首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Widely distributed proxy records show that there were out-of-phase behaviors of moisture change between arid central Asia (ACA) and monsoonal northern China during the Little Ice Age (LIA) and Medieval Climate Anomaly (MCA). We examined spatial pattern differences between the MCA and LIA to identify contrasting patterns of summer precipitation variability, and to diagnose explanatory mechanisms through the analysis of a 1000-year global climate model simulation driven by natural and anthropogenic forcing. The results show that the model was able to roughly produce the general features of MCA-LIA hydroclimatic spatial differences between monsoonal northern China and ACA, with a relatively wet MCA found in monsoonal northern China and a relatively dry MCA found in ACA. A further analysis of associated circulations shows that increased summer precipitation in monsoonal northern China was caused by the strengthening of summer monsoon, while the decline in summer precipitation in ACA was caused by an anomalous northward displacement of the subtropical westerly jet stream. Our analyses suggest that both effective solar forcing and El-Niño Southern Oscillation (ENSO) may produce these contrasting patterns of precipitation between monsoonal northern China and ACA. Due to a change in the probability of ENSO phases at the centennial time scale found in our experiments may be attributed to solar irradiances, higher effective solar irradiances during the MCA relative to those of the LIA may have been the ultimate forcing mechanism for the simulated precipitation differences between the MCA and LIA.  相似文献   

2.
B. G. Hunt 《Climatic change》1998,38(2):133-157
The question as to whether the climatic anomalies associated with the Medieval Warm Period and the Little Ice Age can be attributed to natural climatic variability is explored in this paper. The output from a 500-year run with a global climatic model is used for this purpose. The model exhibits multi-decadal variability in its climatic outputs, which appears to have many of the characteristics of observed climatic data over the last millennium. Global distributions of surface temperature associated with peak warming and cooling phases of the model run highlight the spatial variability which occurs, and the lack of synchroneity in the response from region to region. Considerable year-to-year variability occurs in temperature anomaly patterns during the warming and cooling phases, indicating the complexity of the responses. The model results suggest that such climatic phases should not be considered as lengthy periods of universal warming or cooling. Comparison of observed time series of land surface temperature for the northern hemisphere for the last 500 years with model output indicates that most of the observed features in this climatic record can be reproduced by processes associated with internal mechanisms of the climatic system as reproduced in the model. While the model results do not exclude the possible contribution of external forcing agents as a contributing factor to these climatic episodes, the perception is that such agents would enhance existing naturally-induced climatic features rather than initiate them, at least for this time frame. Given the omnipresent nature of natural climatic variability, it is assumed that such variability rather than external forcing agents has primacy in generating and maintaining the underlying observed climatic variability. An understanding of the mechanisms and behaviour of such climatic features is becoming of increasing importance, in view of their possible role in modulating future climatic trends given the expected influence of the greenhouse effect.  相似文献   

3.
Abstract

The relationship between the Arctic and subarctic sea‐ice concentration (SIC) anomalies, particularly those associated with the decadal‐scale Greenland and Labrador Seas “Ice and Salinity Anomalies (ISAs) “, and the overlying atmospheric circulation fluctuations is investigated using the singular value decomposition (SVD) and composite map analysis methods. The data analyzed are monthly SIC and sea level pressure (SLP) anomalies, which cover the northern hemisphere poleward of 45°N and extend over the 41‐year period 1954–1994.

The SVD1 (first) mode of the coupled variability, which accounts for 57% of the square covariance, is for the most part an atmosphere‐to‐ice forcing mode characterized by the decadal timescale. The aforementioned ISA anomalies are clearly captured by this mode whose SIC anomalies are dominated by a strong dipole across Greenland. However, as part of the same mode, there is also a weaker SIC dipole in the northern North Pacific which has opposite‐signed anomalies in the Sea of Okhotsk and the Bering Sea. It is also shown that there exists a significant negative correlation between the decadal SIC variability in the Greenland‐Barents Seas region associated with this mode and the North Atlantic Oscillation, whose spectrum also exhibits a quasi‐decadal signal.

The SVD2 mode accounts for 12% of the square covariance and shows no evidence of a dominant forcing field of either SIC or SLP. This SVD mode exhibits very low frequency (interdecadal) variability, and its co‐variability is mainly concentrated in the northern North Pacific. It appears to be a high‐latitude extension of the recently investigated interdecadal North Pacific Oscillation. The spatial structure of the second mode complements the case of the first SVD mode whose co‐variability mainly occurs in the northern North Atlantic.  相似文献   

4.
Huang  Ruping  Chen  Shangfeng  Chen  Wen  Yu  Bin  Hu  Peng  Ying  Jun  Wu  Qiaoyan 《Climate Dynamics》2021,56(11):3643-3664

Compared to the zonal-mean Hadley cell (HC), our knowledge of the characteristics, influence factors and associated climate anomalies of the regional HC remains quite limited. Here, we examine interannual variability of the northern poleward HC edge over western Pacific (WPHCE) during boreal winter. Results suggest that interannual variability of the WPHCE is impacted by the El Niño-Southern Oscillation (ENSO) Modoki, North Pacific Oscillation (NPO) and North Atlantic Oscillation (NAO). The WPHCE tends to shift poleward during negative phase of the ENSO Modoki, and positive phases of the NPO and NAO, which highlights not merely the tropical forcing but also the extratropical signals that modulate the WPHCE. ENSO modoki, NPO and NAO modulate the WPHCE via inducing atmospheric anomalies over the western North Pacific. We further investigate the climatic impacts of the WPHCE on East Asia. The poleward shift of the northern descending branch of the WPHC results in anomalous upward (downward) motions and upper-level divergence (convergence) anomalies over south-central China (northern East-Asia), leading to increased (decreased) rainfall there. Moreover, pronounced cold surface air temperature anomalies appear over south-central China when the sinking branch of the WPHC moves poleward. Based on the temperature diagnostic analysis, negative surface temperature tendency anomalies over central China are mostly attributable to the cold zonal temperature advection and ascent-induced adiabatic cooling, while the negative anomalies over South China are largely due to the cold meridional temperature advection. These findings could improve our knowledge of the WPHCE variability and enrich the knowledge of forcing factors for East Asian winter climate.

  相似文献   

5.
Bin Yu  Hai Lin 《Climate Dynamics》2013,40(5-6):1183-1200
The secular trends and interannual variability of wintertime temperatures over northern extratropical lands and circulations over the northern hemisphere are examined using the NCEP/NCAR reanalysis from 1961 to 2010. A primitive equation dry atmospheric model, driven by time-averaged forcing in each winter diagnosed from the NCEP reanalysis, is then employed to investigate the influences of tropical and extratropical forcing on the temperature and circulation variability. The model has no topography and the forcing is thus model specific. The dynamic and thermodynamic maintenances of the circulation and temperature anomalies are also diagnosed. Distinct surface temperature trends over 1961–1990 and 1991–2010 are found over most of the extratropical lands. The trend is stronger in the last two decades than that before 1990, particularly over eastern Canadian Arctic, Greenland, and Asia. The exchange of midlatitude and polar air supports the temperature trends. Both the diagnosed extratropical and tropical forcings contribute to the temperature and circulation trends over 1961–1990, while the extratropical forcing dominates tropical forcing for the trends over 1991–2010. The contribution of the tropical forcing to the trends is sensitive to the period considered. The temperature and circulation responses to the diagnosed tropical and extratropical forcings are approximately additive and partially offsetting. Covariances between the interannual surface temperature and 500-hPa geopotential anomalies for the NCEP reanalysis from 1961 to 2010 are dominated by two leading modes associated with the North Atlantic Oscillation (NAO) and Pacific-North American (PNA) teleconnection patterns. The diagnosed extratropical forcing accounts for a significant part of the NAO and PNA associated variability, including the interannual variability of stationary wave anomalies, as well as dynamically and thermodynamically synoptic eddy feedbacks over the North Atlantic and North Pacific. The tropical forcing contributes to the PNA related temperature and circulation variability, but has a small contribution to the NAO associated variability. Additionally, relative contributions of tropical Indian and Pacific forcings are also assessed.  相似文献   

6.
B. G. Hunt 《Climate Dynamics》2011,37(7-8):1501-1515
Output from a multi-millennial simulation with the CSIRO Mark 2 coupled global climatic model has been analysed to determine the principal characteristics of extreme winters over the globe for ??present conditions??. Thus, this study is not concerned with possible changes in winter conditions associated with anthropogenically induced climatic change. Defining an extreme winter as having a surface temperature anomaly of below ?2 standard deviations (sd) revealed a general occurrence rate over the globe of between 100 and 200 over a 6,000-year period of the simulation, with somewhat higher values over northwest North America. For temperature anomalies below ?3?sd the corresponding occurrence rate drops to about 10. Spatial correlation studies revealed that extreme winters over regions in Europe, North America or Asia were very limited geographically, with time series of the surface temperature anomalies for these regions having mutual correlation coefficients of about 0.2. The temporal occurrence rates of winters (summers) having sd below ?3 (above +3) were very asymmetric and sporadic, suggesting that such events arise from stochastic influences. Multi-year sequences of extreme winters were comparatively rare events. Detailed analysis revealed that the temporal and spatial evolution of the monthly surface temperature anomalies associated with an individual extreme winter were well replicated in the simulation, as were daily time series of such anomalies. Apart from an influence of the North Atlantic Oscillation on extreme winters in Europe, other prominent climatic oscillations were very poorly correlated with such winters. Rather modest winter temperature anomalies were found in the southern hemisphere.  相似文献   

7.
经圈环流在大气对SSTA强迫响应中的作用   总被引:1,自引:0,他引:1       下载免费PDF全文
本文建立了一个包括经向Hadley环流作用的简单半谱模式并从1982年欧洲中心的客观分析资料中得到全球纬向平均场。经一系列数值实验发现,当SSTA处于赤道地区时,由它强迫产生的波动可以同时向南北半球传播。但若考虑经向Hadley环流(υ)的作用,波传播的空间位相和振幅就有比较明显的变化,并更接近于实际大气环流异常情况。当非绝热加热源位于偏离赤道的南北半球时,实验结果表明,如果不考虑Hadley环流,南北半球的非绝热加热很难在另一半球产生强的大气响应;考虑了Hadley环流后,则非绝热加热产生的波动可向另一半球传播。数值实验结果还表明,夏季当非绝热加热源的位置改变时,大气对其改变的响应不明显,而冬季大气对非绝热加热源的纬向位置的响应却非常敏感。  相似文献   

8.
利用中国科学院大气物理研究所季风系统研究中心发展的气候模式(Integrated Climate Model,ICM)开展了近千年气候模拟试验,考察了模式对过去千年温度和大气涛动变化的模拟,并分析了全球季风百年到千年尺度的变化。结果表明:模式对百年尺度气候变率有较好的模拟能力,900~1200年北半球平均表面温度偏高,1500~1800年温度偏低,模拟的北半球、南半球平均表面温度都呈现出了19世纪至2000年的快速增暖。模式对大气涛动百年尺度变化的模拟与重建资料存在较大的不同。全球季风在850~1050年、1150~1200年和1300~1420加强,在1210~1300年和1600~1850年减弱。1875~2000年全球季风指数呈直线上升趋势。中世纪气候异常期(MWP)季风强度在全球大部分季风区域增加,小冰期(LIA)则相反。20世纪暖期(PWP)全球季风强度显著增加,其中赤道西太平洋增加超过1 mm/d。  相似文献   

9.
Climatic trends     
A 10,000-year long simulation has been made with the CSIRO Mark 2 coupled global atmospheric-oceanic model for present climatic conditions. The annual mean output from the model has been used to calculate global distributions of climatic trends. These trends were derived by linear regression using a least squares fit to a given climatic time series for a selected trend duration. Typically, this information cannot be obtained from the limited observational record, hence the simulation provides a documentation of many climatic trend characteristics not previously available. A brief examination of observed climatic trends is given to demonstrate the viability of the trend analysis. This is followed by a range of global trend distributions for various climatic variables and trend durations. At any one time only relatively small regions of the globe have trends significant at the 95% level. Markedly different trend patterns occur for a given trend duration computed for different times within the simulation. Decadal and multi-decadal trend patterns revealed consistent relationships for El Niño/Southern Oscillation (ENSO)-related climatic variables. It was found that within a given duration trend, noticeable shorter term counter-trends can exist, with the latter being much stronger. In general, a strong trend is indicative of a short duration, thus highlighting the danger of extrapolating such trends. Examination of time series of climatic trends emphasised the dominance of decadal variability and the essential residual nature of, especially longer term, trends. Rainfall trends over Australia are used to indicate the almost continent-wide changes that can occur in trend patterns within a few decades, in agreement with observation. The outcome emphasises that any changes in current, observed climatic trends should not automatically be attributed to greenhouse forcing. Importantly, it is noted that for conditions associated with naturally occurring climatic variability, the global mean of any climatic trend distribution should be zero or near zero. Departures from this situation imply the existence of an external forcing agency. Thousand year trends could be readily identified within the simulation, but the variations from millennium to millennium indicate the occurrence of secular variability. A probability density function distribution of 30-year duration trends within a selected millennium revealed a near-Gaussian outcome. This, together with other analyses, supports the conclusion that stochastic processes dominate the climatic variability within the simulation.  相似文献   

10.
We investigated the differences between stratospheric (S-type) and tropospheric (T-type) Arctic Oscillation (AO) events on the intraseasonal time scale, in terms of their influences on surface air temperature (SAT) over the Northern Hemisphere and the dynamic features associated with their spatial structures. S-type AO events showed a stratosphere-troposphere coupled structure, while T-type events exhibited a stratosphere-troposphere uncoupled structure. The annular SAT anomalies over the Northern Hemisphere were found to be associated with S-type AO events, whereas such an annular feature was substantially destructed in T-type AO events. The different horizontal structures in the troposphere of the two types could mainly be attributed to transient eddy feedback forcing. As for the vertically uncoupled structure of Ttype events, the underlying dynamical features that differentiate them from S-type events lie in the vertical propagation of zonally confined Rossby waves. In T-type events, the zonally confined Rossby wave packets can emanate from the significant height anomalies over Northeast Asia, where one vertical waveguide exists, and then propagate upward into the stratosphere. In contrast, such a vertical propagation was not evident for S-type events. The stratospheric anomalies associated with the upward injection of the zonally confined Rossby waves from the troposphere in T-type events can further induce the anomalous vertical propagation of planetary waves (PWs) through the interference between the climatological-mean PWs and anomalous PWs, leading to the final stratosphere-troposphere uncoupled structure of T-type events.  相似文献   

11.
We describe a new tree-ring width data set of 14 white spruce chronologies for the Seward Peninsula (SP), Alaska, based on living and subfossil wood dating from 1358 to 2001 AD. A composite chronology derived from these data correlates positively and significantly with summer temperatures at Nome from 1910 to 1970, after which there is some loss of positive temperature response. There is inferred cooling during periods within the Little Ice Age (LIA) from the early to middle 1600s and late 1700s to middle 1800s; and warming from the middle 1600s to early 1700s. We also present a larger composite data set covering 978–2001 AD, utilizing the SP ring-width data in combination with archaeological wood measurements and other recent collections from northwestern Alaska. The Regional Curve Standardization (RCS) method was employed to maximize potential low-frequency information in this data set. The RCS chronology shows intervals of persistent above-average growth around the time of the Medieval Warm Period (MWP) early in the millennium, which are comparable to growth levels in recent centuries. There is a more sustained cold interval during the LIA inferred from the RCS record as compared to the SP ring-width series. The chronologies correlate significantly with Bering and Chukchi Sea sea surface temperatures and with the Pacific Decadal Oscillation index. These atmosphere–ocean linkages probably account for the differences between these records and large-scale reconstructions of Arctic and Northern Hemisphere temperatures based largely on continental interior proxy data.  相似文献   

12.
We investigate the multidecadal variability of summer temperature over Romania as measured at 14 meteorological stations with long-term observational records. The dominant pattern of summer temperature variability has a monopolar structure and shows pronounced multidecadal variations. A correlation analysis reveals that these multidecadal variations are related with multidecadal variations in the frequency of four daily atmospheric circulation patterns from the North Atlantic region. It is found that on multidecadal time scales, negative summer mean temperature (TT) anomalies are associated with positive sea level pressure (SLP) anomalies centered over the northern part of the Atlantic Ocean and Scandinavia and negative SLP anomalies centered over the northern part of Africa. It is speculated that a possible cause of multidecadal fluctuations in the frequency of these four patterns are the sea surface temperature (SST) anomalies associated to the Atlantic Multidecadal Oscillation (AMO). These results have implications for predicting the evolution of summer temperature over Romania on multidecadal time scales.  相似文献   

13.
The centennial?Cmillennial variation of the East Asian summer monsoon (EASM) precipitation over the past 1000?years was investigated through the analysis of a millennium simulation of the coupled ECHO-G model. The model results indicate that the centennial?Cmillennial variation of the EASM is essentially a forced response to the external radiative forcing (insolation, volcanic aerosol, and green house gases). The strength of the response depends on latitude; and the spatial structure of the centennial?Cmillennial variation differs from the interannual variability that arises primarily from the internal feedback processes within the climate system. On millennial time scale, the extratropical and subtropical precipitation was generally strong during Medieval Warm Period (MWP) and weak during Little Ice Age (LIA). The tropical rainfall is insensitive to the effective solar radiation forcing (insolation plus radiative effect of volcanic aerosols) but significantly responds to the modern anthropogenic radiative forcing. On centennial time scale, the variation of the extratropical and subtropical rainfall also tends to follow the effective solar radiation forcing closely. The forced response features in-phase rainfall variability between the extratropics and subtropics, which is in contrast to the anti-correlation on the interannual time scale. Further, the behavior of the interannual?Cdecadal variation in the extratropics is effectively modulated by change of the mean states on the millennial time scale, suggesting that the structure of the internal mode may vary with significant changes in the external forcing. These findings imply that on the millennial time scale, (a) the proxy data in the extratropical EA may more sensitively reflect the EASM rainfall variations, and (b) the Meiyu and the northern China rainfall provide a consistent measure for the EASM strength.  相似文献   

14.
One of the generally accepted climatic effects of stratospheric aerosol injection is the reduction of the global radiation in high latitudes by an order of 5% during El Chichon type eruptions. To test the effect of a high-latitude radiation deficit on global climate, a GCM experiment was performed with the ECMWF T21 atmosphere general circulation model (AGCM). The results provide physically-consistent evidence that this radiation deficit is a possible external forcing factor for severe climatic anomalies not only in the area directly affected by the reduced radiation, but also in the tropics. The most important factor is the creation of enhanced snow cover in regions of Asia that are distant from the location of the introduced radiation anomaly. The simulated results show certain features that are well known from observations in weak monsoon years, i.e. the weakened easterly jet in the upper troposphere over northern India, prolonged winter monsoon conditions, and prevailing anticyclonic vorticity anomalies over the entire Indian summer monsoon region. Over the western Pacific at the end of boreal winter (May), increased convective activity leads to a negative Walker circulation anomaly with westerly wind anomalies near the surface and easterly anomalies in the upper troposphere. This is known as one of the most important anomalies at the beginning of an El Niño/Southern Oscillation (ENSO) event.This paper was presented at the International Conference on Modelling of Global Climate Change and Variability, held in Hamburg 11–15 September 1989 under the auspices of the Meteorological Institute of the University of Hamburg and the Max Planck Institute for Meteorology. Guest Editor for these papers is Dr. L. Dümenil  相似文献   

15.
东亚地区小冰期气候的模拟   总被引:3,自引:2,他引:1       下载免费PDF全文
本文使用ECHO-G全球气候模式对1550~1850年的小冰期气候进行了300个模式年的模拟,着重分析了东亚地区小冰期的温度变化特征,并与目前所得到的小冰期气候重建结果进行了对比。结果表明,在考虑了太阳辐射、火山活动、CO2和CH4等主要气候影响驱动因子的条件下,较好地模拟出了东亚地区的小冰期气候特征,并与其它手段的气候重建结果相吻合,显示太阳活动和火山活动是小冰期气候形成的主要原因。  相似文献   

16.
Summary Daily temperature anomaly records are analyzed (61 for Australia, 18 for Hungary) by means of detrended fluctuation analysis. Positive long range asymptotic correlations extending up to 5–10 years are detected for each case. Contrary to earlier claims, the correlation exponent is not universal for continental stations. Interestingly, the dominant factor is geographic latitude over Australia: the general tendency is a decrease of correlation exponent with increasing distance from the equator. This tendency is in a complete agreement with the results found by Tsonis et al (1999) for 500-hPa height anomalies in the northern hemisphere. The variance of fluctuations exhibits an opposite trend, the larger is the distance from the equator, the larger the amplitude of intrinsic fluctuations. The presence of Tropospheric Biennial Oscillation is clearly identified for three stations at the northeastern edge of the Australian continent.  相似文献   

17.
The mechanisms controlling the decadal to multidecadal variability of the Atlantic Meridional Overturning Circulation (MOC) and its influence on the atmosphere are investigated using a control simulation with the IPSL-CM4 climate model. The multidecadal fluctuations of the MOC are mostly driven by deep convection in the subpolar gyre, which occurs south of Iceland in the model. The latter is primarily influenced by the anomalous advection of salinity due to changes in the East Atlantic Pattern (EAP), which is the second mode of atmospheric variability in the North Atlantic region. The North Atlantic Oscillation is the dominant mode, but it plays a secondary role in the MOC fluctuations. During summer, the MOC variability is shown to have a significant impact on the atmosphere in the North Atlantic–European sector. The MOC influence is due to an interhemispheric sea surface temperature (SST) anomaly with opposite signs in the two hemispheres but largest amplitude in the northern one. The SST pattern driven by the MOC mostly resembles the model Atlantic Multidecadal Oscillation (AMO) and bears some similarity with the observed one. It is shown that the AMO reflects both the MOC influence and the local atmospheric forcing. Hence, the MOC influence on climate is best detected using lagged relations between climatic fields. The atmospheric response resembles the EAP, in a phase that might induce a weak positive feedback on the MOC.  相似文献   

18.
A study of snow statistics over the past 50 years at several climatological stations in the Swiss Alps has highlighted periods in which snow was either abundant or not. Periods with relative low snow amounts and duration are closely linked to the presence of persistent high surface pressure fields over the Alpine region during late Fall and in Winter. These high pressure episodes are accompanied by large positive temperature anomalies and low precipitation, both of which are unfavorable for snow accumulation during the Winter. The fluctuations of seasonal to annual pressure in the Alpine region is strongly correlated with anomalies of the North Atlantic Oscillation index, which is a measure of the strength of the westerly flow over the Atlantic. This implies that large-scale forcing, and not local or regional factors, plays a dominant role in controling the timing and amount of snow in the Alps, as evidenced by the abundance or dearth of snow over several consecutive years. Furthermore, since the mid-1980s, the length of the snow season and snow amount have substantially decreased, as a result of pressure fields over the Alps which have been far higher and more persistent than at any other time this century. A detailed analysis of a number of additional Alpine stations for the last 15 years shows that the sensitivity of the snow-pack to climatic fluctuations diminishes above 1750 m. In the current debate on anthropogenically-induced climatic change, this altitude is consistent with other studies and estimates of snow-pack sensitivity to past and projected future global warming.  相似文献   

19.
A hybrid coupled model(HCM) is constructed for El Nino–Southern Oscillation(ENSO)-related modeling studies over almost the entire Pacific basin. An ocean general circulation model is coupled to a statistical atmospheric model for interannual wind stress anomalies to represent their dominant coupling with sea surface temperatures. In addition, various relevant forcing and feedback processes exist in the region and can affect ENSO in a significant way; their effects are simply represented using historical data and are incorporated into the HCM, including stochastic forcing of atmospheric winds, and feedbacks associated with freshwater flux, ocean biology-induced heating(OBH), and tropical instability waves(TIWs). In addition to its computational efficiency, the advantages of making use of such an HCM enable these related forcing and feedback processes to be represented individually or collectively, allowing their modulating effects on ENSO to be examined in a clean and clear way. In this paper, examples are given to illustrate the ability of the HCM to depict the mean ocean state, the circulation pathways connecting the subtropics and tropics in the western Pacific, and interannual variability associated with ENSO. As satellite data are taken to parameterize processes that are not explicitly represented in the HCM, this work also demonstrates an innovative method of using remotely sensed data for climate modeling. Further model applications related with ENSO modulations by extratropical influences and by various forcings and feedbacks will be presented in Part II of this study.  相似文献   

20.
This paper examines the mean annual cycle, interannual variability, and leading patterns of the tropical Atlantic Ocean simulated in a long-term integration of the climate forecast system (CFS), a state-of-the-art coupled general circulation model presently used for operational climate prediction at the National Centers for Environmental Prediction. By comparing the CFS simulation with corresponding observation-based analyses or reanalyses, it is shown that the CFS captures the seasonal mean climate, including the zonal gradients of sea surface temperature (SST) in the equatorial Atlantic Ocean, even though the CFS produces warm mean biases and underestimates the variability over the southeastern ocean. The seasonal transition from warm to cold phase along the equator is delayed 1 month in the CFS compared with the observations. This delay might be related to the failure of the model to simulate the cross-equatorial meridional wind associated with the African monsoon. The CFS also realistically simulates both the spatial structure and spectral distributions of the three major leading patterns of the SST anomalies in the tropical Atlantic Ocean: the south tropical Atlantic pattern (STA), the North tropical Atlantic pattern (NTA), and the southern subtropical Atlantic pattern (SSA). The CFS simulates the seasonal dependence of these patterns and partially reproduces their association with the El Niño-Southern Oscillation. The dynamical and thermodynamical processes associated with these patterns in the simulation and the observations are similar. The air-sea interaction processes associated with the STA pattern are well simulated in the CFS. The primary feature of the anomalous circulation in the Northern Hemisphere (NH) associated with the NTA pattern resembles that in the Southern Hemisphere (SH) linked with the SSA pattern, implying a similarity of the mechanisms in the evolution of these patterns and their connection with the tropical and extratropical anomalies in their respective hemispheres. The anomalies associated with both the SSA and NTA patterns are dominated by atmospheric fluctuations of equivalent-barotropic structure in the extratropics including zonally symmetric and asymmetric components. The zonally symmetric variability is associated with the annular modes, the Arctic Oscillation in the NH and the Antarctic Oscillation in the SH. The zonally asymmetric part of the anomalies in the Atlantic is teleconnected with the anomalies over the tropical Pacific. The misplaced teleconnection center over the southern subtropical ocean may be one of the reasons for the deformation of the SSA pattern in the CFS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号