania anthracite was deformed in the steady-state at high temperatures and pressures in a series of coaxial and simple shear experiments designed to constrain the role of shear strain and strain energy in the graphitization process. Graphitization did not occur in coaxially deformed anthracite. Nonetheless, dramatic molecular ordering occurs at T 700°C, with average bireflectance values (%) increasing from 1.68 at 700°C to 6.36 at 900°C. Romin is lowest and bireflectance is highest in zones of high strain (e.g., kink bands) at all temperatures.In anthracite samples deformed in simple shear over the 600°–900°C range at 1.0 GPa, average Romax (%) values increase up to 11.9, whereas average bireflectance (%) values increase up to 10.7. Bireflectance increases with increasing shear strain and locally exceeds 12.5%. Graphitization occurs in several anthracite sample deformed in simple shear at 900°C. X-ray diffraction and transmission electron microscopy confirms the presence of graphite with d002=0.3363 nm. These data strongly suggest that shear strain is the dominant factor responsible for the natural transformation of anthracite to graphite at temperatures far below the 1600°C required for graphitization of other hard carbons in earlier hydrostatic heating experiments at 0.5 GPa pressure.  相似文献   

4.
Individual rounded pebbles of schist or foliated gneiss included in a conglomerate can each be used as strain markers when the conglomerate has been deformed subsequently. The shape, orientation and the attitude of the earlier schistosity within a single pebble allow one to determine the strain ratio assuming passive behaviour during deformation. The method may also be applicable to certain individual lava pillows containing paleo-horizontal “lava-level” markers.  相似文献   

5.
From an empirical model of strain in ductile heterogeneous shear zones simultaneously undergoing a bulk pure shear, we study the influence of the parameters of the deformation on the shape changes of passive initially planar markers and describe a method for determining the finite strain, and even sometimes the instantaneous strain, from these deflected markers.  相似文献   

6.
Particularly well exposed structures in folded and cleaved sedimentary cover immediately overlying a crystalline basement have been studied. Chemical analysis (X.R.F. and microprobe) reveal pressure solution process and give the possibilities of measurement of mass transfer. Study of fluid inclusion veins has determined the temperature pressure conditions: thermal effect of the basement and decrease of temperature and pressure with the age of various synkinematic veins.Characteristic examples of the behaviour of a heterogeneous material during coaxial and non-coaxial deformation are shown:
1. (1) Successive different asymmetrical folds, various cleavages and fractures appear in a shear zone parallel to the main fabric with variations of thickness and rock behaviour.
2. (2) Evolution of cleavage in such a shear zone (with or without slipping) is linked to the relations between the rotation of contraction direction and the rate of the cleavage process.
3. (3) Fold axes changed from the horizontal y direction to the vertical (or E—W transversal to the crystalline massif) X direction, with increase of the (X/Z) and (X/Y) ratios (obtained by fossils and reconstructed fold shape). This strain is always heterogeneous and the most deformed zone frequently evolves to discontinuities with slip.
4. (4) Indentation exists on all scale: from hard object (100 μ, with parenthesis form of pressure solution cleavage apparent on map distribution of various element) to basement block (with variation of strain value in the indented cover).
A model of the evolution of the deformation of sedimentary cover immediately overlying a crystalline basement is given in conclusion.  相似文献   

7.
Theoretical and experimental results show that determination of sense of rigid rotation from drag-patterns of foliation around a rigid spherical inclusion (such as a porphyroblast of garnet) is not as simple as was previously thought. An asymmetric drag-pattern can develop even when the bulk deformation is non-rotational, provided a pre-existing foliation was initially at an angle to the principal axes of strain.In simple shear, the drag-pattern of a pre-existing foliation around the rigid inclusion may belong to any one of the following four types:
1. (1) asymmetric pattern, with the same sense of drag all over the contact.
2. (2) more or less symmetrical pattern, with different senses of drag at different parts of the contact.
3. (3) asymmetrical pattern, with different senses of drag.
4. (4) pattern with inward bowing of foliation (i.e. convex toward the rigid inclusion).
The geometry of the distorted foliation will depend on the amount of simple shear and the initial angle between the pre-existing foliation and the direction of simple shear.If the development of schistosity and the subsequent development of drag around a rigid porphyroblast are results of the same continuous simple-shear movement, a wellpreserved drag-pattern may be utilized to confirm that the schistosity initially developed perpendicular to the maximum finite compressive strain, provided the total deformation is not very large.  相似文献   

8.
Field studies in the Palaeoproterozoïc Daléma basin, Kédougou-Kéniéba Inlier, reveal that the main tectonic feature comprises alternating large shear zones relatively well-separated by weakly deformed surrounding rock domains. Analysis of the various structures in relation to this major D2 phase of Eburnean deformation indicates partitioning of sinistral transpressive deformation between domains of dominant transcurrent and dominant compressive deformation. Foliation is mostly oblique to subvertical and trending 0–30° N, but locally is subhorizontal in some thrust-motion shear zones. Foliation planes of shear zones contain a superimposed subhorizontal stretching lineation which in places cross-cuts a steeply plunging stretching lineation which is clearly expressed in the metasedimentary rocks of weakly deformed surrounding domains. In the weakly deformed domains, the subhorizontal lineation is absent, whereas the oblique to subvertical lineation is more fully developed. Finite strain analyses of samples from surrounding both weakly deformed and shearing domains, using finite strain ratio and the Fry method, indicate flattened ellipsoid fabrics. However, the orientation of the long axis (X) of the finite strain ellipsoid is horizontal in the shear zones and oblique within the weakly deformed domains. Exceptionally, samples from some thrust zones indicate a finite strain ellipsoid in triaxial constriction fabrics with a subhorizontal long axis (X). In addition, the analysis of the strain orientation starting from semi-ductile and brittle structures indicates that a WNE–ESE (130° N to 110° N) orientation of strain shortening axis occurred during the Eburnean D2 deformation.  相似文献   

9.
A relatively undeformed quartzite sample from the Weverton formation was experimentally deformed in plane strain at a temperature of 700° C, a confining pressure of 15 kb and a constant strain rate of 10−6/sec, in a modified Griggs apparatus. A comparison of the known experimental strain for the sample with that measured from deformed rutile needles within the quartz grains shows fairly close agreement between the two values. This confirms the validity of using the needles as intracrystalline strain markers. A comparison has been made of the microstructures and preferred orientations in the experimentally deformed sample and a naturally deformed sample of the same quartzite which has undergone the same strain. The experimentally deformed sample exhibits more inhomogeneous intragranular deformation and a “double funnel” pattern of c axes, while the naturally deformed sample exhibits more homogeneous intragranular deformation and a broad great circle girdle of c axes normal to the foliation and lineation.  相似文献   

10.
Specimens of fine grained micritic limestone were deformed in plane strain geometry in pure shear, a combination of simple and pure shear, and in simple shear. Temperatures were 400° C and 500° C, confining pressure was 100 MPa. In the experiments with a simple shear component strain is concentrated and approximately homogeneous in a 2–3 mm wide shear zone. Shear displacement is documented by marker lines and circles. Shear strain γ varies between 0.84 and 1.56. Strain is recorded by flattening of individual grains, defining a foliation normal to the axis of principal finite shortening ε 1. No twinning is observed on a macroscopic scale. X-ray and neutron diffraction techniques were used to characterize texture before and after deformation. All specimens display strong preferred orientation as documented by 0006, 10¯14 and 11¯220 pole-figures, c axes pole-figures display three maxima in the ε1–ε3 plane. If the axes of the strain ellipsoids are used as a coordinate system textures in pure and simple shear are similar but there is considerable monoclinic distortion in simple shear which is attributed to the noncoaxial strain path.  相似文献   

11.
Two methods are presented whereby finite-strain data may be determined from naturally occurring irregular strain markers (polygons) which are of unknown pre-deformation shape and distribution, without assumptions as to the orientation of the finite-strain ellipse. The first method describes “construction” of ellipses within the polygons, these ellipses providing the basis for analysis by already developed techniques. The second method is a simple extension of Wellman's method, which graphically establishes a strain ellipse from angle and line data.  相似文献   

12.
The structural geometry of a mylonite zone (the Woodroffe thrust) and the country rock in its immediate vicinity is described. Mylonitic schistosity formed axial planar to folds in country rock foliation and contains a mineral elongation lineation which is constant in orientation. However, the fold axes (and associated intersection lineation) spread in orientation within the mylonitic schistosity but with a strong maximum parallel to the mineral elongation lineation. It is demonstrated that the fold axes formed initially at approximately 90° to mineral elongation but rotated with increase in strain towards it. Where this phenomenon was homogeneous on a macroscopic scale, rotation of large blocks of country rock across zones of mylonitization accompanied reorientation of fold axes within the mylonite.The controversy of progressive simple versus progressive pure shear for mylonite zones is discussed in the light of recent fabric and other evidence. It is concluded that the inhomogeneous forms of both progressive pure shear and progressive simple shear played a part and that the former dominated initially but gradually gave way to the latter until brittle rupture with large simple-shear displacements on a zone lubricated by the formation of pseudotachylite, brought granulite over amphibolite facies rocks.  相似文献   

13.
Shear deformation of hot pressed plagioclase–olivine aggregates was studied in the presence and absence of mineral reaction. Experiments were performed at 900 °C, 1500 MPa, and a constant shear strain rate of 5×10−5 s−1 in a solid medium apparatus. Whether the mineral reaction between plagioclase and olivine takes place or not is controlled by choosing the appropriate plagioclase composition; labradorite (An60) does not react, anorthite (An92) does. Labradorite–olivine aggregates deformed without reaction are very strong and show strain hardening throughout the experiment. Syndeformational reaction between olivine and anorthite causes a pronounced strain weakening. The reaction produces fine-grained opx–cpx–spinel aggregates, which accommodate a large fraction of the finite strain. Deformation and reaction are localised within a 0.5-mm-wide sample. Three representative samples were analysed for their fabric anisotropy R* and shape-preferred orientation α* (fabric angle with the shear plane) using the autocorrelation function (ACF). Fabric anisotropy can be calibrated to quantify strain variations across the sheared samples. In the deformed and reacted anorthite–olivine aggregate, there is a strong correlation between reaction progress and strain; regions of large shear strain correspond to regions of maximum reaction progress. Within the sample, the derived strain rate variations range up to almost one order of magnitude.  相似文献   

14.
Experimental shear zones and magnetic fabrics   总被引:1,自引:0,他引:1  
Magnetic fabric analysis has been used as a non-destructive means of detecting petrofabric development during experimentally produced multi-stage, transpressive deformations in ‘shear zones’. Artificial, magnetic-bearing silicate sands and calcite sands, bonded with Portland cement, were deformed at room temperature and at 100 and 150 MPa confining pressure. The slip-rate for the shear zone walls was 0.73 × 10−4 mm s−1 and the maximum shear strains were about 0.38, across zones that were initially about 5 mm thick. The magnetic fabric ellipsoid rapidly spins so that the maximum and intermediate susceptibilities tend to become parallel to the shear zone walls throughout the sheared zone. The ellipsoid becomes increasingly oblate with progressive deformation. However, in all cases, the anisotropy is strongly influenced by the pre-deformation magnetic fabric. During deformation the cement gel collapses so that cataclasis of the mineral grains is suppressed. In the quartz-feldspar aggregates the magnetite's alignment is accommodated by particulate flow (intergranular displacements) of the grains. In the calcite aggregates stronger magnetic fabrics develop due to plastic deformation of calcite grains as well as particulate flow. However, the calcite grain fabrics are somewhat linear (LS) whereas the magnetic fabrics are planar (S >L). The preferred dimensional orientations of magnetite are weak and it is possible that the magnetic fabrics are due to intragranular rearrangements of magnetic domains.The transpressive shear zones are much more efficient than axial-symmetric shortening in the increase of anisotropy of the magnetic fabrics, especially in the case of the calcite aggregates. This suggests that flow laws derived for axial-symmetric shortening experiments may not be appropriate for non-coaxial strain histories such as those of shear zones.  相似文献   

15.
Simple shear of deformable square objects   总被引:1,自引:0,他引:1  
Finite element models of square objects in a contrasting matrix in simple shear show that the objects deform to a variety of shapes. For a range of viscosity contrasts, we catalogue the changing shapes and orientations of objects in progressive simple shear. At moderate simple shear (γ=1.5), the shapes are virtually indistinguishable from those in equivalent pure shear models with the same bulk strain (RS=4), examined in a previous study. In theory, differences would be expected, especially for very stiff objects or at very large strain. In all our simple shear models, relatively competent square objects become asymmetric barrel shapes with concave shortened edges, similar to some types of boudin. Incompetent objects develop shapes surprisingly similar to mica fish described in mylonites.  相似文献   

16.
We test the hypothesis that small ductile shear zones are developed from initial rheologically weak domains. We regard weak domains as ellipsoidal inhomogeneities and apply Eshelby's formalism extended for power-law viscous materials to investigate the kinematics and finite strain evolution of the partitioned flow fields in weak domains. We show that, under an imposed bulk flow field, weak domains, regardless of their initial shapes and orientations, deform into zone-like features at relatively small bulk strains and the deformation paths inside weak domains have all characteristics expected in ductile shear zones. We apply our model to the Cap de Creus area Spain, where abundant small ductile shear zones exist. To relate the fabrics inside these shear zones with the regional deformation, we take a multi-scale approach. We assume that the area contained many weak domains which were randomly shaped and oriented initially and were deformed into shear zones eventually in response to the regional flow. We constrain the regional flow field by the fabric patterns across the area and compute numerically the partitioned flow fields in individual weak domains. The latter are related to fabrics inside shear zones. Our model reproduces first-order features of field-observed fabrics. Although the deformation path of each shear zone was close to simple shearing, the deformation of the whole belt was not. Our approach also resolves the strain compatibility problem for a finite-sized shear zone embedded in a far less deformed country rock.  相似文献   

17.
A ‘soft’ carbon-based high-volatile bituminous (Ro max=0.68%) coal and a ‘hard’ carbon-based Pennsylvania anthracite (Ro max=5.27%) were deformed in the steady state at high temperatures and pressures in a series of coaxial and simple shear deformation experiments designed to constrain the role of shear strain and strain energy in the graphitization process. Tests were carried out in a Griggs-t type solid (NaCl) medium apparatus at T=400–900°C, constant displacement rates of 10-5−10-6 s−1, at confining pressures of 0.6 GPa (coaxial) or 0.8 and 1.0 GPa (simple shear). Coaxial samples were shortened up to 50%, whereas shear strains up to 4.9 were attained in simple shear tests. Experiments lasted up to 118 h. Deformed, high-volatile bituminous coal was extensively coked and no correlation between strain and Ro max, bireflectance or coal texture was observed in any samples. With increasing temperature, Ro max and bireflectance increase in highly anisotropic, coarse mosaic units, but remain essentially constant in the fine granular mosaic, which becomes more abundant at higher temperatures. Graphite-like reflectances are observed locally only in highly reactive macerals and in pyrolytic carbon veins. The degree of molecular ordering attained in deformed bituminous coal samples appears to be determined by the heating-pressurization path rather than by subsequent deformation.Graphitization did not occur in coaxially deformed anthracite. Nonetheless, dramatic molecular ordering occurs at T>700°C, with average bireflectance values increasing from 1.68% at 700°C to 6.36% at 900°C. Anisotropy is greatest in zones of high strain at all temperatures. In anthracite samples deformed in simple shear over the 600–900°C range at 1.0 GPa, the average Ro max values increase up to 11.9%, whereas average bireflectance values increase up to 10.7%. Bireflectance increases with progressive bedding rotation and, thus, with increasing shear strain. Graphitization occurs in several anthracite samples deformed in simple shear at 900°C. X-ray diffraction and transmission electron microscopy of highly anisotropic material in one sample confirms the presence of graphite with d002=0.3363 nm. These data strongly suggest that shear strain, through its tendency to align basic structural units, is the factor responsible for the natural transformation of anthracite to graphite at temperatures far below the 2200°C required in hydrostatic heating experiments at ambient pressure.  相似文献   

18.
江西武功山东区大型韧性剪切带的显微构造特征   总被引:2,自引:0,他引:2       下载免费PDF全文
吉磊 《地质科学》1995,30(1):95-103
武功山东区存在一条大型韧性剪切带。鞘褶皱倒向以及旋转变形构造(如S-C面理组构、旋转碎斑系、雪球构造和粒内显微破裂构造等)显示此剪切带为由南向北逆冲推覆性质。砾石、黄铁矿还原斑和石英斑晶的有限应变分析表明剪切带西段和东段岩石分别以收缩型椭球和压扁型椭球变形为特征。剪切带的主要变形时代是早古生代,可能与早古生代华夏陆块和扬子陆块之间的碰撞造山作用有关。  相似文献   

19.
The Gran Paradiso nappe of the northwestern Alps mostly consists of augen gneisses derived from the Alpine deformation of Permian granitoids. The regional foliation of the augen gneisses developed at lower amphibolite facies conditions and is associated with a top-to-west sense of shear. The granitoid protolith is preserved in the kilometre-scale low-strain domain of the Piantonetto Valley and mainly consists of a porphyritic metagranite including joints, leucocratic dykes and biotite-rich schlieren. In this low-strain domain, the Alpine deformation is mainly localized in discrete ductile shear zones within weakly foliated metagranite. The shear zones mostly dip towards S–SE in a shallow (shear zones 1) to steep inclination (shear zones 2). The shear zones show typical features that can be explained by reactivation of pre-existing joints and planar compositional heterogeneities. Palaeostress and strain analysis indicate that shear zones and the metagranite foliation both formed in the presence of a strong component of flattening. The kinematics of individual shear zones depends on the orientation of the original heterogeneities (acting as nucleation planes) and by partitioning of strain components at the kilometre-scale with concentration of the flattening component to the Piantonetto low-strain domain. The strain geometry and the kinematics of individual shear zones within Piantonetto are not directly connected to the top-to-west sense of tectonic transport observed elsewhere in the Gran Paradiso nappe. However, the bulk stress ellipsoid reconstructed for the incipient shear zone network within very weakly deformed granites is oriented consistently with the bulk direction of tectonic transport within the Gran Paradiso massif. We conclude that the shear zone network of the Piantonetto Valley is representative of the incipient stages of ductile deformation of a granite nappe. Even if its architecture is determined by the arrangement of pre-existing structural and compositional heterogeneities, aspects of the large-scale bulk strain can be derived from this local shear zone pattern.  相似文献   

20.
In situ observations of polycrystalline ice deformed in simple shear between −10 and −1°C are presented. This study illustrates the processes responsible for the deformation, the development of a preferred crystallographic orientation and the formation of a preferred dimensional orientation. Intracrystalline glide on the basal plane, accompanying grain rotations and dynamic recrystallization, helps to accommodate the large intragranular strains. These are the most important mechanisms for crystallographic reorientation and produce a stable fabric that favours glide on the basal plane. Localized kinks, developed in grains unfavourably oriented for easy glide, are unstable and are overprinted by dynamic recrystallization. Dynamic recrystallization is a strain softening process with nucleation occurring in the form of equiaxed grains that grow subparallel to pre-existing grain anisotropies and become elongate during deformation. Plots of grain axial ratio against orientation ( ) indicate a weak shape fabric which does not correspond to the theoretical foliation and elongation for the appropriate increment of shear strain. We argue that estimates of the strain magnitude made from orientation of elongate grains are unreliable in high temperature shear zones. These results are applicable to both geological and glacial shear environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号