首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For over 20 years, powerful VLF transmitters have been used as electromagnetic sources for subsurface investigations in mining exploration. Measurements initially concerned the vertical component of the magnetic field or the inclination of the field and were later extended to measurement of the horizontal electric field in the direction of the transmitter, to determine the resistivity of the terrain. Measurement of the electric field is usually performed with electric lines, grounded or not, with lengths of at least 5 m. This paper presents the concept of a VLF resistivity meter with a very short electric sensor (1 m) and the results obtained with it. This technique improves the measurement of the electric field, which is in principle a point value. It also permits a higher spatial sampling rate and, by closely linking the electric sensor with the magnetic sensor on a lightweight mount, makes it possible for the instrument to be used by a single operator. In addition, transformation of the electric field data, analogous to reduction to the pole in magnetism, is proposed to correct the horizontal deformation of the anomalies created by polarization of the primary field. Comparison with direct current electrical measurements shows highly satisfactory correlations. This transformation, validated for VLF, can be extended to any electrical or electromagnetic method using a uniform primary field, i.e. gradient array in direct current or low-frequency magnetotellurics. We call this verticalization of the electric field. Resistivity measurements and mapping using the VLF frequency range can be applied not only to mining but also to a wide range of shallow geophysical studies (hydrology, civil engineering, etc.) and are not limited to problems concerning the location of conductive targets  相似文献   

2.
Determination of thickness of sediments (usually of high conductivity) overlying a high-resistivity basement is one of the basic problems of electrical exploration methods. This paper proposes to determine horizontal electrical conductance on the basis of impedance calculated from electrical and magnetic fields of distant quasi-static (low-frequency) point sources. Using the proposed method, horizontal conductance of the sediments can be determined also from artificial quasi-static noise-impulses coming from sources of unknown position and intensity. The results of analogue modeling and field examples prove the potential of the proposed technique.  相似文献   

3.
重力资料识别鄂尔多斯盆地线性构造方法研究   总被引:5,自引:4,他引:1       下载免费PDF全文
目的利用重力异常数据微弱信息挖掘技术识别线性构造的方法,并介绍其实现过程.方法采用水平梯度法和二次垂直导数等方法提取微弱信息,利用数字图象显示技术成图.结果识别出鄂尔多斯盆地线性构造多条,分析对比鄂尔多斯盆地区域地质构造资料及重力解释成果,具有较好的吻合性.为深入研究该地区线性构造补充了新的证据.结论该方法提取了区域重力异常资料中的微弱信息,弥补用等值线图示构造信息的不足,有助于线性构造的分析.水平梯度法(最大模)和二次导数处理方法与数字图象成图相结合取得良好的解释效果.  相似文献   

4.
中国大陆垂直形变速率梯度与强震危险区   总被引:7,自引:1,他引:7       下载免费PDF全文
张郢珍  张立人 《地震地质》1992,14(3):237-244
应用确定形变速率梯度值的方法,探讨了速率梯度与构造活动、地震活动的关系。利用《中国现代地壳垂直形变速度图》经数字化处理后,给出了中国现代垂直形变速率水平梯度等值线图,将高形变速率梯度区与强震发生地点进行了对比,并指示出了未来10~20a的内强震潜在危险区  相似文献   

5.
The measurement of wavetilt is diagnostic for determining the electrical characteristics of the upper layers of the ground at VLF and LF frequency ranges. Theoretical and field studies have indicated that electric wavetilt using the transverse magnetic (TM) waves detects lateral inhomogeneities virtually instantly as abrupt changes in electrical properties are encountered. Theoretical studies have also indicated that magnetic wavetilt measurements using transverse electric (TE) waves are superior to electric wavetilts for such purposes. An experimental survey was conducted at two locations near Atikokan, Ontario, to verify the theoretical predictions. The survey area, forming a part of a large granitic pluton, was mapped earlier by various geophysical techniques, including the ground VLF-EM method, to detect weak conductors formed either by the presence of fractures in the bedrock filled with water and/or clay, or overburden filling bedrock depressions. A small, multi-turn, horizontal loop was used during the survey as the transmitter to generate TE waves at eleven frequencies from 10.7 to 58.5 kHz. The magnetic wavetilt measurements detected all previously known conductors at the two locations. In addition, the survey detected several weak conductors that were missed by the VLF survey. Thus, the survey indicated the usefulness of magnetic wavetilt results for detection of weak conductors at shallow depths, which may have application in engineering geophysical surveys. The multi-frequency wavetilt data also provided some indications of the depth and depth extent of such conductors.  相似文献   

6.
Various geoelectric methods which have been developed and applied in the last 10–20 years in ELGI are discussed. These methods which use buried electrodes are: hole-to-surface gradient mapping to detect bauxite deposits in sinkholes below a resistive screening layer; in-mine gradient profiling to map the basement topography below galleries; and the hole-to-surface version of geoelectric layer tracing to find outcrops of mineralized zones penetrated by drillings. Data processing procedures have been developed on the basis of common concepts and hypotheses to link theoretical models with geological structures. The objects investigated are determined as the difference between the theoretical models and geological structures. The predominant part of the real electric field measured above the geological structures is the theoretical field related to the theoretical model. The effects of the objects (the anomaly) are superposed on the theoretical field but their extent is small compared with the values of the latter. The theoretical field and the anomaly depend strongly on the separation from the sources. For this reason the anomalies are difficult to recognize. Therefore the ratio of the theoretical field to the measured one is computed, since σa, the apparent specific conductivity, is proportional to this ratio. It is demonstrated that since the changes in the σa curve depending on the location of the observation point are small, the anomalies can easily be recognized on the curve. The σa, curve computed in the above way reflects the objects better than the originally measured electric fields. Examples illustrate the solution of the above-mentioned geological problems by the practical application of adequate geoelectric methods using buried electrodes.  相似文献   

7.
考虑航磁水平梯度变化的ΔT网格化方法研究   总被引:1,自引:1,他引:0       下载免费PDF全文
实测航磁横向水平梯度反映垂直于测线的磁场梯度,比传统航磁ΔT数据包含测线之间更多的磁场信息.针对航磁数据网格化问题,采用Hardwick提出的方法,利用航磁水平梯度与ΔT数据构建拟测线,并结合Akima插值法,开展了双方向测线型ΔT网格化方法研究,最终实现了考虑航磁水平梯度变化的ΔT网格化;针对网格化结果中的虚假异常采取了有效滤波方法.通过理论模型数据和实际数据网格化处理,表明该方法可以突出航磁测线之间的异常细节、更清晰地反映线性构造或磁性体走向,提高了网格化的精度和分辨率.  相似文献   

8.
This paper presents a case study of mapping basement structures in the northwestern offshore of Abu Dhabi using high‐resolution aeromagnetic data. Lineament analysis was carried out on the derivatives of the reduced‐to‐the‐pole magnetic data, along with supporting information from published geologic data. The lineament analysis suggests three well‐defined basement trends in the north–south, northeast–southwest, and northwest–southeast directions. The reduced‐to‐the‐pole magnetic data reveal high positive magnetic anomalies hypothesized to be related to intra‐basement bodies in the deep seated Arabian Shield. Depth to basement was estimated using spectral analysis and Source Parameter Imaging techniques. The spectral analysis suggests that the intruded basement blocks are at the same average depth level (around 8.5 km). The estimated Source Parameter Imaging depths from gridded reduced‐to‐the‐pole data are ranged between 4 km and 12 km with a large depth variation within small distances. These estimated depths prevent a reliable interpretation of the nature of the basement relief. However, low‐pass filtering of the horizontal local wavenumber data across two profiles shows that the basement terrain is characterized by a basin‐like structure trending in the northeast–southwest direction with a maximum depth of 10 km. Two‐dimensional forward magnetic modelling across the two profiles suggests that the high positive magnetic anomalies over the basin could be produced by intrusion of mafic igneous rocks with high susceptibility values (0.008 to 0.016 SI.  相似文献   

9.
针对天然大地电磁场信号在人文活动密集地区易受噪声干扰的问题,本文提出利用两个同步测点天然电磁场时间序列之间的单位脉冲响应,合成本地点受干扰时段的数据,从而去除大地电磁噪声.首先,选择高信噪比时段的数据,采用最小二乘法,估算本地点与参考点之间的单位脉冲响应,再根据卷积定律,结合参考磁场合成本地点的磁场和电场.最后用合成数据替换含噪声时段数据,实现时间域去噪.实测高信噪比数据和含噪数据的处理结果表明,该方法可以高精度合成本地点磁场与电场信号,有效去除本地点电场和磁场噪声,包括相关噪声,提高大地电磁数据质量.  相似文献   

10.
The study area is located in the Sinai Peninsula, which is considered one of the most promising regions for oil resources. Three different tectonic forces affect the area in the triple junction structures associated with the opening of the Gulf of Suez and the strike slip movement along the Gulf of Aqaba. The main goal of this work is to model the structure of the basement rocks in the study area using magnetic methods. To achieve this, a high-resolution land magnetic survey was acquired and the results were combined with existing seismic reflection data. The magnetic interpretation was carried out using the analytical signal, horizontal gradient, Euler and Werner deconvolution and 3D magnetic modelling methods. We concluded that most of the deduced structures are trending in N–S, N35°–N45° west and E–W directions. The Aqaba trend (N15°–N25° east) is barely noticeable. The depth to the basement rocks ranges from 1 km to more than 2 km below sea level and these results are in agreement with the available well log data. In addition, interpretation of seismic reflection sections was carried out and compared with overlapping magnetic profiles interpreted using Euler deconvolution. They show that the sedimentary section was affected by the basement tectonics, with faults extending from the basement upwards through the sedimentary cover. These faults constitute good potential structural traps for oil accumulation.  相似文献   

11.
Since its development some thirty years ago, the airborne electromagnetic (AEM) method has been primarily used as a tool for mineral prospecting. However, advanced AEM systems are capable of other tasks, such as geological mapping and groundwater exploration. Excellent correlation between maps of apparent conductivity and geological maps was observed in several regions of Brazil where AEM surveys were performed. The degree of correlation seems to depend on the local climate. In humid and subhumid tropical regions, a weathered layer develops whose thickness and conductivity depend upon bedrock lithology. Therefore certain lithological types can be recognized from their conductivity signature; e.g., granites and Precambrian coarse clastic rocks are resistive, metavolcanic (particularly mafic) and volcanic rocks are conductive, Phanerozoic sediments are generally highly conductive. Two geophysical surveys are analyzed in the paper. The first was conducted with the time-domain, towed-bird AEM system in the Itapicuru greenstone belt in the state of Bahia. The apparent conductivity map correlated better with the local lithology than the magnetic map. Results of the AEM survey were successfully used to improve the regional geological map. A helicopter EM system was used in the second survey, which covered a portion of the Precambrian shield of Rio Grande do Sul. Also in this region ground checks confirmed the usefulness of conductivity surveys in geological mapping. The technique outlined in the paper holds great promise for countries of humid tropical climate, where few outcrops exist and access is often difficult. The tests performed in Brazil indicate that by executing AEM/aeromagnetic surveys during initial stages of mapping and exploration programs, time and expenditure required for geological field work can be considerably reduced. The resulting geological maps are more accurate and the inventory of mineral occurrences becomes more complete.  相似文献   

12.
广西龙滩库区深部孕震结构大地电磁探测研究   总被引:4,自引:3,他引:1       下载免费PDF全文
在广西龙滩库区布置2条北北西-南东东向大地电磁探测剖面进行了32个测点的观测,观测频段为320 Hz~1000 s.对2条剖面上测量和计算得到的各种电磁参数、深部电性结构图像以及库区地质构造、岩性和水域分布等进行分析研究.结果显示库区发育的6条断裂在电性上表现为不同程度的电性差异边界,其中拉浪-达良断裂和拉色-辉马断裂为库区主要断裂带.库区深部电性结构总体表现为纵向上自地表到20 km深度呈现高-低-高的波浪起伏的三层结构,横向上呈明显的高低电阻块状组合样式.龙滩库区4个地震丛集区的震源都位于高、低电阻接触带附近,其中3个地震丛集区的震源位于低阻特性的石炭系地层的下部,为岩溶水体诱发地震;发生最大震级的地震丛集区的震源位于上宽下窄似"铆钉状"的高阻体下部,推测是因水库蓄水后水体压力增大和库水渗透作用下在聚集高变形能的脆性高电阻体内部发生的地震.  相似文献   

13.
骆遥  王明  罗锋  田嵩 《地球物理学报》2011,54(7):1912-1920
通过分析解析信号概念,指出目前重磁场解析信号事实上是重磁场梯度解析信号.在借助解析信号分量满足二维希尔伯特变换关系的基础上,提出重磁场直接解析信号的概念,并阐述重力异常及化极磁异常希尔伯特变换——直接解析信号的含义,并给出基于直接解析信号对位场增强的四种处理方法:直接解析信号模、水平分量模、改进Tilt angle和改...  相似文献   

14.
The Tobago Basin, which is located offshore northern Venezuela with a southern margin close to Trinidad and Tobago, has an area of approximately 59,600 km2. The Tobago Basin has relatively favourable hydrocarbon prospects, and to date, exploration work has mainly concentrated on small areas of the southwestern portion of the basin. To conduct a comprehensive study of the structural framework of the basin and the characteristics of the basement in order to identify prospective zones for hydrocarbon exploration, shipborne‐measured and satellite‐measured gravity data, shipborne‐measured magnetic data, and aeromagnetic survey data were analysed. A regularisation filtering method was used to separate and obtain regional and residual gravity and magnetic anomalies. Directional gradients of gravity and magnetic anomalies and the total horizontal gradient and vertical second derivative of gravity anomalies were employed to extract information about fault structures. Regression analysis methods were used to determine the basement depth. The geological significance of the gravity and magnetic fields was examined, the structural framework of the basin was assessed, the basement depth was estimated, and favourable hydrocarbon exploration prospects within the basin were identified. The results show that the Tobago Basin contains complex structures consisting mainly of two groups of faults trending in northeasterly and northwesterly directions and that the major northeasterly trending faults control the main structural configuration and depositional system within the basin. The basement of the Tobago Basin has deep rises and falls. It can be divided into the following four secondary tectonic units: the western sub‐basin, the central uplift area, the southern sub‐basin, and the northeastern sub‐basin. The central uplift area and northeastern sub‐basin are most likely to have developed hydrocarbon accumulations and should be targeted for further exploration.  相似文献   

15.
延庆、怀来地区地壳深部磁性构造与地震的研究   总被引:4,自引:0,他引:4  
应用三维磁性层反演理论和方法,对延庆、怀来地区航磁资料进行了数据处理,反演计算了该区磁性基底埋深、居里等温面埋深和视磁化强度分布。揭示了延庆盆地、矾山盆地、怀来盆地、涿鹿盆地等四个相互联通盆地的磁性基底的定量特征。对该区地震发生的深部原因和地壳内不同特性块体与地震的关系进行了探讨;对该区地震分布的特点进行了研究;初步提出了该区地震的危险区划和今后的重点监测区。  相似文献   

16.
This study integrates potential gravity and magnetic field data with remotely sensed images and geological data in an effort to understand the subsurface major geological structures in Afghanistan. Integrated analysis of Landsat SRTM data was applied for extraction of geological lineaments. The potential field data were analyzed using gradient interpretation techniques, such as analytic signal (AS), tilt derivative (TDR), horizontal gradient of the tilt derivative (HG-TDR), Euler Deconvolution (ED) and power spectrum methods, and results were correlated with known geological structures.The analysis of remote sensing data and potential field data reveals the regional geological structural characteristics of Afghanistan. The power spectrum analysis of magnetic and gravity data suggests shallow basement rocks at around 1 to 1.5 km depth. The results of TDR of potential field data are in agreement with the location of the major regional fault structures and also the location of the basins and swells, except in the Helmand region (SW Afghanistan) where many high potential field anomalies are observed and attributed to batholiths and near-surface volcanic rocks intrusions.A high-resolution airborne geophysical survey in the data sparse region of eastern Afghanistan is recommended in order to have a complete image of the potential field anomalies.  相似文献   

17.
Grounded-source TEM modelling of some deep-seated 3D resistivity structures   总被引:2,自引:0,他引:2  
Long-offset transient electromagnetics (LOTEM) is now regarded as a suitable electrical method for deep exploration along with magnetotellurics (MT). In this method, the vertical magnetic-field impulse response and, occasionally, the horizontal electric-field step response of a grounded-wire source on the surface of the earth are measured. Here, these two responses are computed for 3D models of three deep resistivity structures of interest in hydrocarbon exploration: (i) a faulted graben in a resistive basement rock at a depth of 4 km beneath a conductive overburden; (ii) a facies change in a resistive layer buried at a depth of 2 km in the conductive overburden above a resistive basement; and (iii) an anticlinal uplift of a resistive layer at a depth of 1 km in the conductive overburden above a resistive basement. The results show that the sensitivity of the electric-field response to model perturbation is generally greater than that of the magnetic-voltage response. Further, the electric-field sensitivity is confined to early and intermediate times while that of the magnetic-voltage response is confined to intermediate and late times. Hence it is recommended that both electric and magnetic recordings are made in a LOTEM survey so that the final results can be presented as apparent-resistivity curves derived from the two responses jointly as well as separately.  相似文献   

18.
A multi-method geophysical survey has been carried out on a Roman archaeological site, where part of an apse had previously been found and then refilled by archaeologists during an excavation test. Magnetic gradient measurements were performed over the whole study area and a sub-area of interesting anomalies beside the excavation test site was found. Two-dimensional filtering of a more detailed magnetic gradient map and 2D inversion of magnetic profiles were performed, using an on-purpose implemented software, in order to reduce the effect of noise and to stress the eventual presence of buried structures in agreement with the archaeologists' hypothesis. Resistivity tomography and GPR profiles were carried out along some selected profiles to obtain information on the vertical distribution of the anomalous bodies. GPR profiles, carried out in the area containing the test excavation, supplied good results, particularly when processed as time slices. The whole structure of the apse was clearly outlined. The authors were then able to suggest to the archaeologists further excavation tests on the basis of GPR results and of the filtered magnetic gradient map. A comparison of the results of the applied surveying methodologies has supplied an example of the relative strengths and weaknesses of the different electric, magnetic and GPR techniques.  相似文献   

19.
The interpretation of the Jarrafa magnetic and gravity highs, NW Libyan offshore, suggests that it may be caused by a body of high-density and high magnetization. Analysis of their power spectra indicates two groups of sources at: (1) 2.7 km depth, probably related to the igneous rocks, some of which were penetrated in the JA-1 borehole, (2) 5 km depth, corresponding to the top of the causative body and (3) 10 km depth, probably referring to the local basement depth. The boundary analysis derived from applied horizontal gradient to both gravity and magnetic data reveals lineaments many of which can be related to geological structures (grabens, horsts and faults).The poor correlation between pseudogravity fields for induced magnetization and observed gravity fields strongly suggests that the causative structure has a remanent magnetization (D = −16°, I = 23°) of Early Cretaceous age, fitting with the opening of the Neo Tethys 3 Ocean.Three-dimensional interpretation techniques indicate that the magnetic source of the Jarrafa magnetic anomaly has a magnetization intensity of 0.46 A/m, which is required to simulate the amplitude of the observed magnetic anomaly. The magnetic model shows that it has a base level at 15 km.The history of the area combined with the analysis and interpretation of the gravity and magnetic data suggests that: (1) the source of the Jarrafa anomaly is a mafic igneous rock and it may have formed during an Early Cretaceous extensional phase and (2) the Jarrafa basin was left-laterally sheared along the WNW Hercynian North Graben Fault Zone, during its reactivation in the Early Cretaceous.  相似文献   

20.
Assessment of deep buried basin/basement relationships using geophysical data is a challenge for the energy and mining industries as well as for geothermal or CO2 storage purposes. In deep environments, few methods can provide geological information; magnetic and gravity data remain among the most informative and cost‐effective methods. Here, in order to derive fast first‐order information on the basement/basin interface, we propose a combination of existing and original approaches devoted to potential field data analysis. Namely, we investigate the geometry (i.e., depth and structure) and the nature of a deep buried basement through a case study SW of the Paris Basin. Joint processing of new high‐resolution magnetic data and up‐to‐date gravity data provides an updated overview of the deep basin. First, the main structures of the magnetic basement are highlighted using Euler deconvolution and are interpreted in a structural sketch map. The new high‐resolution aeromagnetic map actually offers a continuous view of regional basement structures and reveals poorly known and complex deformation at the junction between major domains of the Variscan collision belt. Second, Werner deconvolution and an ad hoc post‐processing analysis allow the extraction of a set of magnetic sources at (or close to) the basin/basement interface. Interpolation of these sources together with the magnetic structural sketch provides a Werner magnetic basement map displaying realistic 3D patterns and basement depths consistent with data available in deep petroleum boreholes. The last step of processing was designed as a way to quickly combine gravity and magnetic information and to simply visualize first‐order petrophysical patterns of the basement lithology. This is achieved through unsupervised classification of suitably selected gravity and magnetic maps and, as compared to previous work, provides a realistic and updated overview of the cartographic distribution of density/magnetization of basement rocks. Altogether, the three steps of processing proposed in this paper quickly provide relevant information on a deep buried basement in terms of structure, geometry and nature (through petrophysics). Notwithstanding, limitations of the proposed procedure are raised: in the case of the Paris Basin for instance, this study does not provide proper information on Pre‐Mesozoic basins, some of which have been sampled in deep boreholes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号