首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Glide systems of hematite single crystals in deformation experiments   总被引:1,自引:0,他引:1  
The critical resolved shear stresses (CRSSs) of hematite crystals were determined in compression tests for r-twinning, c-twinning and {a}<m>-slip in the temperature range 25 °C to 400 °C, at 400 MPa confining pressure, and a strain rate of 10− 5 s− 1 by Hennig-Michaeli, Ch., Siemes, H., 1982. Experimental deformation of hematile crstals betwen 25 °C and 400 °C at 400 MPa confining pressure. In: Schreyer, W. (Ed.) High Pressure Research in Geoscience, Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, p. 133–150. In the present contribution newly performed experiments on hematite single crystals at temperatures up to 800 °C at strain rates of 10− 5 s− 1 and 300 MPa confining pressure extends the knowledge about the CRSS of twin and slip modes. Optical observations, neutron diffraction goniometry, SEM forescatter electron images and electron backscatter diffraction are applied in order to identify the glide modes. Both twinning systems and {a}<m>-slip were confirmed by these methods. Besides the known glide systems the existence of the (c)<a>-slip system could be stated. Mechanical data establish that the CRSS of r-twinning decreases from 140 MPa at 25 °C to  5 MPa at 800 °C and for {a}<m>-slip from > 560 MPa at 25 °C to  40 MPa at 700 °C. At room temperature the CRSS for c-twinning is around 90 MPa and at 600 °C  60 MPa. The data indicate that the CRSSs above 200 °C seem to be between the values for r-twinning and {a}<m>-slip. For (c)<a>-slip only the CRSS at 600 °C could be evaluated to  60 MPa. Exact values are difficult to determine because other glide systems are always simultaneously activated.  相似文献   

2.
The electron backscattering diffraction technique (EBSD) was used to analyze bulging recrystallization microstructures from naturally and experimentally deformed quartz aggregates, both of which are characterized by porphyroclasts with finely serrated grain boundaries and grain boundary bulges set in a matrix of very fine recrystallized grains. For the Tonale mylonites we investigated, a temperature range of 300–380 °C, 0.25 GPa confining pressure, a flow stress range of ~ 0.1–0.2 GPa, and a strain rate of ~ 10− 13 s− 1 were estimated. Experimental samples of Black Hills quartzite were analyzed, which had been deformed in axial compression at 700 °C, 1.2–1.5 GPa confining pressure, a flow stress of ~ 0.3–0.4 GPa, a strain rate of ~ 10− 6 s− 1, and to 44% to 73% axial shortening. Using orientation imaging we investigated the dynamic recrystallization microstructures and discuss which processes may contribute to their development. Our results suggest that several deformation processes are important for the dismantling of the porphyroclasts and the formation of recrystallized grains. Grain boundary bulges are not only formed by local grain boundary migration, but they also display a lattice misorientation indicative of subgrain rotation. Dynamic recrystallization affects especially the rims of host porphyroclasts with a hard orientation, i.e. with an orientation unsuitable for easy basal slip. In addition, Dauphiné twins within porphyroclasts are preferred sites for recrystallization. We interpret large misorientation angles in the experimental samples, which increase with increasing strain, as formed by the activity of fluid-assisted grain boundary sliding.  相似文献   

3.
It is now admitted that the high strength of the subcontinental uppermost mantle controls the first order strength of the lithosphere. An incipient narrow continental rift therefore requires an important weakening in the subcontinental mantle to promote lithosphere-scale strain localisation and subsequent continental break-up. Based on the classical rheological layering of the continental lithosphere, the origin of a lithospheric mantle shear/fault zone has been attributed to the existence of a brittle uppermost mantle. However, the lack of mantle earthquakes and the absence of field occurrences in the mantle fault zone led to the idea of a ductile-related weakening mechanism, instead of brittle-related, for the incipient mantle strain localisation. In order to provide evidence for this mechanism, we investigated the microstructures and lattice preferred orientations of mantle rocks in a kilometre-scale ductile strain gradient in the Ronda Peridotites (Betics cordillera, Spain). Two main features were shown: 1) grain size reduction by dynamic recrystallisation is found to be the only relevant weakening mechanism responsible for strain localisation and 2), with increasing strain, grain size reduction is coeval with both the scattering of orthopyroxene neoblasts and the decrease of the olivine fabric strength (LPO). These features allow us to propose that grain boundary sliding (GBS) partly accommodates dynamic recrystallisation and subsequent grain size reduction.A new GBS-related experimental deformation mechanism, called dry-GBS creep, has been shown to accommodate grain size reduction during dynamic recrystallisation and to induce significant weakening at low temperatures (T < 800 °C). The present microstructural study demonstrates the occurrence of the grain size sensitive dry-GBS creep in natural continental peridotites and allows us to propose a new rheological model for the subcontinental mantle. During dynamic recrystallisation, the accommodation of grain size reduction by three competing deformation mechanisms, i.e., dislocation, diffusion and dry-GBS creeps, involves a grain size reduction controlled by the sole dislocation creep at high temperatures (> 800 °C), whereas dislocation creep and dry-GBS creep, are the accommodating mechanisms at low temperatures (< 800 °C). Consequently, weakening is very limited if the grain size reduction occurs at temperatures higher than 800 °C, whereas a large weakening is expected in lower temperatures. This large weakening related to GBS creep would occur at depths lower than 60 km and therefore provides an explanation for ductile strain localisation in the uppermost continental mantle, thus providing an alternative to the brittle mantle.  相似文献   

4.
Deformation experiments have been carried out to investigate the effect of dynamic recrystallisation on crystallographic preferred orientation (CPO) development. Cylindrical samples of natural single crystals of quartz were axially deformed together with 1 vol.% of added water and 20 mg of Mn2O3 powder in a Griggs solid medium deformation apparatus in different crystallographic orientations with compression direction: (i) parallel to <c>, (ii) at 45° to <c> and 45° to <a> and (iii) parallel to <a>. The experiments were performed at a temperature of 800 °C, a confining pressure of 1.2 GPa, a strain rate of  10− 6 s− 1, to bulk finite strains of  14–36%. The deformed samples were analysed in detail using optical microscopy, electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). Two different microstructural domains were distinguished in the deformed samples: (i) domains with undulatory extinction and deformation lamellae, and (ii) domains with new recrystallised grains. Within the domains of undulatory extinction, crystal-plastic deformation caused gradual rotations of the crystal lattice up to  30° away from the host orientation. New recrystallised grains show a strong CPO with c-axis maxima at  45° to the compression direction. This is the case in all experiments, irrespective of the initial crystallographic orientation. The results show that c-axes are not continuously rotated towards the new maxima. The new grains thus developed through a mechanism different from subgrain rotation recrystallisation. New grains have a subeuhedral shape and numerous microcavities, voids, fluid channels and fluid inclusions at their grain boundaries. No host control is recorded in misorientation axes across their large angle grain boundaries. New grains might have been created by nucleation from solution in the μm-scale voids and microfractures. The CPO most likely developed due to preferred growth of the freshly precipitated grains with orientations suitable for intracrystalline deformation at the imposed experimental conditions.  相似文献   

5.
Torsion experiments were performed on the Al2SiO5 polymorphs in the sillimanite stability field to determine basic rheological characteristics and the effect of deformation on polymorphic transformation. The experiments resulted in extensive transformation of andalusite and kyanite to sillimanite. No transformation occurred during the hot-press (no deformation) stage of sample preparation, which was carried out at similar PT conditions and duration as the torsion experiments. Experiments were conducted on fine-grained (< 15 µm) aggregates of natural andalusite, kyanite and sillimanite at 1250 °C, 300 MPa, and a constant shear strain rate of 2 × 10− 4/s to a maximum shear strain of 400%. Electron back-scattered diffraction (EBSD) analysis of the experiments revealed development of lattice-preferred orientations, with alignment of sillimanite and andalusite [001] slightly oblique to the shear plane. The kyanite experiment could not be analyzed using EBSD because of near complete transformation to sillimanite. Very little strain ( 30%) is required to produce widespread transformation in kyanite and andalusite. Polymorphic transformation in andalusite and kyanite experiments occurred primarily along 500 µm wide shear bands oriented slightly oblique and antithetic to the shear plane and dominated by sub-µm (100–150 nm) fibrolitic sillimanite. Shear bands are observed across the entire strain field preserved in the torsion samples. Scanning transmission electron microscope imaging shows evidence for transformation away from shear bands; e.g. fibrolitic rims on relict andalusite or kyanite. Relict grains typically have an asymmetry that is consistent with shear direction. These experimental results show that sillimanite is by far the weakest of the polymorphs, but no distinction can yet be made on the relative strengths of kyanite and andalusite. These observations also suggest that attaining high bulk strain energy in strong materials such as the Al2SiO5 polymorphs is not necessary for triggering transformation. Strain energy is concentrated along grain boundaries, and transformation occurs by a dynamic recrystallization type process. These experiments also illustrate the importance of grain-size sensitive creep at high strains in a system with simultaneous reaction and deformation.  相似文献   

6.
The objective of the study was to characterize changes of reflectance, reflectance anisotropy and reflectance indicating surface (RIS) shape of vitrinite, sporinite and semifusinite subjected to thermal treatment under inert conditions. Examination was performed on vitrinite, liptinite and inertinite concentrates prepared from channel samples of steam coal (Rr = 0.70%) and coking coal (Rr = 1.25%), collected from seam 405 of the Upper Silesian Coal Basin. The concentrates were heated at temperatures of 400–1200 °C for 1 h time in an argon atmosphere.All components examined in this study: vitrinite, sporinite and semifusinite as well as matrix of vitrinite and liptinite cokes, despite of rank of their parent coal, show, in general, the most important changes of reflectance value and optical anisotropy when heated at 500 °C, 800 °C (with the exception of bireflectance value of sporinite) and 1200 °C.After heating the steam coal at 1200 °C, the vitrinite and the semifusinite reveal similar reflectances, whereas the latter a slightly stronger anisotropy. Sporinite and matrix of liptinite coke have lower reflectances but anisotropy (Rbi and Ram values) similar to those observed for vitrinite and semifusinite. However, at 1000 °C sporinite and matrix of liptinite coke have the highest reflectivity of the studied components. The RIS at 1200 °C is the same for all components.The optical properties of the three macerals in the coking coal become similar after heating at 1000 °C. Coke obtained at 1200 °C did not contain distinguishable vitrinite grains. At 1200 °C semifusinite and vitrinite coke matrix have highest Rr values among the examined components. Maximum reflectance (Rmax) reach similar values for vitrinite and sporinite, slightly lower for semifusinite. Matrix of liptinite coke and matrix of vitrinite coke have considerably stronger anisotropy (Rbi and Ram values) than other components. RIS at 1200 °C is also similar for all components.  相似文献   

7.
Non-steady state deformation and annealing experiments on vein quartz are designed to simulate earthquake-driven episodic deformation in the middle crust. Three types of experiments were carried out using a modified Griggs-type solid medium deformation apparatus. All three start with high stress deformation at a temperature of 400 °C and a constant strain rate of 10− 4 s− 1 (type A), some are followed by annealing in the stability field of α-quartz for 14–15 h at zero nominal differential stress and temperatures of 800–1000 °C (type A + B), or by annealing for 15 h at 900 °C and at a residual stress (type A + C).The quartz samples reveal a very high strength > 2 GPa at a few percent of permanent strain. The microstructures after short-term high stress deformation (type A) record localized brittle and plastic deformation. Statisc annealing (type A + B) results in recrystallisation restricted to the highly damaged zones. The new grains aligned in strings and without crystallographic preferred orientation, indicate nucleation and growth. Annealing at non-hydrostatic conditions (type A + C) results in shear zones that also develop from deformation bands or cracks that formed during the preceding high stress deformation. In this case, however, the recrystallised zone is several grain diameters wide, the grains are elongate, and a marked crystallographic preferred orientation indicates flow by dislocation creep with dynamic recrystallisation. Quartz microstructures identical to those produced in type A + B experiments are observed in cores recovered from Long Valley Exploratory Well in the Quaternary Long Valley Caldera, California, with considerable seismic activity.The experiments demonstrate the behaviour of quartz at coseismic loading (type A) and subsequent static annealing (type A + B) or creep at decaying stress (type A + C) in the middle crust. The experimentally produced microfabrics allow to identify similar processes and conditions in exhumed rocks.  相似文献   

8.
We revised an equation for estimating palaeostress magnitude using the microboudin technique by incorporating the influence of time on the fracture strength of minerals. The equation was used to estimate triaxial palaeostresses from a rare sample of metachert from Turkey that contains microboudinaged, columnar tourmaline grains in a wide range of orientations within the foliation plane. The estimated principal palaeostresses are σ1 = 605 MPa, σ2 = 598 MPa, and σ3 = 597 MPa. As the microboudinage is considered to have occurred immediately before the rock encountered the brittle-plastic transition during exhumation, these stress values correspond to conditions at approximately 18 km depth and 300 °C within a Cretaceous orogenic belt.  相似文献   

9.
High pressure deformation in two-phase aggregates   总被引:1,自引:0,他引:1  
We investigate the rheological behavior of multi-phase aggregates at high pressure and high temperature. Using synchrotron X-ray radiation as the probing tool, we are able to quantify the stress state of individual phases within the aggregates. This method provides fundamental information in interpreting the behavior of two phase/multi-phase mixtures, which contribute to our understanding of the deformation process at deep earth conditions. We choose MgAl2O4 spinel and MgO periclase as our model materials. Mixtures of various volume proportions were deformed in a multi-anvil high pressure deformation apparatus at pressure of 5 GPa and elevated temperatures. Stress is determined from X-ray diffraction, providing a measure of stress in each individual phase of the mixture in situ during the deformation. Macroscopic strain is determined from X-ray imaging. We compare the steady state strength of various mixtures at 1000 °C and 800 °C and at the strain rate in the range of 1.8 to 8.8 × 10− 5 s− 1. Our data indicate that the weak phase (MgO) is responsible for most of the accumulated strains while the strong phase (spinel) is supporting most of the stress when the volume proportion is 75% spinel and 25% MgO. The intermediate compositions (40/60) are much weaker than either of the end members, while the grain sizes for the intermediate compositions (submicrons) are much smaller than the end members (5–10 μm). We conclude that a change in flow mechanism resulting from these smaller grains is responsible for the low strength of the intermediate composition mixtures. This study demonstrates an approach of using synchrotron X-rays to study the deformation behaviors of multi-phase aggregates at high pressure and high temperature.  相似文献   

10.
The metamorphic evolution of a key sector of the western Mediterranean internal Alpine orogenic belt (southern Calabrian Peloritani Orogen) is identified and described by means of PT pseudosections calculated for selected metapelite specimens, showing evidence of multi-stage metamorphism.Attention focused on the two lowermost basement nappes of the Aspromonte Massif (southern Calabria), which were differently affected by poly-orogenic multi-stage evolution. After a complete Variscan orogenic cycle, the upper unit (Aspromonte Peloritani Unit) was involved in a late-Alpine shearing event. In contrast, the several underlying metapelite slices, here grouped together as Lower Metapelite Group, show exclusive evidence of a complete Alpine orogenic cycle.In order to obtain reliable PT constraints, an integrated approach was employed, based on: a) garnet isopleth thermobarometry; and b) theoretical predictions of the PT stability fields of representative equilibrium assemblages. This approach, which takes into account the role of the local equilibrium volumes in controlling textural developments, yielded reliable information about PT conditions from early to peak metamorphic stages, as well as estimates of the retrograde trajectory in the pseudosection PT space.According to inferred detailed PT paths, the evolution of the Aspromonte Peloritani Unit is characterised by a multi-stage Variscan cycle, subdivided into an early crustal thickening stage with PT conditions ranging from 0.56 ± 0.05 GPa at 570 ± 10 °C to 0.63–0.93 GPa at 650–710 °C (peak conditions) and evolving to a later crustal thinning episode in lower PT conditions (0.25 GPa at 540 °C), as documented by the retrograde trajectory.Conversely, the prograde evolution of the rocks of the Lower Metapelite Group shows evidence of a HP-LT early Alpine multi-stage cycle, with PT evolving from 0.75–0.90 GPa at 510–530 °C towards peak conditions, with pressure increasing northwards from 1.12 ± 0.02 GPa to 1.24 ± 0.02 GPa, and temperatures of 540–570 °C.A late-Alpine mylonitic overprint affected the rocks of both the Aspromonte Peloritani Unit and the Lower Metapelite Group. This overprint was characterised by an initial retrograde decompression trajectory (0.75 ± 0.05 GPa at 570–600 °C), followed by a joint cooling history, ranging from 0.38 ± 0.14 at temperature from 450 to 520 °C.These inferred results were then used: a) to interpret the Lower Metapelite Group as a single crystalline basement unit exclusively affected by a complete Alpine orogenic cycle, according to the very similar features of PT paths, comparable petrography and analogous structural characteristics; b) as a tool for more reliable correlations between the Aspromonte Massif, the other Calabrian terranes and the north African Orogenic Complexes. They may therefore consider a contribution to the geodynamic modelling of the western Mediterranean.  相似文献   

11.
Recent seismic tomography has revealed various morphologies in the subducted lithosphere. In particular, significant flattening and stagnation of slabs around the 660-km boundary are seen in some areas beneath the northwestern Pacific subduction zones. We examined the cause of slab stagnation in terms of the Clapeyron slope of the phase transformation from ringwoodite to perovskite + magnesiowüstite, trench retreat velocity, dip angles, and high viscosity of the lower mantle based on two-dimensional (2-D) numerical simulations of thermal convection. In particular, we examined the conditions necessary for slab stagnation assuming a very small absolute value of the Clapeyron slope, which were proposed based on recent high-pressure, high-temperature (high PT) experiments. Our calculations show that slabs tend to stagnate above the 660-km boundary with an increasing absolute value of the Clapeyron slope, viscosity jump at the boundary, and trench retreat velocity and a decreasing initial dip angle. Stagnant slabs could be obtained numerically for a realistic range of parameters obtained from high PT experiments and other geophysical observations combining buoyancy, high lower-mantle viscosity, and trench retreat. We found that a low dip angle of a descending slab at the bottom of the upper mantle plays an important role in slab stagnation. Two main regimes underlie slab stagnation: buoyancy-dominated and viscosity-dominated regimes. In the viscosity-dominated regime, it is possible for slabs to stagnate above the 660-km boundary, even when the value of the Clapeyron slope is 0 MPa/K.  相似文献   

12.
The Ibituruna quartz-syenite was emplaced as a sill in the Ribeira-Araçuaí Neoproterozoic belt (Southeastern Brazil) during the last stages of the Gondwana supercontinent amalgamation. We have measured the Anisotropy of Magnetic Susceptibility (AMS) in samples from the Ibituruna sill to unravel its magnetic fabric that is regarded as a proxy for its magmatic fabric. A large magnetic anisotropy, dominantly due to magnetite, and a consistent magnetic fabric have been determined over the entire Ibituruna massif. The magmatic foliation and lineation are strikingly parallel to the solid-state mylonitic foliation and lineation measured in the country-rock. Altogether, these observations suggest that the Ibituruna sill was emplaced during the high temperature (~ 750 °C) regional deformation and was deformed before full solidification coherently with its country-rock. Unexpectedly, geochronological data suggest a rather different conclusion. LA-ICP-MS and SHRIMP ages of zircons from the Ibituruna quartz-syenite are in the range 530–535 Ma and LA-ICP-MS ages of zircons and monazites from synkinematic leucocratic veins in the country-rocks suggest a crystallization at ~ 570–580 Ma, i.e., an HT deformation > 35My older than the emplacement of the Ibituruna quartz-syenite. Conclusions from the structural and the geochronological studies are therefore conflicting. A possible explanation arises from 40Ar–39Ar thermochronology. We have dated amphiboles from the quartz-syenite, and amphiboles and biotites from the country-rock. Together with the ages of monazites and zircons in the country-rock, 40Ar–39Ar mineral ages suggest a very low cooling rate: < 3 °C/My between 570 and ~ 500 Ma and ~ 5 °C/My between 500 and 460 Ma. Assuming a protracted regional deformation consistent over tens of My, under such stable thermal conditions the fabric and microstructure of deformed rocks may remain almost unchanged even if they underwent and recorded strain pulses separated by long periods of time. This may be a characteristic of slow cooling “hot orogens” that rocks deformed at significantly different periods during the orogeny, but under roughly unchanged temperature conditions, may display almost indiscernible microstructure and fabric.  相似文献   

13.
A ‘soft’ carbon-based high-volatile bituminous (Ro max=0.68%) coal and a ‘hard’ carbon-based Pennsylvania anthracite (Ro max=5.27%) were deformed in the steady state at high temperatures and pressures in a series of coaxial and simple shear deformation experiments designed to constrain the role of shear strain and strain energy in the graphitization process. Tests were carried out in a Griggs-t type solid (NaCl) medium apparatus at T=400–900°C, constant displacement rates of 10-5−10-6 s−1, at confining pressures of 0.6 GPa (coaxial) or 0.8 and 1.0 GPa (simple shear). Coaxial samples were shortened up to 50%, whereas shear strains up to 4.9 were attained in simple shear tests. Experiments lasted up to 118 h. Deformed, high-volatile bituminous coal was extensively coked and no correlation between strain and Ro max, bireflectance or coal texture was observed in any samples. With increasing temperature, Ro max and bireflectance increase in highly anisotropic, coarse mosaic units, but remain essentially constant in the fine granular mosaic, which becomes more abundant at higher temperatures. Graphite-like reflectances are observed locally only in highly reactive macerals and in pyrolytic carbon veins. The degree of molecular ordering attained in deformed bituminous coal samples appears to be determined by the heating-pressurization path rather than by subsequent deformation.Graphitization did not occur in coaxially deformed anthracite. Nonetheless, dramatic molecular ordering occurs at T>700°C, with average bireflectance values increasing from 1.68% at 700°C to 6.36% at 900°C. Anisotropy is greatest in zones of high strain at all temperatures. In anthracite samples deformed in simple shear over the 600–900°C range at 1.0 GPa, the average Ro max values increase up to 11.9%, whereas average bireflectance values increase up to 10.7%. Bireflectance increases with progressive bedding rotation and, thus, with increasing shear strain. Graphitization occurs in several anthracite samples deformed in simple shear at 900°C. X-ray diffraction and transmission electron microscopy of highly anisotropic material in one sample confirms the presence of graphite with d002=0.3363 nm. These data strongly suggest that shear strain, through its tendency to align basic structural units, is the factor responsible for the natural transformation of anthracite to graphite at temperatures far below the 2200°C required in hydrostatic heating experiments at ambient pressure.  相似文献   

14.
Shear deformation of hot pressed plagioclase–olivine aggregates was studied in the presence and absence of mineral reaction. Experiments were performed at 900 °C, 1500 MPa, and a constant shear strain rate of 5×10−5 s−1 in a solid medium apparatus. Whether the mineral reaction between plagioclase and olivine takes place or not is controlled by choosing the appropriate plagioclase composition; labradorite (An60) does not react, anorthite (An92) does. Labradorite–olivine aggregates deformed without reaction are very strong and show strain hardening throughout the experiment. Syndeformational reaction between olivine and anorthite causes a pronounced strain weakening. The reaction produces fine-grained opx–cpx–spinel aggregates, which accommodate a large fraction of the finite strain. Deformation and reaction are localised within a 0.5-mm-wide sample. Three representative samples were analysed for their fabric anisotropy R* and shape-preferred orientation α* (fabric angle with the shear plane) using the autocorrelation function (ACF). Fabric anisotropy can be calibrated to quantify strain variations across the sheared samples. In the deformed and reacted anorthite–olivine aggregate, there is a strong correlation between reaction progress and strain; regions of large shear strain correspond to regions of maximum reaction progress. Within the sample, the derived strain rate variations range up to almost one order of magnitude.  相似文献   

15.
Effect of water and stress on the lattice-preferred orientation of olivine   总被引:6,自引:1,他引:5  
The influence of water and stress on the lattice-preferred orientation (LPO) of olivine aggregates was investigated through large strain, shear deformation experiments at high pressures and temperatures (P = 0.5–2.1 GPa, T = 1470–1570 K) under both water-poor and water-rich conditions. The specimens are hot-pressed synthetic olivine aggregates or single crystals of olivine. Water was supplied to the sample by decomposition of a mixture of talc and brucite. Deformation experiments were conducted up to γ (shear strain)  6 using the Griggs apparatus where water fugacity was up to  13 GPa at the pressure of 2 GPa. The water content in olivine saturated with water increases with increasing pressure and the solubility of water in olivine at P = 0.5–2 GPa was  400–1200 ppm H/Si. Several new types of LPO in olivine are found depending on water content and stress. Samples deformed in water-poor conditions show a conventional LPO of olivine where the olivine [100] axis is subparallel to the shear direction, the (010) plane subparallel to the shear plane (type-A). However, we identified three new types (type-B, C, and E) of LPO of olivine depending on the water content and stress. The type-B LPO of olivine which was found at relatively high stress and/or under moderate to high water content conditions is characterized by the olivine [001] axis subparallel to the shear direction, the (010) plane subparallel to the shear plane. The type-C LPO which was found at low stress and under water-rich conditions is characterized by the olivine [001] axis subparallel to the shear direction, the (100) plane subparallel to the shear plane. The type-E LPO which was found under low stress and moderate water content is characterized by the olivine [100] axis subparallel to the shear direction, the (001) plane subparallel to the shear plane. Observations by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) show that the dislocations in water-poor samples (type-A) are curved and both b =  [100] and b = [001] dislocations have a similar population. Numerous subgrains are seen in water-poor samples in backscattered electron images. In contrast, water-rich samples (both type-B and type-C) contain mostly b = [001] dislocations and dislocations are straight and sub-grain boundaries are rare compared to those in water-poor samples. These observations suggest that (1) dominant slip systems in olivine change with water fugacity (and stress) and (2) grain boundary migration is enhanced in the presence of water. Seismic anisotropy corresponding to the fabrics under water-rich condition is significantly different from that under water-poor condition. Consequently, the relationship between seismic anisotropy and flow geometry in water-rich regions is expected to be different from that in water-poor regions in which type-A fabric dominates (i.e., the lithosphere). A few cases are discussed including anisotropy in the subduction zone and in the deep upper mantle.  相似文献   

16.
We investigate spatial clustering of 2414 aftershocks along the Izmit Mw = 7.4 August 17, 1999 earthquake rupture zone. 25 days prior to the Düzce earthquake Mw = 7.2 (November 12, 1999), we analyze two spatial clusters, namely Sakarya (SC) and Karadere–Düzce (KDC). We determine the earthquake frequency–magnitude distribution (b-value) for both clusters. We find two high b-value zones in SC and one high b-value zone in KDC which are in agreement with large coseismic surface displacements along the Izmit rupture. The b-values are significantly lower at the eastern end of the Izmit rupture where the Düzce mainshock occurred. These low b-values at depth are correlated with low postseismic slip rate and positive Coloumb stress change along KDC. Since low b-values are hypothesized with high stress levels, we propose that at the depth of the Düzce hypocenter (12.5 km), earthquakes are triggered at higher stresses compared to shallower crustal earthquake. The decrease in b-value from the Karadere segment towards the Düzce Basin supports this low b-value high stress hypothesis at the eastern end of the Izmit rupture. Consequently, we detect three asperity regions which are correlated with high b-value zones along the Izmit rupture. According to aftershock distribution the half of the Düzce fault segment was active before the 12 November 1999 Düzce mainshock. This part is correlated with low b-values which mean high stress concentration in the Düzce Basin. This high density aftershock activity presumably helped to trigger the Düzce event (Mw = 7.2) after the Izmit Mw 7.4 mainshock.  相似文献   

17.
Hydrogen solubility and hydroxyl substitution mechanism in olivineat upper-mantle conditions are not only a function of pressure,temperature, water fugacity and hydrogen fugacity, but are alsoinfluenced by silica activity. Olivine synthesized in equilibriumwith magnesiowüstite displays hydroxyl stretching bandsin the wavenumber range from 3640 to 3430 cm–1. In contrast,olivine in equilibrium with orthopyroxene shows absorption bandsin a narrower wavenumber range from 3380 to 3285 cm–1.The two fundamentally different spectra are assigned to hydroxylin tetrahedral and octahedral sublattices, respectively. Olivinein equilibrium with orthopyroxene is also less capable of incorporatinghydroxyl, relative to olivines in equilibrium with magnesiowüstite,by about a factor of ten. A comparison of spectra obtained aspart of this study with hydroxyl spectra of natural mantle olivinesshows that the latter display hydroxyl stretching patterns reminiscentof equilibrium with magnesiowüstite, although undoubtedlyolivine in the Earth’s mantle coexists with orthopyroxene.This may be attributed to a metasomatic overprint by a low-silicafluid and/or melt that was in reaction relationship with orthopyroxene.A likely metasomatic agent is a carbonatitic melt. When carbonatiticmelts decompose to oxides and CO2, they may temporarily imposea low-aSiO2 environment inherited by the olivine structure.If this suggestion proves true, Fourier transform IR spectroscopymay be used to fingerprint metasomatic episodes in the lithosphericmantle. KEY WORDS: FTIR spectrometry; olivine; mantle; metasomatism; water  相似文献   

18.
L. Millonig  A. Zeh  A. Gerdes  R. Klemd 《Lithos》2008,103(3-4):333-351
The Bulai pluton represents a calc-alkaline magmatic complex of variable deformed charnockites, enderbites and granites, and contains xenoliths of highly deformed metamorphic country rocks. Petrological investigations show that these xenoliths underwent a high-grade metamorphic overprint at peak P–T conditions of 830–860 °C/8–9 kbar followed by a pressure–temperature decrease to 750 °C/5–6 kbar. This P–T path is inferred from the application of P–T pseudosections to six rock samples of distinct bulk composition: three metapelitic garnet–biotite–sillimanite–cordierite–plagioclase–(K-feldspar)–quartz gneisses, two charnoenderbitic garnet–orthopyroxene–biotite–K-feldspar–plagioclase–quartz gneisses and an enderbitic orthopyroxene–biotite–plagioclase–quartz gneiss. The petrological data show that the metapelitic and charnoenderbitic gneisses underwent uplift, cooling and deformation before they were intruded by the Bulai Granite. This relationship is supported by geochronological results obtained by in situ LA-ICP-MS age dating. U–Pb analyses of monazite enclosed in garnet of a charnoenderbite gneiss provide evidence for a high-grade structural-metamorphic–magmatic event at 2644 ± 8 Ma. This age is significantly older than an U–Pb zircon crystallisation age of 2612 ± 7 Ma previously obtained from the surrounding, late-tectonic Bulai Granite. The new dataset indicates that parts of the Limpopo's Central Zone were affected by a Neoarchaean high-grade metamorphic overprint, which was caused by magmatic heat transfer into the lower crust in a ‘dynamic regional contact metamorphic milieu’, which perhaps took place in a magmatic arc setting.  相似文献   

19.
The recovery of magnesium from magnesite tailings in aqueous hydrochloric acid solutions by acid leaching was studied in a batch reactor using hydrochloric acid solutions. Subsequent, production of magnesium chloride hexahydrate (MgCl2.6H2O) from leaching solution was also investigated. The effects of temperature, acid concentration, solid-to-liquid ratio, particle size and stirring speed on the leaching process were investigated. The pseudo-second-order reaction model seemed to be appropriate for the magnesium leaching. The activation energy of the leaching process was estimated to be 62.4 kJ mol− 1. Finally, MgCl2.6H2O in a purity of 91% was produced by evaporation of leaching solution obtained at a temperature of 40 °C, 1.0 M acid, solid-to-liquid ratio of 10 g/L, particle size of 100 µm, stirring speed of 1250 rpm and leaching time of 60 min.  相似文献   

20.
“Hard” carbon-based Pennsylvania anthracite was deformed in the steady-state at high temperatures and pressures in a series of coaxial and simple shear experiments designed to constrain the role of shear strain and strain energy in the graphitization process. Graphitization did not occur in coaxially deformed anthracite. Nonetheless, dramatic molecular ordering occurs at T 700°C, with average bireflectance values (%) increasing from 1.68 at 700°C to 6.36 at 900°C. Romin is lowest and bireflectance is highest in zones of high strain (e.g., kink bands) at all temperatures.In anthracite samples deformed in simple shear over the 600°–900°C range at 1.0 GPa, average Romax (%) values increase up to 11.9, whereas average bireflectance (%) values increase up to 10.7. Bireflectance increases with increasing shear strain and locally exceeds 12.5%. Graphitization occurs in several anthracite sample deformed in simple shear at 900°C. X-ray diffraction and transmission electron microscopy confirms the presence of graphite with d002=0.3363 nm. These data strongly suggest that shear strain is the dominant factor responsible for the natural transformation of anthracite to graphite at temperatures far below the 1600°C required for graphitization of other hard carbons in earlier hydrostatic heating experiments at 0.5 GPa pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号