首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
In order to achieve a precise positioning solution from GPS, the carrier-phase measurements with correctly resolved integer ambiguities must be used. Based on the integration of GPS with pseudolites and Inertial Navigation Systems (INS), this paper proposes an effective procedure for single-frequency carrier-phase integer ambiguity resolution. With the inclusion of pseudolites and INS measurements, the proposed procedure can speed up the ambiguity resolution process and increase the reliability of the resolved ambiguities. In addition, a recently developed ambiguity validation test, and a stochastic modelling scheme (based on-line covariance matrix estimation) are adapted to enhance the quality of ambiguity resolution. The results of simulation studies and field experiments indicate that the proposed procedure indeed improves the performance of single-frequency ambiguity resolution in terms of both reliability and time-to-fix-ambiguity.  相似文献   

2.
Recent research has demonstrated that the undifferenced integer ambiguities can be recovered using products from a network solution. The standard dual-frequency PPP integer ambiguity resolution consists of two aspects: Hatch-Melbourne-Wübbena wide-lane (WL) and ionosphere-free narrow-lane (NL) integer ambiguity resolution. A major issue affecting the performance of dual-frequency PPP applications is the time it takes to fix these two types of integer ambiguities, especially if the WL integer ambiguity resolution suffers from the noisy pseudorange measurements and strong multipath effects. With modernized Global Navigation Satellite Systems, triple-frequency measurements will be available to global users and an extra WL (EWL) model with very long wavelength can be formulated. Then, the easily resolved EWL integer ambiguities can be used to construct linear combinations to accelerate the PPP WL integer ambiguity resolution. Therefore, we propose a new reliable procedure for the modeling and quality control of triple-frequency PPP WL and NL integer ambiguity resolution. First, we analyze a WL integer ambiguity resolution model based on triple-frequency measurements. Then, an optimal pseudorange linear combination which is ionosphere-free and has minimum measurement noise is developed and used as constraint in the WL and the NL integer ambiguity resolution. Based on simulations, we have investigated the inefficiency of dual-frequency WL integer ambiguity resolution and the performance of EWL integer ambiguity resolution. Using almanacs of GPS, Galileo and BeiDou, the performances of the proposed triple-frequency WL and NL models have been evaluated in terms of success rate. Comparing with dual-frequency PPP, numerical results indicate that the proposed triple-frequency models can outperform the dual-frequency PPP WL and NL integer ambiguity resolution. With 1 s sampling rate, generally, only several minutes of data are required for reliable triple-frequency PPP WL and NL integer ambiguity resolution. Under benign observation situations and good geometries, the integer ambiguity can be reliably resolved even within 10 s.  相似文献   

3.
In this contribution, we introduce a new bootstrap-based method for Global Navigation Satellite System (GNSS) carrier-phase ambiguity resolution. Integer bootstrapping is known to be one of the simplest methods for integer ambiguity estimation with close-to-optimal performance. Its outcome is easy to compute due to the absence of an integer search, and its performance is close to optimal if the decorrelating Z-transformation of the LAMBDA method is used. Moreover, the bootstrapped estimator is presently the only integer estimator for which an exact and easy-to-compute expression of its fail-rate can be given. A possible disadvantage is, however, that the user has only a limited control over the fail-rate. Once the underlying mathematical model is given, the user has no freedom left in changing the value of the fail-rate. Here, we present an ambiguity estimator for which the user is given additional freedom. For this purpose, use is made of the class of integer aperture estimators as introduced in Teunissen (2003). This class is larger than the class of integer estimators. Integer aperture estimators are of a hybrid nature and can have integer outcomes as well as non-integer outcomes. The new estimator is referred to as integer aperture bootstrapping. This new estimator has all the advantages known from integer bootstrapping with the additional advantage that its fail-rate can be controlled by the user. This is made possible by giving the user the freedom over the aperture of the pull-in region. We also give an exact and easy-to-compute expression for its controllable fail-rate.  相似文献   

4.
Penalized GNSS Ambiguity Resolution   总被引:1,自引:1,他引:1  
Global Navigation Satellite System (GNSS) carrier phase ambiguity resolution is the process of resolving the carrier phase ambiguities as integers. It is the key to fast and high precision GNSS positioning and it applies to a great variety of GNSS models which are currently in use in navigation, surveying, geodesy and geophysics. A new principle of carrier phase ambiguity resolution is introduced. The idea is to give the user the possibility to assign penalties to the possible outcomes of the ambiguity resolution process: a high penalty for an incorrect integer outcome, a low penalty for a correct integer outcome and a medium penalty for the real valued float solution. As a result of the penalty assignment, each ambiguity resolution process has its own overall penalty. Using this penalty as the objective function which needs to be minimized, it is shown which ambiguity mapping has the smallest possible penalty. The theory presented is formulated using the class of integer aperture estimators as a framework. This class of estimators was introduced elsewhere as a larger class than the class of integer estimators. Integer aperture estimators, being of a hybrid nature, can have integer outcomes as well as non-integer outcomes. The minimal penalty ambiguity estimator is an example of an integer aperture estimator. The computational steps involved for determining the outcome of the minimal penalty estimator are given. The additional complexity in comparison with current practice is minor, since the optimal integer estimator still plays a major role in the solution of the minimal penalty ambiguity estimator.  相似文献   

5.
Reliability of partial ambiguity fixing with multiple GNSS constellations   总被引:4,自引:3,他引:1  
Reliable ambiguity resolution (AR) is essential to real-time kinematic (RTK) positioning and its applications, since incorrect ambiguity fixing can lead to largely biased positioning solutions. A partial ambiguity fixing technique is developed to improve the reliability of AR, involving partial ambiguity decorrelation (PAD) and partial ambiguity resolution (PAR). Decorrelation transformation could substantially amplify the biases in the phase measurements. The purpose of PAD is to find the optimum trade-off between decorrelation and worst-case bias amplification. The concept of PAR refers to the case where only a subset of the ambiguities can be fixed correctly to their integers in the integer least squares (ILS) estimation system at high success rates. As a result, RTK solutions can be derived from these integer-fixed phase measurements. This is meaningful provided that the number of reliably resolved phase measurements is sufficiently large for least-square estimation of RTK solutions as well. Considering the GPS constellation alone, partially fixed measurements are often insufficient for positioning. The AR reliability is usually characterised by the AR success rate. In this contribution, an AR validation decision matrix is firstly introduced to understand the impact of success rate. Moreover the AR risk probability is included into a more complete evaluation of the AR reliability. We use 16 ambiguity variance–covariance matrices with different levels of success rate to analyse the relation between success rate and AR risk probability. Next, the paper examines during the PAD process, how a bias in one measurement is propagated and amplified onto many others, leading to more than one wrong integer and to affect the success probability. Furthermore, the paper proposes a partial ambiguity fixing procedure with a predefined success rate criterion and ratio test in the ambiguity validation process. In this paper, the Galileo constellation data is tested with simulated observations. Numerical results from our experiment clearly demonstrate that only when the computed success rate is very high, the AR validation can provide decisions about the correctness of AR which are close to real world, with both low AR risk and false alarm probabilities. The results also indicate that the PAR procedure can automatically chose adequate number of ambiguities to fix at given high-success rate from the multiple constellations instead of fixing all the ambiguities. This is a benefit that multiple GNSS constellations can offer.  相似文献   

6.
附有约束条件的GPS模糊度快速解算   总被引:2,自引:1,他引:1  
采用GPS相位观测值进行快速定位时,由于坐标与模糊度参数间的强共线性,造成浮点模糊度最小二乘解的精度很差,整周模糊度难以正确固定。在GPS的实际应用中,可以利用坐标参数与模糊度参数的约束条件,改善浮点模糊度的解算精度,减小整数模糊度的搜索空间。首先给出了这两类约束的通用模型,然后给出了不同情况下约束条件的具体形式,并导出了相应的GPS模糊度快速解算公式。用实例验证了算法的有效性。结果表明,采用约束条件,可排除大量错误的模糊度备选组合,从而提高模糊度的解算效率和成功率。因此,在GPS定位时,应尽可能利用各种约束条件。  相似文献   

7.
The upcoming modernization of the GPS signals will allow for measurements on an additional third frequency L5 located at 1176.45 MHz. To take advantage of carrier-phase measurements on this new signal, the strategies for integer ambiguity resolution, required for centimeter-level accuracy, may need to be revised. The Least-squares Ambiguity Decorrelation Adjustment method remains perhaps the most powerful tool for finding the best combinations based on a complete decorrelation of the variance–covariance matrix related to the ambiguities. However, the computational load of that method plus the opportunity to comprehensively study the interaction of multiple frequencies suggest a reconsideration of approaches using predefined combinations between frequencies is not out of place. In this paper a systematic investigation is made of all possible triple-frequency geometry-free carrier-phase combinations which retain the integer nature of the ambiguities. The concept of the lane-number is presented to unambiguously describe the wavelength of a particular combination. The propagation of the observation noise and of the ionospheric bias on these combinations is presented. These noise and ionospheric amplification factors are analysed with respect to the resulting wavelength, in an effort to highlight optimal combinations characterized by a long wavelength, low noise and limited ionospheric impact.  相似文献   

8.
An optimality property of the integer least-squares estimator   总被引:36,自引:15,他引:21  
A probabilistic justification is given for using the integer least-squares (LS) estimator. The class of admissible integer estimators is introduced and classical adjustment theory is extended by proving that the integer LS estimator is best in the sense of maximizing the probability of correct integer estimation. For global positioning system ambiguity resolution, this implies that the success rate of any other integer estimator of the carrier phase ambiguities will be smaller than or at the most equal to the ambiguity success rate of the integer LS estimator. The success rates of any one of these estimators may therefore be used to provide lower bounds for the LS success rate. This is particularly useful in case of the bootstrapped estimator. Received: 11 January 1999 / Accepted: 9 July 1999  相似文献   

9.
Precise GPS positioning relies on tracking the carrier-phase. The fractional part of carrier-phase can be measured directly using a standard phase-locked loop, but the integer part is ambiguous and the ambiguity must be resolved based on sequential carrier-phase measurements to ensure the required positioning precision. In the presence of large phase-measurement noise, as can be expected in a jamming environment for example, the amount of data required to resolve the integer ambiguity can be large, which requires a long time for any generic integer parameter estimation algorithm to converge. A key question of interest in significant applications of GPS where fast and accurate positioning is desired is then how the convergence time depends on the noise amplitude. Here we address this question by investigating integer least-sqaures estimation algorithms. Our theoretical derivation and numerical experiments indicate that the convergence time increases linearly with the noise variance, suggesting a less stringent requirement for the convergence time than intuitively expected, even in a jamming environment where the phase noise amplitude is large. This finding can be useful for practical design of GPS-based systems in a jamming environment, for which the ambiguity resolution time for precise positioning may be critical.  相似文献   

10.
改进的ARCE方法及其在单频 GPS快速定位中的应用   总被引:4,自引:0,他引:4  
基于TIKHONOV正则化原理,设计了一种正则化矩阵的构造方法,将ARCE(ambiguity resolution using constraint equation)方法进行了改进。通过新的正则化矩阵的作用,减弱了GPS快速定位中少数历元情形下法矩阵的病态性,得到了比较准确的模糊度浮动解,大大减小了模糊度的搜索范围,利用ARCE方法固定模糊度的成功率高。并结合一个算例,验证了本文改进方法的效果。  相似文献   

11.
提出一种用于整周模糊度OTF求解的整数白化滤波改进算法。该算法首先对整周模糊度的协方差矩阵进行整数白化滤波处理 ,以降低整周模糊度间的相关性 ,然后构造搜索空间来判定是否需要进行搜索。如果需要 ,则通过搜索来确定变换后的整周模糊度 ;如果不需要 ,则通过直接取整来确定整周模糊度 ,进而得到原始的整周模糊度和基线分量的固定解。初步试验结果显示 ,采用改进方法解算整周模糊度可以提高成功率和解算效率  相似文献   

12.
On the probability density function of the GNSS ambiguity residuals   总被引:1,自引:0,他引:1  
Integer GNSS ambiguity resolution involves estimation and validation of the unknown integer carrier phase ambiguities. A problem then is that the classical theory of linear estimation does not apply to the integer GPS model, and hence rigorous validation is not possible when use is made of the classical results. As with the classical theory, a first step for being able to validate the integer GPS model is to make use of the residuals and their probabilistic properties. The residuals quantify the inconsistency between data and model, while their probabilistic properties can be used to measure the significance of the inconsistency. Existing validation methods are often based on incorrect assumptions with respect to the probabilistic properties of the parameters involved. In this contribution we will present and evaluate the joint probability density function (PDF) of the multivariate integer GPS carrier phase ambiguity residuals. The residuals and their properties depend on the integer estimation principle used. Since it is known that the integer least-squares estimator is the optimal choice from the class of admissible integer estimators, we will only focus on the PDF of the ambiguity residuals for this estimator. Unfortunately the PDF cannot be evaluated exactly. It will therefore be shown how to obtain a good approximation. The evaluation will be completed by some examples.  相似文献   

13.
At present, reliable ambiguity resolution in real-time GPS precise point positioning (PPP) can only be achieved after an initial observation period of a few tens of minutes. In this study, we propose a method where the incoming triple-frequency GPS signals are exploited to enable rapid convergences to ambiguity-fixed solutions in real-time PPP. Specifically, extra-wide-lane ambiguity resolution can be first achieved almost instantaneously with the Melbourne-Wübbena combination observable on L2 and L5. Then the resultant unambiguous extra-wide-lane carrier-phase is combined with the wide-lane carrier-phase on L1 and L2 to form an ionosphere-free observable with a wavelength of about 3.4 m. Although the noise of this observable is around 100 times the raw carrier-phase noise, its wide-lane ambiguity can still be resolved very efficiently, and the resultant ambiguity-fixed observable can assist much better than pseudorange in speeding up succeeding narrow-lane ambiguity resolution. To validate this method, we use an advanced hardware simulator to generate triple-frequency signals and a high-grade receiver to collect 1-Hz data. When the carrier-phase precisions on L1, L2 and L5 are as poor as 1.5, 6.3 and 1.5 mm, respectively, wide-lane ambiguity resolution can still reach a correctness rate of over 99 % within 20 s. As a result, the correctness rate of narrow-lane ambiguity resolution achieves 99 % within 65 s, in contrast to only 64 % within 150 s in dual-frequency PPP. In addition, we also simulate a multipath-contaminated data set and introduce new ambiguities for all satellites every 120 s. We find that when multipath effects are strong, ambiguity-fixed solutions are achieved at 78 % of all epochs in triple-frequency PPP whilst almost no ambiguities are resolved in dual-frequency PPP. Therefore, we demonstrate that triple-frequency PPP has the potential to achieve ambiguity-fixed solutions within a few minutes, or even shorter if raw carrier-phase precisions are around 1 mm. In either case, we conclude that the efficiency of ambiguity resolution in triple-frequency PPP is much higher than that in dual-frequency PPP.  相似文献   

14.
模糊度整周解检验是评价模糊度解算正确性的关键,决定着最终定位结果的可靠性。对原有的假设检验存在的缺陷和不足进行了分析,提出了一种更可靠的比值(Ratio)检验方法。理论分析和数值试验结果都显示改进的检验方法更能正确评价模糊度整数解解算的正确性。该新检验方法,又提出了一种最终模糊度整数解确定的新方法即模糊度候选值再分析法。实验表明:应用该方法能提高模糊度整数解确定的成功率。  相似文献   

15.
Maximum-likelihood ambiguity resolution based on Bayesian principle   总被引:2,自引:1,他引:2  
 Based on the Bayesian principle and the fact that GPS carrier-phase ambiguities are integers, the posterior distribution of the ambiguities and the position parameters is derived. This is then used to derive the maximum posterior likelihood solution of the ambiguities. The accuracy of the integer ambiguity solution and the position parameters is also studied according to the posterior distribution. It is found that the accuracy of the integer solution depends not only on the variance of the corresponding float ambiguity solution but also on its values. Received: 27 July 1999 / Accepted: 22 November 2000  相似文献   

16.
In this contribution, we study the dependence of the bootstrapped success rate on the precision of the GNSS carrier phase ambiguities. Integer bootstrapping is, because of its ease of computation, a popular method for resolving the integer ambiguities. The method is however known to be suboptimal, because it only takes part of the information from the ambiguity variance matrix into account. This raises the question in what way the bootstrapped success rate is sensitive to changes in precision of the ambiguities. We consider two different cases. (1) The effect of improving the ambiguity precision, and (2) the effect of using an approximate ambiguity variance matrix. As a by-product, we also prove that integer bootstrapping is optimal within the restricted class of sequential integer estimators.  相似文献   

17.
The Reliability of GPS Ambiguity Resolution   总被引:9,自引:1,他引:8  
GPS ambiguity resolution is the process of resolving the unknown cycle ambiguities of double-difference (DD) carrier-phase data as integers. It is the key to fast and high-precision relative GPS positioning. Critical in the application of ambiguity resolution is its reliability. Unsuccessful ambiguity resolution, when passed unnoticed, will too often lead to unacceptable errors in the positioning results. High success rates are required for ambiguity resolution to be reliable. In this contribution we will introduce and evaluate such diagnostic measures. They complement existing methods of ambiguity resolution and allow the user and/or analyst to infer their reliability. ? 1999 John Wiley & Sons, Inc.  相似文献   

18.
冯威  黄丁发  张熙 《测绘学报》2012,41(4):0-590
根据GNSS不同频率间整周模糊度的约束关系,提出一种基于多频整周模糊度间关系约束的模糊度新算法(dual-frequency integer relationship constrained ambiguity resolution,FirCAR)。FirCAR可快速动态解算出高高度角卫星的整周模糊度,将已经固定的整周模糊度视为高精度的伪距观测值应用到下一步的浮点解重算中。结合模糊度搜索算法,如LAMBDA,在模糊度搜索方面的高效性,根据重算后的浮点解进一步解算其他未固定的模糊度解。模糊度固定成功后,即可实现OTF(on the fly)快速定位。实测数据表明,FirCAR算法在静态和动态观测条件下,模糊度初始化所用的平均观测历元数分别为1.04和1.10。与常规的模糊度搜索算法的对比试验表明,结合FirCAR算法模糊度固定所用的观测历元数分别减少了39%和18%。  相似文献   

19.
长距离网络RTK是实现GPS/BDS高精度实时定位的主要手段之一,其核心是长距离参考站网GPS/BDS整周模糊度的快速准确确定。本文提出了一种长距离GPS/BDS参考站网载波相位整周模糊度解算方法,首先利用GPS双频观测数据计算和确定宽巷整周模糊度,同时利用BDS的B2、B3频率观测值确定超宽巷整周模糊度。然后建立GPS载波相位整周模糊度和大气延迟误差的参数估计模型,附加双差宽巷整周模糊度的约束,解算双差载波相位整周模糊度,并建立参考站网大气延迟误差的空间相关模型。根据B2、B3频率的超宽巷整周模糊度建立包含大气误差参数的载波相位整周模糊度解算模型,利用大气延迟误差空间相关模型约束BDS双差载波相位整周模糊度的解算。克服了传统的使用无电离层组合值解算整周模糊度的不利影响。采用实测长距离CORS网GPS、BDS多频观测数据进行算法验证,试验结果证明该方法可实现长距离参考站网GPS/BDS载波相位整周模糊度的准确固定。  相似文献   

20.
The GPS double difference carrier phase measurements are ambiguous by an unknown integer number of cycles. High precision relative GPS positioning based on short observational timespan data, is possible, when reliable estimates of the integer double difference ambiguities can be determined in an efficient manner. In this contribution a new method is introduced that enables very fast integer least-squares estimation of the ambiguities. The method makes use of an ambiguity transformation that allows one to reformulate the original ambiguity estimation problem as a new problem that is much easier to solve. The transformation aims at decorrelating the least-squares ambiguities and is based on an integer approximation of the conditional least-squares transformation. This least-squares ambiguity decorrelation approach, flattens the typical discontinuity in the GPS-spectrum of ambiguity conditional variances and returns new ambiguities that show a dramatic improvement in correlation and precision. As a result, the search for the transformed integer least-squares ambiguities can be performed in a highly efficient manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号