首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction-induced weakening of plagioclase–olivine composites   总被引:1,自引:0,他引:1  
The localisation of strain into natural ductile shear zones is often associated with the occurrence of metamorphic reactions. In order to study the effects of solid–solid mineral reactions on plastic deformation of rocks, we have investigated the shear deformation of plagioclase–olivine composites during the reaction plagioclase + olivine → orthopyroxene + clinopyroxene + spinel (± garnet). Microstructures of plagioclase–olivine composites were studied after shear deformation experiments in a Griggs apparatus. Experiments were performed on anorthite–forsterite (An–Fo) and labradorite–forsterite (Lab–Fo) composites at 900 °C, confining pressures between 1000–1600 MPa and with constant shear strain rates of 5 × 10−5 s−1.In absence of reaction, Lab–Fo composites are stronger than pure olivine and labradorite end-members that deform with a high temperature plasticity mechanism. Lab–Fo composites strain–harden due to the inhibition of extensive recrystallisation by interphase boundaries.In An–Fo composites, the reaction induces strain weakening by a switch from dislocation creep to grain size sensitive deformation mechanisms through the development of fine-grained (size < 0.5 μm) polyphase reaction products. Interconnecting layers of reaction products accommodate most of the applied strain by grain size sensitive creep. Recovery processes are pronounced during syndeformational reaction: original anorthite and olivine dynamically recrystallise by subgrain rotation and bulging recrystallisation. Presumably, the dynamic recrystallisation is caused by reduced stress conditions and partitioning of strain and strain rates between the new reaction products and the relict An–Fo grains. The results of our experiments are in good agreement with natural observations of shear localisation in the lower crust and upper mantle, and imply that anhydrous mineral reactions can be important causes for localisation of deformation.  相似文献   

2.
Experimental shear zones and magnetic fabrics   总被引:1,自引:0,他引:1  
Magnetic fabric analysis has been used as a non-destructive means of detecting petrofabric development during experimentally produced multi-stage, transpressive deformations in ‘shear zones’. Artificial, magnetic-bearing silicate sands and calcite sands, bonded with Portland cement, were deformed at room temperature and at 100 and 150 MPa confining pressure. The slip-rate for the shear zone walls was 0.73 × 10−4 mm s−1 and the maximum shear strains were about 0.38, across zones that were initially about 5 mm thick. The magnetic fabric ellipsoid rapidly spins so that the maximum and intermediate susceptibilities tend to become parallel to the shear zone walls throughout the sheared zone. The ellipsoid becomes increasingly oblate with progressive deformation. However, in all cases, the anisotropy is strongly influenced by the pre-deformation magnetic fabric. During deformation the cement gel collapses so that cataclasis of the mineral grains is suppressed. In the quartz-feldspar aggregates the magnetite's alignment is accommodated by particulate flow (intergranular displacements) of the grains. In the calcite aggregates stronger magnetic fabrics develop due to plastic deformation of calcite grains as well as particulate flow. However, the calcite grain fabrics are somewhat linear (LS) whereas the magnetic fabrics are planar (S >L). The preferred dimensional orientations of magnetite are weak and it is possible that the magnetic fabrics are due to intragranular rearrangements of magnetic domains.The transpressive shear zones are much more efficient than axial-symmetric shortening in the increase of anisotropy of the magnetic fabrics, especially in the case of the calcite aggregates. This suggests that flow laws derived for axial-symmetric shortening experiments may not be appropriate for non-coaxial strain histories such as those of shear zones.  相似文献   

3.
Aggregates composed of olivine and magnesiowüstite have been deformed to large strains at high pressure and temperature to investigate stress and strain partitioning, phase segregation and possible localization of deformation in a polyphase material. Samples with 20 vol.% of natural olivine and 80 vol.% of (Mg0.7Fe0.3)O were synthesized and deformed in a gas-medium torsion apparatus at temperatures of 1127 °C and 1250 °C, a confining pressure of 300 MPa and constant angular displacement rates equivalent to constant shear strain rates of 1–3.3 × 10− 4 s− 1. The samples deformed homogeneously to total shear strains of up to γ  15. During constant strain rate measurements the flow stress remained approximately stable at 1250 °C while it progressively decreased after the initial yield stress at the lower temperature. Mechanical data, microstructures and textures indicate that both phases were deforming in the dislocation creep regime. The weaker component, magnesiowüstite, controlled the rheological behavior of the bulk material and accommodated most of the strain. Deformation and dynamic recrystallization lead to grain refinement and to textures that were not previously observed in pure magnesiowüstite and may have developed due to the presence of the second phase. At 1127 °C, olivine grains behaved as semi-rigid inclusions rotating in a viscous matrix. At 1250 °C, some olivine grains remained largely undeformed while deformation and recrystallization of other grains oriented for a-slip on (010) resulted in a weak foliation and a texture typical for pure dry olivine aggregates. Both a-slip and c-slip on (010) were activated in olivine even though the nominal stresses were up to 2 orders of magnitude lower than those needed to activate these slip systems in pure olivine at the same conditions.  相似文献   

4.
The Tin Zebane gabbro–anorthosite layered mafic intrusion represented by plagioclase-rich cumulates forms a set of small lenticular to round-shaped mainly undeformed bodies intruding the Pan-African high-pressure metamorphic rocks from western Hoggar (Tuareg shield, southwest Algeria). The coarse-grained anorthosites are mainly made of slightly zoned bytownite (An86–74) with the higher anorthite content at the cores. Anorthosites are interlayered with leucogabbros and gabbros that show preserved magmatic structures and with olivine gabbros characterised by coronitic textures. The primary assemblage in gabbros includes plagioclase (An93–70), olivine (Fo77–70), zoned clinopyroxene (En43–48Fs05–13Wo41–49 with Al2O3 up to 4.3 wt.%) and rare orthopyroxene (En73–78). Pyroxenes and olivine are commonly surrounded by Ca-amphibole. The olivine–plagioclase contact is usually marked by a fine orthopyroxene–Cr-spinel–amphibole symplectite. A magnesian pigeonite (En70–75Fs19–20Wo6–10) is also involved in corona. The coronitic minerals have equilibrated with the primary mineral rims at PTaH2O conditions of 797 ± 42 °C for aH2O=0.5 and 808 ± 44 °C for aH2O=0.6 at 6.2 ± 1.4 kbar. The Tin Zebane gabbroic rocks are depleted in REE with a positive Eu anomaly, high Sr (>10 * chondrite) and Al2O3 concentrations (17–33%) that support plagioclase accumulation with the extreme case represented by the anorthosites. The REE patterns can be modelised using plagioclase, clinopyroxene and orthopyroxene REE signature, without any role played by accessory minerals. High MgO content points to olivine as a major cumulate phase. Anorthositic gabbros Sr and Nd isotopic initial ratios are typical of a depleted mantle source (Sri=0.70257–0.70278; Nd=+5.9 to +7.8). This isotopic signature is identical to that of the 10-km wide 592 Ma old dyke complex composed of alkaline to peralkaline granites and tholeiitic gabbros and one single bimodal complex can be inferred. The source of the Tin Zebane basic rocks corresponds to the prevalent mantle (PREMA). The Tin Zebane complex was emplaced along the mega-shear zone bounding to the west the Archaean In Ouzzal metacraton. The model proposed suggests a linear lithospheric delamination along this rigid and cold terrane due to post-collisional transtensional movements. This allowed the asthenosphere to rise rapidly and to melt by adiabatic pressure release. Transtension along a rigid body allowed these mantle melts to reach the surface rapidly without any crustal contamination.  相似文献   

5.
Naturally deformed feldspars from foliated granites in a shear zone in Newfoundland exhibit transitional brittle-ductile behaviour. Brittle failure is subordinate to dynamic recrystallization, microcracking, strain enhanced diffusion and reaction enhanced ductility during the deformation. Both plagioclase (An28) and K-feldspar are transformed to albite with increasing strain. Interaction of metamorphic and structural processes at the grain scale is emphasised. This is illustrated with examples of quartz-filled veins (segregation bands) in plagioclase and recrystallized polycrystalline aggregates in plagioclase and K-feldspar. The role of microcracking in plagioclase and of pre-existing internal growth structures in the formation of initially coarse grained recrystallized aggregates from large single crystals is suggested.  相似文献   

6.
Previous experiments by Raleigh et al. (1971) have shown that at strain rates of 10−2.sec−1 to 10−7.sec−1 only slip occurs in dry enstatite at temperatures above 1300°C and 1000°C, respectively.The present experiments have been conducted on polycrystalline enstatite under wet conditions in this regime where enstatite only slips, polygonizes and recrystallizes. Slip occurs throughout the whole regime on the system (100)[001] and at strains greater than 40% the system (010)[001] is observed. Polygonization and intragranular recrystallization begin at about 1300°C and 10−4.sec−1 and the orientation of these neoblasts is host-controlled. At lower strain rates intergranular neoblasts develop and their fabric is one of [100] maximum parallel with σ1 and [010] and [001] girdles in the σ2 = σ3 plane, similar to those in natural enstatite tectonites.Dislocation substructures of experimentally deformed enstatite have been examined by transmission electron microscopy. The samples were deformed within the field in which slip polygonization and recrystallization are the dominant deformation mechanisms. Samples within this regime have microstructures that are characterized by stacking faults and partial dislocations. Under the conditions of steady-state flow in olivine, these microstructures inhibit the operation of recovery mechanisms in enstatite.Other samples deformed within the polygonization and recrystallization field have microstructures that confirm the optical observations of intragranular and intergranular growth of neoblasts. It is suggested that the former result from strain-induced tilt of subrains, whereas the latter may result from bulge nucleation into adjacent subgrains.Mechanical data from constant strain-rate experiments at steady state, stress relaxation and temperature-differential creep tests are best fit to a power-law creep equation with the stress exponent, n~3 and the apparent activation energy for creep, Q~65 kcal/mole. Extrapolation of this equation to a representative natural geologic strain rate of 10−4. sec−1, over the temperature interval 1000–2000°C, gives an effective viscosity range of 1020–1018 poise and stresses in the range of 7-0.1 bar, respectively. Comparison with corrected wet-olivine mechanical data (Carter, 1976) over the same environment indicates that olivine is consistently the weaker of the two minerals and will recrystallize whilst enstatite will only slip and kink, thus accounting for the different habits of olivine and enstatite in ultramafic tectonites.  相似文献   

7.
Tertiary volcanism in the İkizce region at the western edge of the eastern Pontides paleo-magmatic arc is represented by basaltic and andesitic rocks associated with sediments deposited in a shallow basin environment. The basaltic rocks contain plagioclase (An58–80), olivine (Fo82–84), clinopyroxene (Wo44–48En35–42Fs7–17), hornblende (Mg# = 0.68–0.76) phenocrysts, and magnetite microcrysts, whereas the andesitic rocks include plagioclase (An25–61), clinopyroxene (Wo46–49En38–43Fs11–13), hornblende (Mg# = 0.48–0.81), biotite (Mg# = 0.48–0.60) phenocrysts, titanomagnetite, apatite, and zircon microcrysts.Geochemical data indicate magmatic evolution from tholeiitic-alkaline transitional to calc-alkaline characteristics with medium-K contents. The geochemical variation in the rocks can be explained by fractionation of common mineral phases such as clinopyroxene, olivine, hornblende, plagioclase, magnetite, and apatite. The trace elements’ distributions of the volcanic rocks show similarities to those of E-Type MORB, have a shape that is typical of rocks from subduction-related tectonic setting with enrichment in LILE and to a lesser extent in LREE, but depletion in HFSE. The rocks evolved from a parental magma derived from an enriched source formed by subduction induced metasomatism of basaltic rocks, the latter formed through clinopyroxene ± olivine controlled fractionation in a high level magma chamber. The andesitic rocks developed through hornblende ± plagioclase controlled fractionation in shallow level magma chamber(s).  相似文献   

8.
Effect of water and stress on the lattice-preferred orientation of olivine   总被引:6,自引:1,他引:5  
The influence of water and stress on the lattice-preferred orientation (LPO) of olivine aggregates was investigated through large strain, shear deformation experiments at high pressures and temperatures (P = 0.5–2.1 GPa, T = 1470–1570 K) under both water-poor and water-rich conditions. The specimens are hot-pressed synthetic olivine aggregates or single crystals of olivine. Water was supplied to the sample by decomposition of a mixture of talc and brucite. Deformation experiments were conducted up to γ (shear strain)  6 using the Griggs apparatus where water fugacity was up to  13 GPa at the pressure of 2 GPa. The water content in olivine saturated with water increases with increasing pressure and the solubility of water in olivine at P = 0.5–2 GPa was  400–1200 ppm H/Si. Several new types of LPO in olivine are found depending on water content and stress. Samples deformed in water-poor conditions show a conventional LPO of olivine where the olivine [100] axis is subparallel to the shear direction, the (010) plane subparallel to the shear plane (type-A). However, we identified three new types (type-B, C, and E) of LPO of olivine depending on the water content and stress. The type-B LPO of olivine which was found at relatively high stress and/or under moderate to high water content conditions is characterized by the olivine [001] axis subparallel to the shear direction, the (010) plane subparallel to the shear plane. The type-C LPO which was found at low stress and under water-rich conditions is characterized by the olivine [001] axis subparallel to the shear direction, the (100) plane subparallel to the shear plane. The type-E LPO which was found under low stress and moderate water content is characterized by the olivine [100] axis subparallel to the shear direction, the (001) plane subparallel to the shear plane. Observations by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) show that the dislocations in water-poor samples (type-A) are curved and both b =  [100] and b = [001] dislocations have a similar population. Numerous subgrains are seen in water-poor samples in backscattered electron images. In contrast, water-rich samples (both type-B and type-C) contain mostly b = [001] dislocations and dislocations are straight and sub-grain boundaries are rare compared to those in water-poor samples. These observations suggest that (1) dominant slip systems in olivine change with water fugacity (and stress) and (2) grain boundary migration is enhanced in the presence of water. Seismic anisotropy corresponding to the fabrics under water-rich condition is significantly different from that under water-poor condition. Consequently, the relationship between seismic anisotropy and flow geometry in water-rich regions is expected to be different from that in water-poor regions in which type-A fabric dominates (i.e., the lithosphere). A few cases are discussed including anisotropy in the subduction zone and in the deep upper mantle.  相似文献   

9.
Margarite is both abundant and widespread throughout a sequence of interstratified amphibolite, hornblendite, and metamorphosed anorthosite from the upper Lyvia River, central Fiordland. These rock types comprise part of a metamorphosed layered intrusion. Assemblages recorded from these rocks are the product of two distinct phases of metamorphism. First generation assemblages typically comprise plagioclase (An84–96), hornblende, kyanite, and minor corundum. Clinozoisite and chlorite occur as late stage breakdown products of plagioclase and hornblende. Margarite developed during the second phase of metamorphism.Within the corundum-bearing rocks replacement of corundum or plagioclase by margarite can be observed directly. On the basis of these observations the following reaction is evident: 1 corundum+1 anorthite+1H2O=1 margarite.In other assemblages the formation of margarite can be attributed to the breakdown of kyanite and clinozoisite according to the reaction: 2 kyanite+2 clinozoisite=1 margarite+3 anorthite.Margarite is found, however, to contain appreciable amounts of paragonite solid-solution (up to 28 mol%) and plagioclase produced (second generation) is not pure anorthite but of intermediate compositions (An46–62). The reaction therefore involves the introduction of both soda and silica. Margarite also crystallized independently of clinozoisite according to a reaction of the general form: 5 pargasite+17 kyanite+19 H2O =8 margarite+4 chlorite+7 plagioclase.Application of available experimental data suggests that the margarite formed between 550 and 720 ° C up to a maximum pressure of 9.5 kb. Whereas the involvement of albite component (second generation plagioclase) will tend to lower the temperatures and pressures necessary for the occurrence of margarite, this effect is partially offset by the significant amounts of paragonite end-member held within the margarite. An independent estimate of the metamorphic conditions in metapelites suggests that the introduction of albite lowers equilibration temperatures by about 2 ° C for every 1% albite.  相似文献   

10.
Abstract Metre-scale amphibolite boudins in the Cheyenne Belt of south-eastern Wyoming are cut and deformed by shear zones which preserve a full strain transition across 7 cm, from relatively undeformed amphibolite with a relict igneous texture to mylonitic amphibolite with an L-S tectonic fabric. The strain transition is marked by the progressive rotation of amphibole + plagioclase aggregates into parallelism with the shear-zone boundary. An increase in strain magnitude is indicated by development of the tectonic fabric and progressive reduction of amphibole and plagioclase grain size as a result of cataclasis. Bulk chemistry of five samples across a single strain transition shows no significant or systematic variation in major element chemistry except for a minor loss of SiO2, which indicates that the shear zone was a system essentially closed to non-volatile components during metamorphism and deformation. Amphibolites throughout the shear zone consist of amphibole and plagioclase with only minor amounts of quartz, chlorite, epidote, titanite and ilmenite. Within the relatively undeformed amphibolite, amphibole and plagioclase have wide compositional ranges in single thin sections. Amphibole compositions vary from actinolitic hornblende to magnesio-hornblende with increases in Al, Fe, Na and K contents and decreases in Si and Mg that can be modelled as progress along tschermakite, edenite and FeMg-1 exchange vectors from tremolite. Plagioclase ranges from An60 in cores to An30 within grain-boundary domains. With increasing strain magnitude, local variation of amphibole composition decreases as amphibole becomes predominantly magnesio-hornblende. Plagioclase composition range also decreases, although grain-boundary domains still have higher albite content. These petrological data indicate that shear-zone metamorphism was controlled by the magnitude of strain during synmetamorphic deformation. SEM and microprobe imaging indicate that chemical reactions occurred by a dissolution and reprecipitation process during or after cataclastic deformation. This suggests that grain-boundary formation was an important process in the petrological evolution of the shear zone, possibly by providing zones for fluid ingress to facilitate metamorphic reactions. These results highlight the necessity for conducting detailed microstructural evaluation of rocks in order to interpret petrological, isotopic and geochronological data.  相似文献   

11.
A ‘soft’ carbon-based high-volatile bituminous (Ro max=0.68%) coal and a ‘hard’ carbon-based Pennsylvania anthracite (Ro max=5.27%) were deformed in the steady state at high temperatures and pressures in a series of coaxial and simple shear deformation experiments designed to constrain the role of shear strain and strain energy in the graphitization process. Tests were carried out in a Griggs-t type solid (NaCl) medium apparatus at T=400–900°C, constant displacement rates of 10-5−10-6 s−1, at confining pressures of 0.6 GPa (coaxial) or 0.8 and 1.0 GPa (simple shear). Coaxial samples were shortened up to 50%, whereas shear strains up to 4.9 were attained in simple shear tests. Experiments lasted up to 118 h. Deformed, high-volatile bituminous coal was extensively coked and no correlation between strain and Ro max, bireflectance or coal texture was observed in any samples. With increasing temperature, Ro max and bireflectance increase in highly anisotropic, coarse mosaic units, but remain essentially constant in the fine granular mosaic, which becomes more abundant at higher temperatures. Graphite-like reflectances are observed locally only in highly reactive macerals and in pyrolytic carbon veins. The degree of molecular ordering attained in deformed bituminous coal samples appears to be determined by the heating-pressurization path rather than by subsequent deformation.Graphitization did not occur in coaxially deformed anthracite. Nonetheless, dramatic molecular ordering occurs at T>700°C, with average bireflectance values increasing from 1.68% at 700°C to 6.36% at 900°C. Anisotropy is greatest in zones of high strain at all temperatures. In anthracite samples deformed in simple shear over the 600–900°C range at 1.0 GPa, the average Ro max values increase up to 11.9%, whereas average bireflectance values increase up to 10.7%. Bireflectance increases with progressive bedding rotation and, thus, with increasing shear strain. Graphitization occurs in several anthracite samples deformed in simple shear at 900°C. X-ray diffraction and transmission electron microscopy of highly anisotropic material in one sample confirms the presence of graphite with d002=0.3363 nm. These data strongly suggest that shear strain, through its tendency to align basic structural units, is the factor responsible for the natural transformation of anthracite to graphite at temperatures far below the 2200°C required in hydrostatic heating experiments at ambient pressure.  相似文献   

12.
Basaltic andesite flows erupted between 1973 and 1980 from Arenal Volcano contain abundant inclusions of anorthosite, olivine gabbro, and pyroxenites, and megacrysts of olivine and anorthite. The anorthosites with large (20 mm) anorthite grains (An96-92) exhibit deformation twinning and granulation between grain boundaries. Some olivine gabbros have angular clasts of anorthite with bent twins, pyroxene, and olivine in a finer-grained matrix which is distinctly foliated. These textural features suggest that these inclusions were deformed. An exotic (xenolithic) origin is supported in part by the mineral compositions and the estimated temperatures of equilibration: a temperature of about 975° C is obtained by two-pyroxene and Fe-Ti oxide geothermometers for the gabbros, but two-pyroxene temperatures are higher (1064 to 1120° C) for the basaltic andesite host. The olivine gabbro is thought to have crystallized at a pressure between 8.5 and 9.5 kb; whereas the lava phenocrysts crystallized at a much lower pressure of less than 5 kb. These xenoliths probably represent fragments of the lower crust below Arenal volcano. The lava flows show evidence for some contamination especially from fragments of anorthite broken apart from the larger megacrysts and xenoliths. A few phenocrysts of plagioclase in the lava samples have deformation twins. The unusually high Al2O3 content (19.4 to 23.2 wt%) of the lava samples can be attributed directly to the addition of anorthite; in fact the observed chemical variation in the lava flows (the increasing alumina and lime contents with decreasing silica) can be explained by this contamination.  相似文献   

13.
The granitic mylonite zone in the Cretaceous Ryoke metamorphic belt contains deformed amphibolites as thin layers. The amphibolite layers do not exhibit pinch‐and‐swell or boudinage structures, even when contained in a high‐strain granitic mylonite. This mode of occurrence suggests that they were deformed as much as the surrounding granite mylonite. In the highly deformed zone, strongly foliated amphibolites contain Ti‐rich brown amphibole porphyroclasts rimmed by Ti‐poor green amphibole, titanite and chlorite. These porphyroclasts are elongated, forming shear surfaces defined by preferential distribution of the chlorite and titanite. Porphyroclastic plagioclase in the strongly foliated amphibolites consists of two components: an anorthite‐rich core and an anorthite‐poor rim. Based on these observations, the mass‐balanced reaction occurring during deformation is defined as As the reaction products form a weak interconnected matrix, the strain rate of the amphibolites may be controlled by the rate of dissolution–precipitation through fluids. Weakly foliated amphibolites in the low‐strain zone exhibit cataclastic microstructures, whereas the strongly foliated amphibolites do not exhibit such features. These microstructural and chemical changes suggest that high‐strain amphibolites were initially deformed by cataclasis, followed by deformation through metamorphic reactions. During the metamorphism/deformation, old plagioclase grains with high Xan were not stable and dissolved, and new plagioclase grains with low Xan crystallized at the old plagioclase rim. Dissolution of old plagioclase and precipitation of new plagioclase occurred normal to and parallel to the foliation, respectively, reflecting incongruent pressure solution due to differential stress and changes in P–T–H2O conditions. The development of incongruent pressure solution is attributed to increased fluid flux in the strongly foliated amphibolites, as evidenced by the greater abundance of hydration‐reaction products in the strongly foliated amphibolites than in the weakly foliated ones.  相似文献   

14.
J.S. Myers  R.G. Platt 《Lithos》1977,10(1):59-72
Variations of mineral chemistry are described in a layered sheet of partly metamorphosed anorthosite, leucogabbro, gabbro and peridotite. The rocks appear to represent part of two major cycles of crystal deposition in which the anorthite content of plagioclases decreases upwards from An98?94 to An90?75 and hornblendes show upward iron enrichment. The composition of corona minerals formed by subsolidus reaction between plagioclase and olivine in gabbro, suggests that these coronas formed under pressures of between 6 and 9 kb and at a temperature of about 800°C during a late magmatic or early metamorphic stage.  相似文献   

15.
Chemical diffusion of Pb has been measured in K-feldspar (Or93) and plagioclase of 4 compositions ranging from An23 to An93 under anhydrous, 0.101 MPa conditions. The source of diffusant for the experiments was a mixture of PbS powder and ground feldspar of the same composition as the sample. Rutherford Backscattering (RBS) was used to measure Pb diffusion profiles. Over the temperature range 700–1050°C, the following Arrhenius relations were obtained (diffusivities in m2s-1):Oligoclase (An23): Diffusion normal to (001): log D = ( – 6.84 ± 0.59) – [(261 ± 13 kJ mol –1)/2.303RT]Diffusion normal to (010): log D = ( – 3.40 ± 0.50) – [(335 ± 11 kJ mol –1)/2.303RT]Andesine (An43): Diffusion normal to (001): log D = ( – 6.73 ± 0.54) – [(266 ± 12 kJ mol –1)/2.303RT] Diffusion normal to (010) appears to be only slightly slower than diffusion normal to (001) in andesine.Labradorite (An67): Diffusion normal to (001): log D = ( – 7.16 ± 0.61) – [(267 ± 13 kJ mol –1)/2.303RT] Diffusion normal to (010) is slower by 0.7 log units on average.Anorthite Diffusion normal to (010): log D = ( – 5.43 ± 0.48) – [(327 ± 11 kJ mol –1)/2.303RT]K-feldspar (Or93): Diffusion normal to (001): log D = ( – 4.74 ± 0.52) – [(309 ± 16 kJ mol –1)/2.303RT] Diffusion normal to (010): log D = ( – 5.99 ± 0.51) – [(302 ± 11 kJ mol –1)/2.303RT]In calcic plagioclase, Pb uptake is correlated with a reduction of Ca, indicating the involvement of PbCa exchange in chemical diffusion. Decreases of Na and K concentrations in sodic plagioclase and K-feldspar, respectively, are correlated with Pb uptake and increase in Al concentration (measured by resonant nuclear reaction analysis), suggesting a coupled process for Pb exchange in these feldspars. These results have important implications for common Pb corrections and Pb isotope systematics. Pb diffusion in apatite is faster than in the investigated feldspar compositions, and Pb diffusion rates in titanite are comparable to both K-feldspar and labradorite. Given these diffusion data and typical effective diffusion radii for feldspars and accessory minerals, we may conclude that feldspars used in common Pb corrections are in general less inclined to experience diffusion-controlled Pb isotope exchange than minerals used in U-Pb dating that require a common Pb correction.  相似文献   

16.
西藏普兰地幔橄榄岩中尖晶石内的钙长石包裹体及其成因   总被引:6,自引:5,他引:1  
郭国林  徐向珍  李金阳 《岩石学报》2011,27(11):3197-3206
西藏普兰超镁铁岩体之东南缘与玄武岩接触界线附近的地幔橄榄岩中除有粒状半自形的钙长石产出外,还在尖晶石中发现有呈蠕虫状、浑圆状的钙长石包裹体存在.研究发现两种产状的钙长石An值都大于95且均无环带构造,说明钙长石从高Ca/Al比值的熔体中结晶时具有结晶时间短、结晶速度快的特点,可能形成于地壳较浅部位.从化学成分来看,包裹体形态的钙长石具有较高的Cr2O3含量,其寄主矿物尖晶石的Cr#值低且TiO2含量比深海橄榄岩中的尖晶石低得多,推断钙长石包裹体与寄主矿物尖晶石是在液相条件下几乎同时结晶的产物.综合研究表明钙长石包裹体的成因可能是玄武岩熔体在地壳较浅部位侵入方辉橄榄岩时,高温的玄武质熔体提供热源,使得方辉橄榄岩中尖晶石内的Cpx+ Opx细粒矿物包裹体在高温环境下发生熔融,发生Opx+ Cpx+ Sp→Ol+ Pl的反应,由于这种情况下尖晶石有剩余,故新生成的橄榄石和钙长石矿物仍然包裹于尖晶石内,从而形成尖晶石内部呈蠕虫状的钙长石包裹体.  相似文献   

17.
The orientation of the optical indicating surface of vitrinite in reflected light has been determined following deformation at 350 and 500°C, confining pressures of 500 and 800 MPa and a strain rate of 10−5 s−1. High temperature and large strain have facilitated reorientation of the indicating surface, increase in anisotropy (bireflectance) and an increase in maximum vitrinite reflectance. In a specimen deformed at 500°C and 23% axial strain the maximum vitrinite reflectance has been reoriented more than 70° from close to parallel to σ1 in the undeformed state to perpendicular to σ1 following deformation. Orientation of the optical indicating surface of some of the deformed specimens suggests the orientation of the maximum reflectance is a composite product of the original orientation of the indicating surface and an orientation produced during deformation.  相似文献   

18.
A generalized reaction is presented to account for garnet formation in a variety of Adirondack metaigneous rocks. This reaction, which is the sum of five partial reactions written in aluminum-fixed frames of reference, is given by: 4(y+1+w)Anorthite+4k(y+1+2w)Olivine +4(1–k)(y+1+2w)Fe-oxide+(8(y+1) –4k(y+1+2w))Orthopyroxene = 2(y+1)Garnet +2(y+1+2w)Clinopyroxene+4wSpinel where y is a function of plagioclase composition, k refers to the relative amounts of olivine and Fe-oxide participating in the reaction, and w is a measure of silicon mobility. When mass balanced for Mg and Fe, this reaction is found to be consistent with analyzed mineral compositions in a wide range of Adirondack metaigneous rocks. The reaction applies equally well whether the garnets were formed directly from the rectants given above or went through an intermadiate stage involving the formation of spinel, orthopyroxene, and clinopyroxene.The actual reactions which have produced garnet in both undersaturated and quartz-bearing rocks are special cases of the above general reaction. The most important special cases appear to be those in which the reactants include either olivine alone (k=1) or Fe-oxide alone (k=0). Silicon is relatively immobile (w =2) in olivine bearing, magnesium-rich rocks (k1), and this correlates with the increased intensity in spinel clouding of plagioclase in these rocks. Silicon mobility apparently increases in the more iron-rich rocks, which also tend to contain clear or lightly clouded plagioclase. In all the rocks studied the most common composition of metamorphic plagioclase is close to An33 (i.e., y=1). Plagioclase of lower anorthite content may be too sodic to participate in garnet formation at the P-T conditions involved.Published by permission of the Director, New York State Museum and Science Service; Journal Series No. 282  相似文献   

19.
Olivine metagabbros from the Adirondacks usually contain both clear and spinel-clouded plagioclase, as well as garnet. The latter occurs primarily as the outer rim of coronas surrounding olivine and pyroxene, and less commonly as lamellae or isolated grains within plagioclase. The formation of garnet and metamorphic spinel is dependent upon the anorthite content of the plagioclase. Plagioclase more sodic than An38±2 does not exhibit spinel clouding, and garnet rarely occurs in contact with plagioclase more albitic than An36±4. As a result of these compositional controls, the distribution of spinel and garnet mimics and visually enhances original igneous zoning in plagioclase. Most features of the arrangement of clear (unclouded) plagioclase, including the shells or moats of clear plagioclase which frequently occur inside the garnet rims of coronas, can be explained on the basis of igneous zoning. The form and distribution of the clear zones may also be affected by the metamorphic reactions which have produced the coronas, and by redistribution of plagioclase in response to local volume changes during metamorphism.Authors listed alphabeticallyPublished by permission of the Director, New York State Museum, Journal Series Number 299  相似文献   

20.
Rodrigues Island is composed of a differentiated series of transitional-mildly alkaline olivine basalts. The lavas contain phenocrysts of olivine (Fo88–68)±plagioclase (An73–50), together with a megacryst suite involving olivine, plagioclase, kaersutite, clinopyroxene, apatite, magnetite and hercynite-rich spinels. Troctolitic-anorthositic gabbro xenoliths are widely dispersed throughout the lavas and are probably derived from the upper parts of an underlying layered complex: the megacrysts may originate from coarse, easily disaggregated differentiates near the top of this body.Modelling of major and trace element data suggests that the majority of chemical variation in the lavas results from up to 45% fractionation of olivine, clinopyroxene, plagioclase and magnetite at low pressures, in the ratio 2035396. The clinopyroxene-rich nature of this extract assemblage is significantly different to that of the xenoliths, and suggests that clinopyroxene-rich gabbros and/or ultrabasic rocks may lie at greater depth.Sr and Nd isotopic data (87Sr/86Sr 0.70357–070406,143Nd/144Nd 0.51283–0.51289) indicate a mantle source with relative LREE depletion, and emphasise an unusual degree of uniformity in Indian Ocean island sources. A small group of lavas with strong HREE enrichment suggest a garnet-poor source for these, while high overall Al2O3/ CaO ratios imply high clinopyroxene/garnet ratios in refractory residua.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号