首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
As an important marginal sea under the influences of both the Changjiang River and the Kuroshio, the East China Sea (ECS) environment is sensitive to both continental and oceanic forcing. Paleoenvironmental records are essential for understanding the long-term environmental evolution of the ECS and adjacent areas. However, paleo-temperature records from the ECS shelf are currently very limited. In this study, the U 37 K′ and TEX86 paleothermometers were used to reconstruct surface and subsurface temperature changes of the mud area southwest of the Cheju Island (Site F10B) in the ECS during the Holocene. The results indicate that temperature changes of F10B during the early Holocene (11.6–6.2 kyr) are associated with global climate change. During the period of 6.2–2.5 kyr, the similar variability trends of smoothing average of ΔT (the difference between surface and subsurface temperature) of Site F10B and the strength of the Kuroshio suggest that the Kuroshio influence on the site started around 6.2 kyr when the Kuroshio entered the Yellow Sea and continued to 2.5 kyr. During the late Holocene (2.5–1.45 kyr), apparent decreases of U 37 K′ sea surface temperature (SST) and ΔT imply that the direct influence of the Kuroshio was reduced while cold eddy induced by the Kuroshio gradually controlled hydrological conditions of this region around 2.5 kyr.  相似文献   

2.
(翁齐浩)THERELATIONSHIPBETWEENTHEENVIRONMENTALCHANGEOFTHEZHUJIANGRIVERDELTAINHOLOCENEANDITSCULTURALORIGINSANDPROPAGATION¥WengQih...  相似文献   

3.
Assemblages of benthic foraminifera in a sediment core (C02) near the western margin of the southern Yellow Sea Mud were studied to decipher the phase evolution of Holocene paleoenvironmental changes associated with the Holocene marine transgression. It appears that during the early Holocene (11.2–10.1 kyr BP), the faunal was dominated by low salinity and shallow water species Cribrononion subincertum, Buccella frigida and Ammonia beccarii, reflecting a near coast depositional environment. A rapid increase of the relative abundance of Ammonia compressiuscula between 10.1–9.3 kyr BP indicates that the sea level rose rapidly during that time period. From 9.3–7.7 kyr BP, the benthic foraminiferal assemblage was dominated by high percentage of A. compressiscula, suggesting that the sea level was relatively stable. An obvious transition of benthic foraminifera, from the A. compressiuscula-dominated assemblage to an Ammonia ketienziensis-dominated assemblage, occurred between 7.7–6.2 kyr BP, possibly corresponding to a second sea level rapid rise period in the Yellow Sea during the Holocene. This transition may correspond to the gradually strengthened Yellow Sea warm current (YSWC) and finally is established the modern-type circulation in the Yellow Sea. It may also mark the formation of the Yellow Sea cold bottom water (YSCBW) during that period. Since then, the benthic foraminiferal assemblage based on core C02 was dominated by typical YSCBW species, A. ketienziensis, Astrononion italicum and Hanzawaia nipponica, at 6.2–4 kyr BP. A non-deposition period occurred since ~4 kyr BP, which possibly related to the hydrology changes caused by the East Asia monsoon. The two obvious benthic foraminiferal transitions recorded in core C02 during the early and middle Holocene provide evidence that the Yellow Sea has undergone a two-phase rapid sea level rise during the Holocene marine transgression.  相似文献   

4.
Rainwater samples were collected in series in Qianliyan Island (southern Yellow Sea) and Shengsi Archipelago (East China Sea) between May 2000 and May 2002, chemical analysis for pH values,concentrations of heavy metals (Cu, Pb, Zn and Cd) and nutrients (NH4^-, NO3^-, PO43^-, SiO32^-) were performed.Results indicate that concentrations of most of the heavy metals and nutrients in rainwater show clear seasonal variation, i.e. high level in winter and low level in summer. Regionally, concentrations are higher in the southern Yellow Sea than in the East China Sea, but the annual input of heavy metals into oceans by wet deposition is similar in both stations. However, the input of nutrients by wet deposition in the East China Sea is 2-3 times higher than that in the southern Yellow Sea. In individual, Pb and PO4^3- are input to the sea mainly by dry deposition; whereas Cu, Zn, Cd and N compounds are input dominantly by wet deposition, the N/P ratios in the rainwater from two stations are much higher than those in seawater, showing a significant impact of atmospheric wet deposition on marine production and biogeochemical circulation of nutrients in these sea regions.  相似文献   

5.
Relevant geological, geographical, archaeological data were collected to study the characteristics of middle Holocene warm period and sea level high on North China coast. Middle Holocene climate and sea level change on North China coast were correlated to warm marine environment events in about 8-3 ka B.E The sea level in about 8 ka B.E was higher than present mean sea level, then fluctuated for 5 000 years and after that it became even in 3 ka B.E The highest sea level occurred in about 6-5 ka B.E; the maximum was about 2-3 m and minimum was about 1-2 m.  相似文献   

6.
Although the mid-late Holocene cold and dry event about 4000 years ago(the 4 ka event) has been observed almost globally, it was most prominent in terrestrial climate proxies from the lower latitudes. Here we evaluate the oceanic response to this event in terms of a Holocene sea surface temperature(SST) record reconstructed using the K'37U index for Core B3 on the continental shelf of the East China Sea. The record reveals a large temperature drop of about 5℃ from the mid-Holocene(24.7℃ at 5.6 ka) to the 4 ka event(19.2℃ at 3.8 ka). This mid-late Holocene cooling period in Core B3 correlated with(i) decreases in the East Asia summer monsoon intensity and(ii) the transition period with increased El Nino/Southern Oscillation activities in the Equatorial Pacific. Our SST record provides oceanic evidence for a more global nature of the mid-late Holocene climate change, which was most likely caused by a southward migration of the Intertropical Converge Zone in response to the decreasing summer solar insolation in the Northern Hemisphere. However, the large SST drop around Core B3 indicates that the mid-late Holocene cooling was regionally amplified by the initiation/strengthening of eddy circulation/cold front which caused upwelling and resulted in additional SST decrease. Upwelling during the mid-late Holocene also enhanced with surface productivity in the East China Sea as reflected by higher alkenone content around Core B3.  相似文献   

7.
ISOTOPICEVIDENCEFORHOLOCENECLIMATICCHANGESINBOSTENLAKE,SOUTHERNXINJIANG,CHINAZhongWei(钟巍)XiongHeigang(熊黑钢)DepartmentofGeograp...  相似文献   

8.
Based on the δ13C and δ18O fluctuation of lacustrine carbonate, CaCO3 content and sporo-pollen data, a palaeoclimatic history of Bosten Lake during the Holocene has been outlined, several stages of climatic changes are divided, and the following result es are obtained: (1) Palaeoclimatic changes revealed by carbonate isotope around Bosten Lake are basically identical with that revealed by other geological records in Xinjiang. Environmental changes presented apparent Westlies Style model: during cold period, relative humidity increased, δ18O, δ13C and CaCO3 appeared low; but in warm periods, the dry regime aggravated. (2) The temperature reflected by δ18O exist evident features being increase in the late period during the Holocene. Together with the δ13C, pollen and CaCO3 analyses, several cold and warm phases which are of broad regional significance can be identified. The warm peaks occurred at about 11.0 ka B.P., 9.4 ka B.P., 7.5 ka B.P., 5.0 ka B.P., 3.0 ka B.P. and 2.0 ka B.P.; the cold peaks at 11.5 ka B.P., 10.5 ka B.P., 8.8 ka B.P., 5.5 ka B.P., 3.3 ka B.P., 2.2 ka B.P. and 1.5 ka B.P.. (3) Several climatic events with the nature of “abrupt climatic changes” are revealed in the periods of 11.0 ka B.P. −10.5 ka B.P., 9.4 ka B.P. −8.8 ka B.P., 5.5 ka B.P. −5.0 ka B.P. and 2.0 ka B.P. −1.5 ka B.P.. (4) The results show that carbonate isotopic record of lacustrine sediment in arid area is very sensitive to climatic changes, and may be play a very important role in understanding the features and mechanism of palaeoclimatic changes.  相似文献   

9.
Spectrometry of ~(238)U, ~(234)U, ~(230)Th and, ~(232)Th in three Okinawa Trough cores showed that, based on the~(230)Th/~(232)Th activity ratio, the sedimentation rates were about 2.5 cm/ka, 2.8 cm/ka and 8.5 cm/ka respectivelyduring the Holocene and about 20.1 cm/ka, 12.29 cm/ka, 8.8 cm/ka and 12.6 cm/ka respectively during theWurm glacial. To examine the past global climatic and oceanographic changes, the stable oxygen isotopesδ~(18)O and CaCO_3 were measured. The Th content and Th/U ratio showed that variations of terrigenous materialinput from the continental shelf were associated with glacial and interglacial changes and sea level  相似文献   

10.
Seasonal variations in the phytoplankton community and the relationship between environmental factors of the sea area around Xiaoheishan Island are investigated in the present study. Xiaoheishan Island is located at 37°58′14″N and 120°38′46″E in Shandong Province, China. A total of 65 species of phytoplankton belonging to three phyla and 27 genera were identified, with Bacillariophyta having the largest number of species. The annual average chlorophyll a concentration for this area was 3.11 μg/L, and there occurs a Skeletonema costatum bloom in winter. The Shannon-Weaver indexes(log_2) of the phytoplankton from all stations were higher than 1, and the Pielou indexes were all higher than 0.3. The results of the canonical correspondence analysis(CCA) indicated that water temperature, PO_4~(3ˉ) and Cu were the environmental factors that had the greatest influence on the distribution of the phytoplankton community throughout the entire year. Although the concentration of heavy metal is well up to the state standards of the first grade of China(GB 3097-1997), these metals still have an impact on the phytoplankton community from this area.  相似文献   

11.
The 'Old Red Sand' is a type of semicemented medium-fine sandy sediment that is red (10R4/8) or brown red (2.5YR4/8) in colour and is found in late Quaternary deposits. The sediments have distinctive characteristics and are a critical archive for understanding climatic changes in the coastal areas of East Asia. The ages of the late Quaternary aeolian sand dunes from Haitan Island in the coastal area of South China are still in debate. In this study, three sets of marine terraces were identified in the northern region of Haitan Island. Aeolian dune sands are well preserved on the top of these terraces. Quartz Optically Stimulated Luminescence dating and the distribution of the formation ages demonstrated that the palaeo-dunes are deposits from the middle-late period of the Late Pleistocene (Q 3 2-3 ). The period may be divided into three stages, 100–90 ka, 70–60 ka, and 40–20 ka, in which the palaeo-dunes of the first two stages are more widespread and were formed separately during a low-sea level period of the Marine Isotope Stages 5b and 4. Several depositional palaeo-flood event records were preserved during the last stage due to the increasing gradient of mountain gullies formed during the Last Glacial Maximum.  相似文献   

12.
Information on the palaeoenvironment from Late Pleistocene to Holocene in northwestern Yannan Plateau has been deduced from a study of a 28.81m-long core taken from Napahai Lake.The results from Relative Brightness In-dex(RBI) as well as those from the lithological analyses of bulk sediments,total organic carbon and granulometric analy-ses have been used to reconstruct the environmental and climatic evolution of the area.The ages were provided by three ^14C datings.The record suggested a climate fluctuation between warm-dry and cool-wet from ca.57 to 32ka B.P.which led a shallowing and swamping of the lake.The water level again increased quickly at ca.32ka B.P.,reached itˊs peak during LGM(Last Glacial Maximum,ca.18-20kaB.P.)and remained relative high until ca.15kaB.P.The high wa-ter level at LGM is attributed to cold-wet conditions.The area experienced an abrupt and unstable climatic changes dur-ing the transition period form 15 to 10ka B.P.with a dominated littoral environment.Awarm-dry climate led to the contrac-tion of the lake during the Holocene and reed-swamps became dominant..After a minor wet-cool pulse during the Late Holocene,the modern climate became to be established.  相似文献   

13.
To decipher the sedimentary evolution and environmental changes since the late Last Deglaciation, two gravity cores were analyzed from the western North Yellow Sea (NYS). The two cores (B-L44 and B-U35) were sampled for grain size, clay minerals, detrital minerals, and 14C dating. They are comparable in lithofaies, and the observed succession was divided into four depositional units based on lithology and mineral assemblages, which recorded the postglacial transgression. Depositional unit 4 (DU 4) (before 11.5 ka) was characterized with enrichment in sand, and was interpreted as nearshore deposits in shallow water during the Younger Dryas Event. DU 3 (11.5-9.6 ka) displayed a fining-upward succession composed of sediments from local rivers, such as the Huanghe (Yellow) River, and from coastal erosion, which clearly were related to the Early Holocene transgression. Stable muddy deposition (DU 2) in NYS began to form at about 9.6 ka, which received direct supply of fine materials from the Shandong subaqueous clinoform. It is believed that the Yellow Sea circulation system played a major role in controlling the formation of fine sediment deposition in DU 1 (after 6.4 ka) after the sea level maximum.  相似文献   

14.
The sea level derived from TOPEX/Poseidon(T/P) altimetry data shows prominent long term trend and inter-annual variability.The global mean sea level rising rate during 1993-2003 was 2.9 mm a-1.The T/P sea level trend maps the geographical variability.In the Northern Hemisphere(15°-64°N),the sea level rise is very fast at the mid-latitude(20°-40°N) but much slower at the high-latitude,for example,only 0.5 mm a-1 in the latitude band 40°-50°N.In the Southern Hemisphere,the sea level shows high rising rate both in mid-latitude and high-latitude areas,for example,5.1 mm a-1 in the band 40°-50°S.The global thermosteric sea level(TSL) derived from Ishii temperature data was rising during 1993-2003 at a rate of 1.2 mm a-1 and accounted for more than 40% of the global T/P sea level rise.The contributions of the TSL distribution are not spatially uniform;for instance,the percentage is 67% for the Northern Hemisphere and only 29% for the Southern Hemisphere(15°-64°S) and the maximum thermosteric contribution appears in the Pacific Ocean,which contributes more than 60% of the global TSL.The sea level change trend in tropical ocean is mainly caused by the thermosteric effect,which is different from the case of seasonal variability in this area.The TSL variability dominates the T/P sea level rise in the North Atlantic,but it is small in other areas,and shows negative trend at the high-latitude area(40°-60°N,and 50°-60°S).The global TSL during 1945-2003 showed obvious rising trend with the rate of about 0.3 mm a-1 and striking inter-annual and decadal variability with period of 20 years.In the past 60 years,the Atlantic TSL was rising continuously and remarkably,contributing 38% to the global TSL rising.The TSL in the Pacific and Indian Ocean rose with significant inter-annual and decadal variability.The first EOF mode of the global TSL from Ishii temperature data was the ENSO mode in which the time series of the first mode showed steady rising trend.Among the three oceans,the first mode of the Pacific TSL presented the ENSO mode;there was relatively steady rising trend in the Atlantic Ocean,and no dominant mode in the Indian Ocean.  相似文献   

15.
PROFESSOR ZHU KEZHEN OPENING UP A PATH FOR RESEARCH ON CLIMATIC CHANGE IN CHINA ShiYafeng(施雅风)(LanzhouInstituteofGlaciologyan...  相似文献   

16.
1 INTRODUCTION δ13C in organic matters from lacustrine sedi- ments varies with several factors including aquatic plants, vegetation type in the catchment, atmos- pheric CO2 concentration, climate (temperature and precipitation), and properties of water, …  相似文献   

17.
Both nitrate (NO3) and soluble reactive phosphate (PO43−) concentration in the freshwater end-member at the mouth of the Changjiang River have increased dramatically since the 1960s. Within the same period in the sea area, with surface salinity>30, NO3 concentration has shown an obvious increase, PO43− has not changed greatly and dissolved reactive silica (SiO32−) has deceased dramatically. An examination of the elemental ratio of NO3 to PO43− at the mouth of the Changjiang River did not show a systematic trend from the 1960s to 2000s largely because both nutrients increased simultaneously. In comparison, the elemental ratio of dissolved inorganic nitrogen (DIN) to PO43− in surface seawater, with salinity>22, has shown a clearly increasing trend. Furthermore, an overall historical change of the SiO32−:PO43− ratio has undergone a reverse trend in this area. Based on the changes of SiO32−:PO43− and DIN:PO43− ratios, we can conclude that an overall historical change of SiO32−:DIN ratio has decreased in this area from the 1950–1960s to 2000s. The argument that phytoplankton productivity in the Changjiang estuary has been enhanced by increasing nutrient input from the riverine transport was supported by these results. A comparative study analyzing the shift of phytoplankton composition from the mid-1980s to 2000s was also made. The results indicated that the average yearly percentage of diatom species in the Changjiang estuary has decreased from 84.6% during 1985–1986 to 69.8% during 2004–2005. Furthermore, the average yearly percentage of diatom abundance in the Changjiang estuary decreased from 99.5% during to 75.5% over the same time period, while the abundance of dinoflagellates has increased dramatically, from 0.7% to 25.4%.  相似文献   

18.
Wave fi elds of the South China Sea(SCS) from 1976 to 2005 were simulated using WAVEWATCH III by inputting high-resolution reanalysis wind fi eld datasets assimilated from several meteorological data sources. Comparisons of wave heights between WAVEWATCH III and TOPEX/Poseidon altimeter and buoy data show a good agreement. Our results show seasonal variation of wave direction as follows: 1. During the summer monsoon(April–September), waves from south occur from April through September in the southern SCS region, which prevail taking about 40% of the time; 2. During the winter monsoon(December–March), waves from northeast prevail throughout the SCS for 56% of the period; 3. The dominant wave direction in SCS is NE. The seasonal variation of wave height H s in SCS shows that in spring, H s ≥1 m in the central SCS region and is less than 1 m in other areas. In summer, H s is higher than in spring. During September–November, infl uenced by tropical cyclones, H s is mostly higher than 1 m. East of Hainan Island, H s 2 m. In winter, H s reaches its maximum value infl uenced by the north-east monsoon, and heights over 2 m are found over a large part of SCS. Finally, we calculated the extreme wave parameters in SCS and found that the extreme wind speed and wave height for the 100-year return period for SCS peaked at 45 m/s and 19 m, respectively, SE of Hainan Island and decreased from north to south.  相似文献   

19.
Reclamation is one of the fastest-growing land use type developed in coastal areas and has caused degradation and loss of coastal wetlands as well as serious environmental problems. This paper was aimed at monitoring the spatiotemporal patterns of coastal wetlands and reclamation in the Yangtze Estuary during the 1960s and 2015. Satellite images obtained from 1980 to 2015 and topography maps of the 1960 s were employed to extract changes of reclamation and coastal wetlands. Area-weight centroids were calculated to identify the movement trend of reclamation and coastal wetlands. The results show that from the 1960 s to 2015, the net area of natural wetlands declined by 574.3 km~2, while man-made wetlands and reclamation increased by 553.6 and 543.9 km~2, respectively. During the five study phases, the fastest areal change rate natural wetlands was –13.3 km~2/yr in the period of 1990–2000, and that of man-made areas was 24.7 km~2/yr in the same period, and the areal change rate of reclamation was 27.6 km~2/yr in the period of 2000–2010. Conversion of coastal wetlands mainly occurred in the Chongming Island, Changshu City and the east coast of Shanghai Municipality. Reclamation was common across coastal areas, and was mainly attributed to settlement and man-made wetlands in the Chongming Island, Lianyungang City and the east coast of Shanghai Municipality. Natural wetlands turned into farmlands and settlement, and man-made wetlands gained from reclamation of farmlands. The centroid of natural wetlands generally moved towards the sea, man-made wetlands expanded equally in all directions and inland, and the centroid of reclamation migrated toward Shanghai Municipality. Sea level rise, erosion-deposition changes, and reclamation activities together determine the dynamics of the Yangtze Estuary wetlands. However, reclamation activities for construction of ports, industries and aquaculture are the key causes for the dynamics. The results from this study on the dynamics of coastal wetlands and reclamation are valuable for local government to put forward sustainable land use and land development plans.  相似文献   

20.
Electron Spin Resonance (ESR) dating is a relatively new technique applicable also to the dating of materials from littoral zones and shallow sea regions, such as shells, corals, bones and teeth, foraminifera, diatoms, etc. ESR dating can span the time interval between the older limit of14C dating and the younger limit of the K−Ar dating, an interval of 103–106 years. Therefore, ESR technique is very suitatie for the measurement of the age of Quaternary sea—level changes. This paper gives some samples’ results by ESR dating from Early Pleistoncene to Holocene. The Quaternary sea—level changes in China were mainly eustatisms that corresponded to the paleotemperature variation. We have just begun study on the18O Paleotemperature in our continental area. Preliminary results show the temperature curve of the stalagmitic growth in caves corresponds well to the sea—level changes in 76–55×103 years B. P. ESR dating and studies of the18O Paleotemperature in East China will raise studies on Quaternary sea—level changes to a higher scientific basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号