首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The Latera field (Vulsini volcanic complex, Latium, Italy) is one of the geothermal areas of the peri-Tyrrhenian belt along which a regional, high thermal anomaly has been detected. So far nine deep wells have been drilled within the Latera caldera and four of them have been productive. The geothermal reservoir is located within the fractured carbonatic rocks of the Tuscan nappe; the overlying volcanic units, sealed by hydrothermal minerals (mainly calcite and anhydrite), act as an impervious cover.The fluid produced by the wells comes from a deep aquifer (about 1000–1500 m depth) which at present is not connected with the shallow aquifer in the volcanoclastic units. Fluid temperatures range between 200 and 230°C; in-hole temperatures as high as 343°C at 2775 m depth have been measured in dry wells.The study of the newly formed mineral assemblages from both volcanic and sedimentary units as sampled from the geothermal wells can be used to reconstruct the thermal evolution of the geothermal field. The intrusion of a syenitic melt, up to a depth of about 2000 m, dated 0.86 Ma, represents the major thermal event for the units in the area and is assumed to represent the first step in the geothermal evolution of the Latera system.The above mentioned newly formed mineral assemblages can be divided into three groups: (a) “contact-metasomatic”: calcite, anhydrite, diopsidic pyroxene, grossularitic garnet, phlogopite, wollastonite or monticellite; (b) “high-temperature hydrothermal”: calcite, anhydrite, K-feldspar, vesuvianite, melanitic garnet, tourmaline, amphibole, epidote, sulphides; (c) “low-temperature hydrothermal”: calcite, anhydrite, K-feldspar, clay minerals, sulphides. Group (a) minerals are now relics. Part of (b) and all of (c) group are still in equilibrium with the existing conditions in different parts of the geothermal system.Thermodynamic calculations on the observed mineral assemblages permitted estimates of the P, T conditions and gas fugacities.  相似文献   

2.
For single-phase flow through a network model of a porous medium, we report (1) solutions of the Navier–Stokes equation for the flow, (2) micro-particle imaging velocimetry (PIV) measurements of local flow velocity vectors in the “pores throats” and “pore bodies,” and (3) comparisons of the computed and measured velocity vectors. A “two-dimensional” network of cylindrical pores and parallelepiped connecting throats was constructed and used for the measurements. All pore bodies had the same dimensions, but three-different (square cross-section) pore-throat sizes were randomly distributed throughout the network. An unstructured computational grid for flow through an identical network was developed and used to compute the local pressure gradients and flow vectors for several different (macroscopic) flow rates. Numerical solution results were compared with the experimental data, and good agreement was found. Cross-over from Darcy flow to inertial flow was observed in the computational results, and the permeability and inertia coefficients of the network were estimated. The development of inertial flow was seen as a “two-step” process: (1) recirculation zones appeared in more and more pore bodies as the flow rate was increased, and (2) the strengths of individual recirculation zones increased with flow rate. Because each pore-throat and pore-body dimension is known, in this approach an experimental (and/or computed) local Reynolds number is known for every location in the porous medium at which the velocity has been measured (and/or computed).  相似文献   

3.
The Process Modelling and Artificial Intelligence for Online Flood Forecasting (PAI-OFF) methodology combines the reliability of physically based, hydrologic/hydraulic modelling with the operational advantages of artificial intelligence. These operational advantages are extremely low computation times and straightforward operation. The basic principle of the methodology is to portray process models by means of ANN. We propose to train ANN flood forecasting models with synthetic data that reflects the possible range of storm events. To this end, establishing PAI-OFF requires first setting up a physically based hydrologic model of the considered catchment and – optionally, if backwater effects have a significant impact on the flow regime – a hydrodynamic flood routing model of the river reach in question. Both models are subsequently used for simulating all meaningful and flood relevant storm scenarios which are obtained from a catchment specific meteorological data analysis. This provides a database of corresponding input/output vectors which is then completed by generally available hydrological and meteorological data for characterizing the catchment state prior to each storm event. This database subsequently serves for training both a polynomial neural network (PoNN) – portraying the rainfall–runoff process – and a multilayer neural network (MLFN), which mirrors the hydrodynamic flood wave propagation in the river. These two ANN models replace the hydrological and hydrodynamic model in the operational mode. After presenting the theory, we apply PAI-OFF – essentially consisting of the coupled “hydrologic” PoNN and “hydrodynamic” MLFN – to the Freiberger Mulde catchment in the Erzgebirge (Ore-mountains) in East Germany (3000 km2). Both the demonstrated computational efficiency and the prediction reliability underline the potential of the new PAI-OFF methodology for online flood forecasting.  相似文献   

4.
Seismic, geothermal, petrological and other data collected during the joint Soviet-Chinese-Japanese Project “Geotraverse: Pacific-China plain” are highly contradictory concerning their information on back-arc basins. The routine interpretation of the geothermal data leads, e.g. to the conclusion that the temperatures at depth are much higher than can be derived from other data. The discrepancies can be resolved by the back-arc spreading basins origin because of secondary mantle bulk or fluid convection. The inversion of the sign of the seismic velocity anomalies in the Pacific region at a depth of about 300 km can also be explained if active deep fluid regime is proposed. A new geotherm below the Mariana back-arc basin is proposed, and the velocity of the ascending mantle flow is estimated for this region.  相似文献   

5.
By enhancing the stock of piscivorous fish in a whole-lake experiment in Gräfenhain (Germany) since 1981 to such an extent that almost all planktivorous fish were exterminated, we examined the concept of “over-biomanipulation”. This hypothesis predicts that (a) extremely strong piscivory will allow uncontrolled development of large invertebrate predators and (b) these invertebrates can exert the same strong predation pressure on large herbivorous zooplankton as planktivorous fish. The hypothesis is tested the first time by a cross-comparison of the long-term response of the plankton community structure in the experimental lake (Piscivore L.) with (1) the intermediate response in the same lake and with (2) that of the long-term state in a nearby reference lake (Planktivore L.) densely inhabited by planktivorous fish (Leucaspius delineatus, a small cyprinid). The intermediate (1989–1992) response in Piscivore L. revealed a strong increase of the abundance of the invertebrate predator Chaoborus flavicans. Large daphnids were able to coexist with C. flavicans so that edible phytoplankton were suppressed and water transparency increased.As part (a) of the hypothesis predicts, the long-term response in Piscivore L. was characterized by the immigration of the larger predator Chaoborus obscuripes which displaced the smaller C. flavicans completely. The results support also part (b) of the hypothesis of “over-biomanipulation”: C. obscuripes-dominated Piscivore L. showed not much difference in biomasses of daphnids and total and edible phytoplankton as well as Secchi depth compared with fish-dominated Planktivore Lake. On the other hand, C. obscuripes-dominated Piscivore L. was characterized by distinctly lower biomass of daphnids, mean body volume of all crustaceans and Secchi depth as well as by higher biomass of edible phytoplankton compared with C. flavicans-dominated Piscivore Lake. We conclude that long-lasting success of biomanipulation cannot be achieved by extremely high piscivory leading to the almost complete extermination of planktivorous fish.  相似文献   

6.
Hydrothermal systems are often studied by collecting thermal gradient data and temperature/depth curves. These data contain important information about the flow field, the evolution of the hydrothermal system, and the location and nature of the ultimate heat sources. Thermal data are interpreted by the “forward” method; the thermal field is calculated based on selected initial conditions and boundary conditions such as temperature and permeability distributions. If the calculated thermal field matches the data, the chosen conditions are inferred to be possibly correct. Because many sets of initial conditions may produce similar thermal fields, users of the “forward” method may inadvertently miss the correct set of initial conditions. Analytical methods for “inverting” data also allow the determination of all the possible solutions consistent with the definition of the problem. In this paper we suggest an approach for inverting thermal data from a hydrothermal system, and compare it to the more conventional approach. We illustrate the difference in the methods by comparing their application to the Salton Sea Geothermal Field by Lau (1980a) and Kasameyer, et al. (1984). In this particular example, the inverse method was used to draw conclusions about the age and total rate of fluid flow into the hydrothermal system.  相似文献   

7.
In an attempt to model the effect of slope on the dynamics of lava flow emplacement, four distinct morphologies were repeatedly produced in a series of laboratory simulations where polyethylene glycol (PEG) was extruded at a constant rate beneath cold sucrose solution onto a uniform slope which could be varied from 1° through 60°. The lowest extrusion rates and slopes, and highest cooling rates, produced flows that rapidly crusted over and advanced through bulbous toes, or pillows (similar to subaerial “toey” pahoehoe flows and to submarine pillowed flows). As extrusion rate and slope increased, and cooling rate decreased, pillowed flows gave way to rifted flows (linear zones of liquid wax separated by plates of solid crust, similar to what is observed on the surface of convecting lava lakes), then to folded flows with surface crusts buckled transversely to the flow direction, and, at the highest extrusion rates and slopes, and lowest cooling rates, to leveed flows, which solidified only at their margins. A dimensionless parameter, Ψ, primarily controlled by effusion rate, cooling rate and flow viscosity, quantifies these flow types. Increasing the underlying slope up to 30° allows the liquid wax to advance further before solidifying, with an effect similar to that of increasing the effusion rate. For example, conditions that produce rifted flows on a 10° slope result in folded flows on a 30° slope. For underlying slopes of 40°, however, this trend reverses, slightly owing to increased gravitational forces relative to the strength of the solid wax. Because of its significant influence on heat advection and the disruption of a solid crust, slope must be incorporated into any quantitative attempt to correlate eruption parameters and lava flow morphologies. These experiments and subsequent scaling incorporate key physical parameters of both an extrusion and its environment, allowing their results to be used to interpret lava flow morphologies on land, on the sea floor, and on other planets.  相似文献   

8.
In this paper we deal with an indirect measure of the dielectric permittivity of the soil starting from GPR surface data collected on a buried “cooperative” target, meant as an object buried on purpose and whose extent is known a-priori. This target is exploited in order to achieve, from its image obtained from a suitable GPR data processing, an indirect measure of the dielectric permittivity of the embedding soil. GPR data processing is based on a linear microwave tomographic approach funded on the Born Approximation. Using this Born approach on two-dimensional inversion tests, we investigate the effect of the soil's electrical conductivity and permittivity on this indirect measure and demonstrate that the electrical field scattered by a spot-like buried object permits an accurate estimation of the soil permittivity even when no information of the soil conductivity is available.  相似文献   

9.
Uniform models for the Earth–ionosphere cavity are considered with particular attention to the physical properties of the ionosphere for the extremely low frequency (ELF) range. Two consistent features have long been recognized for the range: the presence of two distinct altitude layers of maximum energy dissipation within the lower ionosphere, and a “knee”-like change in the vertical conductivity profile representing a transition in dominance from ion-dominated to electron-dominated conductivity. A simplified two-exponential version of the Greifinger and Greifinger (1978) technique widely used in ELF work identifies two slopes in the conductivity profile and, providing accurate results in the ELF communication band (45–75 Hz), simulates too flat a frequency dependence of the quality factor within the Schumann resonance frequency range (5–40 Hz). The problem is traced to the upward migration, with frequency increasing, of the lower dissipation layer through the “knee” region resulting in a pronounced decrease of the effective scale height for conductivity. To overcome this shortcoming of the two-exponential approximation and still retain valuable model analyticity, a more general approach (but still based on the Greifinger and Greifinger formalism) is presented in the form of a “knee” model whose predictions for the modal frequencies, the wave phase velocities and the quality factors reasonably represent observations in the Schumann resonance frequency range.  相似文献   

10.
Enhancements in the auroral electrojets associated with magnetospheric substorms result from those in either the electric field or the ionospheric conductivities, or both. Their relative importance varies significantly, even during a single substorm, depending on the location as well as on the substorm phases. It is predicted that different parts of the electrojets tend to respond in different ways to substorm activity. The unprecedented, unique opportunity for CLUSTER spacecraft observations of electric/magnetic fields and precipitating particles, combined with radar measurements of ionospheric quantities and with ground magnetometers, will provide us with crucial information regarding the physical nature of the separation between the “electric field-dominant” and “conductivity-dominant” auroral electrojets. This study also discusses the implications of these two auroral-electrojet components in terms of solar wind-magnetosphere-ionosphere interactions.  相似文献   

11.
In the STAR/AQEM protocol microhabitats covering less than 5% of the sampling area were neglected. Driven by an ongoing discussion on the importance of these underrepresented microhabitats we tested the influence of sampling them. We investigated 48 streams representing 14 different stream types from all over Germany. Macroinvertebrates of underrepresented microhabitats were sampled in addition to the STAR/AQEM protocol. To ensure the method remains feasible in routine monitoring programmes the total sampling and sorting effort of additional sampling was limited to 20 min. Particularly those taxa were picked, which were not recognised during the routine STAR/AQEM sorting.To identify the effect of additional sampling on stream assessment results, we calculated the stream type-specific Multimetric Index (MMI) with the “main” and the “main+additional” data for each sample. The mean and median difference in MMI values between “main” and “main+additional” samples was 0.02 and 0.01, respectively. In seven of 48 samples (14.6%) a different ecological quality class was calculated with the “main+additional” dataset. Regarding common metrics within the MMI as well as intercalibration metrics differences between “main” and “main+additional” samples were analysed. The values differed most in richness metrics (e.g., number of EPTCBO Taxa, number of Trichoptera Taxa). The results of the present study show that additional sampling of underrepresented microhabitats could alter multimetric assessment results.  相似文献   

12.
We present two case studies in the night and evening sides of the auroral oval, based on plasma and field measurements made at low altitudes by the AUREOL-3 satellite, during a long period of stationary magnetospheric convection (SMC) on November 24, 1981. The basic feature of both oval crossings was an evident double oval pattern, including (1) a weak arc-type structure at the equatorial edge of the oval/polar edge of the diffuse auroral band, collocated with an upward field-aligned current (FAC) sheet of ≈1.0 μA m−2, (2) an intermediate region of weaker precipitation within the oval, (3) a more intense auroral band at the polar oval boundary, and (4) polar diffuse auroral zone near the polar cap boundary. These measurements are compared with the published magnetospheric data during this SMC period, accumulated by Yahnin et al. and Sergeev et al., including a semi-empirical radial magnetic field profile BZ in the near-Earth neutral sheet, with a minimum at about 10–14 RE. Such a radial BZ profile appears to be very similar to that assumed in the “minimum B/cross-tail line current” model by Galperin et al. (GVZ92) as the “root of the arc”, or the arc generic region. This model considers a FAC generator mechanism by Grad-Vasyliunas-Boström-Tverskoy operating in the region of a narrow magnetic field minimum in the near-Earth neutral sheet, together with the concept of ion non-adiabatic scattering in the “wall region”. The generated upward FAC branch of the double sheet current structure feeds the steady auroral arc/inverted-V at the equatorial border of the oval. When the semi-empirical BZ profile is introduced in the GVZ92 model, a good agreement is found between the modelled current and the measured characteristics of the FACs associated with the equatorial arc. Thus the main predictions of the GVZ92 model concerning the “minimum-B” region are consistent with these data, while some small-scale features are not reproduced. Implications of the GVZ92 model are discussed, particularly concerning the necessary conditions for a substorm onset that were not fulfilled during the SMC period.  相似文献   

13.
A case study of the dayside cusp/cleft region during an interval of stationary magnetospheric convection (SMC) on November, 24, 1981 is presented, based on detailed measurements made by the AUREOL-3 satellite. Layered small-scale field-aligned current sheets, or loops, superimposed to a narrow V-shaped ion dispersion structure, were observed just equatorward from the region of the “cusp proper”. The equatorward sheet was accompanied by a very intense and short (less than 1 s) ion intensity spike at 100 eV. No major differences were noted of the characteristics of the LLBL, or “boundary cusp”, and plasma mantle precipitation during this SMC period from those typical of the cusp/cleft region for similar IMF conditions. Simultaneous NOAA-6 and NOAA-7 measurements described in Despirak et al. were used to estimate the average extent of the “cusp proper” (defined by dispersed precipitating ions with the energy flux exceeding 10−3 erg cm−2 s−1) during the SMC period, as ≈0.73∼ ILAT width, 2.6–3.4 h in MLT, and thus the recently merged magnetic flux, 0.54–0.70 × 107 Wb. This, together with the average drift velocity across the cusp at the convection throat, ≈0.5 km s−1, allowed to evaluate the cusp merging contribution to the total cross-polar cap potential difference, ≈33.8–43.8 kV. It amounts to a quite significant part of the total cross-polar cap potential difference evaluated from other data. A “shutter” scenario is suggested for the ion beam injection/penetration through the stagnant plasma region in the outer cusp to explain the pulsating nature of the particle injections in the low- and medium-altitude cusp region.  相似文献   

14.
Analysis of Pc3 observational data along the 210° magnetic meridian showed a complicated frequency-latitude structure at middle latitudes. The observed period-latitude distributions vary between events with a “noisy source”: the D component has a colored-noise spectrum, while the spectrum of H component exhibits regular peaks that vary with latitude, and events with a “band-limited source”: the spectral power density of the D component is enhanced at certain frequencies throughout the network. For most ULF events a local gap of the H component amplitude has been exhibited at both conjugate stations at L ≃ 2.1. A quantitative interpretation has been given assuming that band-limited MHD emission from an extra-magnetospheric source is distorted by local field line resonances. Resonant frequencies had been singled out with the use of the asymmetry between spectra of H and D components. Additionally, a local resonant frequency at L ≃ 1.6 was determined by the quasi-gradient method using the data from nearly conjugate stations. The experimentally determined local resonance frequencies agree satisfactorily with those obtained from a numerical model of the Alfven resonator with the equatorial plasma density taken by extrapolation of Carpenter-Anderson model. We demonstrate how simple methods of hydromagnetic spectroscopy enable us to monitor simultaneously both the magnitude of the IMF and the magnetospheric plasma density from ULF data.  相似文献   

15.
Settled particles of fresh, labile organic matter may be a significant source of oxygen demand and nutrient regeneration in seasonally-hypoxic regions caused by nutrient inputs into stratified coastal zones. Studying the dynamics of this material requires sediment sampling methods that include flocculent organic materials and overlying water (OLW) at or above the sediment–water interface (SWI). A new coring device (“HYPOX” corer) was evaluated for examining nitrogen- (N) and oxygen-dynamics at the SWI and OLW in the northern Gulf of Mexico (NGOMEX). The HYPOX corer consists of a “Coring Head” with a check-valve, a weighted “Drive Unit,” and a “Lander,” constructed from inexpensive components. The corer collected undisturbed sediment cores and OLW from sediments at NGOMEX sampling sites with underlying substrates ranging from sand to dense clay. The HYPOX corer could be deployed in weather conditions similar to those needed for a multi-bottle rosette water-sampling system with 20 L bottles. As an example of corer applicability to NGOMEX issues, NH4+ cycling rates were examined at hypoxic and control sites by isotope dilution experiments. The objective was to determine if N-dynamics in OLW were different from those in the water column. “Ammonium demand,” as reflected by potential NH4+ uptake rates, was higher in OLW than in waters collected from a meter or more above the bottom at both sites, but the pattern was more pronounced at the hypoxia site. By contrast, NH4+ regeneration rates were low in all samples. These preliminary results suggest that heterotrophic activity and oxygen consumption in OLW in the hypoxic region may be regulated by the availability of NH4+, or other reduced N compounds, rather than by the lack of sufficient labile organic carbon.  相似文献   

16.
Tholeiitic basalts and associated intrusives are the major component of the Karoo igneous province. They are of Mesozoic age and constitute one of the world's classic continental flood basalt (CFB) provinces. It has been argued that most Karoo basalts have not undergone significant contamination with continental crust and that their lithospheric mantle source areas were enriched in incompatible minor and trace elements during the Proterozoic. The only exceptions to this are late-stage MORB-like dolerites near the present-day continental margins which are considered to be of asthenospheric origin.When data for the “southern” Karoo basalts are plotted on many of the geochemical discriminant diagrams which have been used to infer tectonic setting, essentially all of them would be classified as calc-alkali basalts (CAB's) or low-K tholeiites. Virtually none of them plot in the compositional fields designated as characteristic of “within-plate” basalts. There is little likelihood that the compositions of the Karoo basalts can be controlled by active subduction at the time of their eruption and no convincing evidence that a “subduction component” has been added to the subcontinental lithospheric mantle under the entire area in which the basalts crop out. It must be concluded that the mantle source areas for CAB's and the southern Karoo basalts have marked similarities.In contrast, the data for “northern” Karoo basalts largely plot in the “within-plate” field on geochemical discriminant diagrams. Available data suggest that the source composition and/or the restite mineralogy and degree of partial melting are different for southern and northern Karoo basalts. There is no evidence for any difference in tectonic setting between the southern and northern Karoo basalts at the time they were erupted. This appears to be clear evidence that specific mantle source characteristics and/or magmatic processes can vary within a single CFB province to an extent that renders at least some geochemical discriminant diagrams most unreliable for classifying tectonic environment with respect to continental volcanic rocks.  相似文献   

17.
The Track Etch® system for radon detection was evaluated as a geothermal exploration technique in a known geothermal resource area in New Zealand called the Craters of the Moon (previously known as “Karapiti”). Very strong radon anomalies spaced along mapped fault traces were detected using 60-m sample spacings. Such radon anomalies may indicate good areas to drill for steam. The anomalies detected in these tests were located inside a larger area known to have above-back-ground concentrations of radon and thought to be a generally favourable area for finding shallow steam. Track Etch® radon cups with an improved type of detector were found to be usable in ground temperatures as high as 60°C. There was no direct correlation of radon concentrations with resistivity measurements, but a moderate correlation with near-surface temperature measurements. Varying vegetation cover had no significant effect on the results but there was an apparent correlation with superficial pumice deposits. It is concluded from the tests that the Track Etch method shows promise in vapour-dominated areas for improving drill-hole siting and thus reducing the economic loss of drilling non-productive holes.  相似文献   

18.
The different basalt types related to rift structure development have been investigated, starting from the pre-rift stage in the northern Ethiopian rift and its eastern escarpment and plateau.The basic volcanic rocks are represented mainly by transitional basalts, both in the pre-rift (plateau) and rift (escarpment and rift floor) stages. A striking feature is that although the plateau basalts show clear tholeiitic affinity and the rift basalts reveal a somewhat pronounced “alkaline” character, the REE and LILE element abundances, however, progressively decrease from the “tholeiitic” basalts of the plateau to the “alkaline” basalts of the rift.All data support the view that such contrasting features may be attributed to a continuous depletion of hygromagmatophile (REE, LILE) elements in the mantle source material, related to the large volumes of magmas produced in the early phase of rift structure development. The transition from “tholeiitic” (plateau) to “alkaline” (rift) transitional basalts is related to decreasing intensity of extensional movements.  相似文献   

19.
Eruptions between 1719 and 1721 at Wudalianchi produced two monogenetic strombolian cones Laoheishan and Huoshaoshan and the 65 km2 Shilong lava field. The lavas are unusual in that they are leucite-bearing and lack modal plagioclase. Together with the earlier cones, the historic cones form an orthogonal network with a 4-km average separation. Differences in the morphology of the historic cones are attributed to differences in explosivity. The Shilong lava is predominantly pahoehoe (70%), of compound form, and similar to “plains-style” lavas. It is concluded that there is little possibility that an eruption will take place at Wudalianchi in the near future.  相似文献   

20.
Deamplification of strong motion and the increase of the effective period of soil deposits are typical nonlinear effects; we seek them in SMART1-array data by applying the horizontal-to-vertical spectral ratio (HVSR) technique. The recordings, from four soil and one rock stations, represent 23 earthquakes (ML 4.9–7.0); PGA varies between 20–260 cm/s2. For each station, mean HVSR curves are calculated for two PGA ranges: <75 cm/s2 and >100 cm/s2 (weak and strong motion). At the soil stations, the “weak” (linear) and “strong” (nonlinear) responses are significantly different. Below 1–1.8 Hz, the nonlinear response exceeds the linear one. Above 2 Hz, the nonlinear response drops below the linear one and above 4–6 Hz below unity (deamplification). From 10 to 16 Hz, the two responses converge. One soil site shows significant negative correlation between resonance frequency and ground acceleration. Such behaviour agrees with other empirical studies and theoretical predictions. Our results imply that the HVSR technique is sensitive to ground-motion intensity and can be used to detect and study nonlinear site response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号