首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various hypotheses of the geoelectric structure of the Transcaucasian region reflecting a priori geological and geophysical information and data from profile magnetotelluric (MT) soundings are analyzed. These hypotheses are used to construct simplified 3-D models of electrical conductivity differing in the patterns of the shallow and deep structure of the region. Numerical modeling of MT fields is performed. Comparative analysis of its results indicates that the most probable conductivity model consistent with the available data is a model involving a high-conductivity channel connecting the Black and Caspian seas.  相似文献   

2.
Magnetotelluric soundings are frequently carried out on a single profile or on profiles remote from each other. Interpretation of the obtained data is difficult in the presence of spatially heterogeneous geoelectric structures. We evaluate its capabilities on the basis of the synthetic data, that correspond to a geoelectric model, which consists of a three-layered section in the background and three rectangular prisms, differently arranged relative to the profile. Using the simple methods of analysis of magnetotelluric data, we succeeded in allocating all three heterogeneities over the area that surrounds the profile of observations. As a result of the fast smoothed-structure 1D and 2D inversion of different components of data, taking into account their specific features, the depths of the occurrence of anomalies and the order of the values of their electrical resistivity were evaluated, and the background section was also reconstructed. On this basis, and, also, with the use of a priori geological-geophysical information, the construction of a 3D model in a more or less broad band around the profile and its correction with the aid of 3D data inversion are possible.  相似文献   

3.
One simulation and two field examples from New Jersey illustrate resolution improvement in geoelectrical soundings applied to groundwater exploration. Layered-earth parameter resolution is derived from data obtained with the commonly used methods of resistivity, induced polarization (IP) and transient electromagnetic (TEM) soundings. Resolution improvement is achieved by simultaneous inversion of two or more data sets and by constraining parameters of the inverse problem. A quantitative analysis showing the contribution of IP data to the resolution of geo-electric sections is presented. Simultaneous inversion of simple IP data with conventional resistivity and resistivity-TEM data sets resulted in improved parameter resolution. IP data improved resolution in three ways: (1) by decoupling correlated layered-earth parameters, (2) by adding information to a geological interpretation about a second physical property, namely chargeability, and (3) by increasing the electrical information available.  相似文献   

4.
A method has been developed for computation of the electrical DC potential of an arbitrary three-dimensional resistivity structure using a finite difference method. The threedimensionality is necessary for interpretation of geoelectrical soundings with controlled point sources over a laterally inhomogeneous medium. Lateral inhomogeneities should be considered in resistivity soundings with large layouts. The results obtained with the described method permit a more realistic representation of geological features. The resolution of the method is determined by the number of elements in the resistivity network. The problem of core memory space has been resolved by using random access disc files. The results computed using a Fortran program are in good agreement with analytically obtained solutions.  相似文献   

5.
Dipole soundings are more sensitive to noise caused by lateral and superficial inhomogeneities than Schlumberger soundings. However, the former are preferable for deep explorations in view of the relatively short cables required. The simple solution of carrying out the field work by means of dipole spreads, and to transform the dipole resistivity diagrams into Schlumberger ones by means of proper formulae would be valid only for smooth and regular curves; but often, owing to the presence of lateral noises, the dipole data show a considerable scatter. For such cases a “continuous dipole sounding” method is proposed for which all successive dipoles are contiguous, so that all parts of the profiles are covered and interpolation is not necessary. Obviously the moving dipoles have lengths proportional to their distances, so that they appear equal in the usual bilogarithmic scale. It follows that only polar-dipole arrays may be used. The transition from a dipole to the corresponding Schlumberger apparent resistivity diagram requires an integration constant which is not unequivocally determined. Therefore, the solution is not unique, but all possible derived Schlumberger diagrams have a common part. Similarly, they have some common interpretative results, which may be referred to the original dipole diagram obtained in the field. A special measurement technique is required since the dipole-dipole voltages to be determined are noticeably smaller than the Schlumberger ones. This is true also because dipole soundings are used for great depths and for long distances between the two dipoles.  相似文献   

6.
A highly resistive phonolitic body near Sainerholz / Westerwald in Germany has been investigated for geological mapping using vertical electrical soundings in a Schlumberger configuration. Because of its explicitly three-dimensional shape, conventional 1D and 2D interpretation techniques are not applicable. Therefore, a new 3D finite-difference forward modelling algorithm has been applied to acquire information about its subsurface structure and to explain the observed data. This investigation focuses on two exposed soundings: one located near the centre of the body and the other close to its rim. For the interpretation, data from electromagnetic measurements on the lateral extension of the body are additionally taken into account as well as geological a priori information. A possible 3D conductivity model is presented and evidence for its validity is discussed using model studies and sensitivity analyses. The latter are carried out using a newly developed 3D FD sensitivity modelling code with which the total subsurface response can be decomposed. This permits the determination of the resolution of model parameters, indicating the contribution of different parts of the model to the overall response. The results emphasize the feasibility of 3D forward modelling in practice.  相似文献   

7.
The idea that oceanic lithosphere is thinner than continental lithosphere is widely accepted even though one would like to see clearer evidence to support it. In fact, the very concept of lithosphere is still a matter of some debate. If there is indeed a variation in the thickness of the lithosphere at continental margins and if this change is associated with a lateral variation in electrical conductivity one may envisage detecting it with electromagnetic soundings methods. A model of a passive continental margin has therefore been investigated to test whether this would be feasible. It has been found that the well-known but strong ocean-coast effect masks the minor lithospheric effect in magnetotelluric soundings performed on the shore. Inductive soundings, on the other hand, are highly sensitive to lateral variations in electrical conductivity. An analysis in terms of the induction arrow has shown that such soundings carried out on land would be perfectly suitable to reveal a changing lithospheric thickness, if the continents merely extended to the oceanic coast. However, the presence of only a narrow continental shelf of 100 km width under 250 m of sea-water produces an overriding coast effect ahead of the margin, and thus renders electromagnetic methods unsuited to reveal a changing lithospheric thickness.  相似文献   

8.
The theory of electrical dipole soundings proved that this method can produce resistivity measurements, which are comparable with those obtained by electrical soundings of the Wenner or Schlumberger type. Their main advantage is the use of short cable lengths, which is important if the depth of penetration should be large. A considerable disadvantage of the dipole method is the great sensitivity to lateral discontinuities. Though these have an influence on the Schlumberger arrangement as well, they can disturb a dipole sounding to such an extent than an interpretation based on a horizontal layer case is no more possible. There are six different dipole arrays, which differ from each other with respect to the angle enclosed by the two dipole orientations-the current dipole AB and the measuring dipole MN. The theoretical comparison of the dipole arrays with the Schlumberger array concerning their sensitivity to lateral discontinuities is a useful basis for the choice of the most suitable configuration. Considering geological subsurface conditions the right choice of a dipole array can give an optimal result, i.e. a dipole sounding for which the sensitivity to lateral discontinuities is as small as possible under the given circumstances.  相似文献   

9.
During the past two decades, the diagnosis and monitoring of polluted sites have become more important. Urban sites are particularly difficult to study, because they are contaminated with various pollutants, and there is a large physical and chemical heterogeneity. The heterogeneity comes from the landfilling of various solid wastes and remolded soil (endogenous or exogenous) from which they were constituted over time. Traditional techniques such as wells monitoring, are often insufficient to evaluate the extension of soil contamination.This is why we proposed a geoelectrical methodology from the fastest to the most information rich technique, showing all carry out and acquisition times: electromagnetic low frequency conductivity mapping, electrical resistivity profiles, chargeability profiles and spectral induced polarization (SIP) soundings. This strategy has been successfully applied to an urban site located in the Paris Basin (France). A conductivity map in relation with geochemical and lithological informations should provide us information to implement electrical resistivity and chargeability profiles. The latter allowed us to differentiate 3 main anomaly zones that have been determined. As interpretation of chargeability profiles is difficult, because it integrates polarization mechanisms with different relaxation times, we add spectral induced polarization soundings that provide us information concerning the contaminant nature. We determined the extension of an organic phase, and of 2 highly mineralized zones that could be linked to biodegraded and/or with pyrite areas. That theory is consistent with groundwater analysis and SIP data.The conclusion is that the suggested methodology is well suited to the study of urban contaminated sites including several different pollutants.  相似文献   

10.
The first decade of 21st century is characterized by the appearance of new approaches to deep induction soundings. The theory of magnetovariation and magnetotelluric soundings was generalised or corrected. Spatial derivatives of response functions (induction arrows) were obtained for the ultra-long periods. New phenomena have been detected by this method: secular variations of the Earth’s apparent resistivity and the rapid changes of induction arrows over the last 50 years. The first one can be correlated with the number of earthquakes, and the second one–with geomagnetic jerks in Central Europe. The extensive studies of geoelectrical structure of the crust and mantle were realized in the frame of a series of international projects. New information about geoelectrical structures of the crust in Northern Europe and Ukraine was obtained by deep electromagnetic soundings involving controlled powerful sources. An influence of the crust magnetic permeability on the deep sounding results was confirmed.  相似文献   

11.
We propose a Bayesian fusion approach to integrate multiple geophysical datasets with different coverage and sensitivity. The fusion strategy is based on the capability of various geophysical methods to provide enough resolution to identify either subsurface material parameters or subsurface structure, or both. We focus on electrical resistivity as the target material parameter and electrical resistivity tomography (ERT), electromagnetic induction (EMI), and ground penetrating radar (GPR) as the set of geophysical methods. However, extending the approach to different sets of geophysical parameters and methods is straightforward. Different geophysical datasets are entered into a trans-dimensional Markov chain Monte Carlo (McMC) search-based joint inversion algorithm. The trans-dimensional property of the McMC algorithm allows dynamic parameterisation of the model space, which in turn helps to avoid bias of the post-inversion results towards a particular model. Given that we are attempting to develop an approach that has practical potential, we discretize the subsurface into an array of one-dimensional earth-models. Accordingly, the ERT data that are collected by using two-dimensional acquisition geometry are re-casted to a set of equivalent vertical electric soundings. Different data are inverted either individually or jointly to estimate one-dimensional subsurface models at discrete locations. We use Shannon's information measure to quantify the information obtained from the inversion of different combinations of geophysical datasets. Information from multiple methods is brought together via introducing joint likelihood function and/or constraining the prior information. A Bayesian maximum entropy approach is used for spatial fusion of spatially dispersed estimated one-dimensional models and mapping of the target parameter. We illustrate the approach with a synthetic dataset and then apply it to a field dataset. We show that the proposed fusion strategy is successful not only in enhancing the subsurface information but also as a survey design tool to identify the appropriate combination of the geophysical tools and show whether application of an individual method for further investigation of a specific site is beneficial.  相似文献   

12.
A simple measure, the association parameter, is proposed for directly comparing the results of two electrical soundings. The use of this measure to classify field results and to gain some insight into geological structure before extensive depth interpretation is discussed. In particular it is shown that when used with soundings conducted using the tripotential technique the combined use of association parameter arid lateral inhomogeneity index can allow structural patterns to be discerned where otherwise they might be obscured. Possible extension of the technique is considered.  相似文献   

13.
A code for 3-D resistivity modelling and inversion of vertical electrical soundings has been developed based on the finite-element technique and regularisation method. Synthetic data were used to test the effectiveness of the code and to examine the resolving capability of the Schlumberger array in investigating 3-D resistivity distributions. The code was applied to experimental data set constituted by 35 Schlumberger soundings collected near the Cairo city in order to study the subsurface resistivity distribution. The results have shown that valuable imaging of the subsurface resistivity distribution can be constructed even when the vertical electrical soundings are acquired in a sparse field data set.  相似文献   

14.
In order to evaluate the risk of an earthflow to evolve abruptly into torrential surge, knowledge of its internal structure is necessary. This study deals with the internal structure of the Super Sauze earthflow developed in black marls in the southern French Alps. Difficulties in this study area are a rough topography, surface heterogeneities and a large thickness variability of the earthflow mass. These conditions hamper the application of geotechnical methods as a preferred investigation mean. Moreover, they pose problems to geophysical investigations and their interpretation.This paper shows the advantage offered by the joint inversion of Time Domain ElectroMagne-tism data (TDEM) and data obtained from Direct Current soundings (DC). The results of the joint inversions are checked using geotechnical data. The internal structure of the earthflow interpreted on the basis of joint inversion data is comparable to that obtained from geotechnical results. Moreover, contrary to separate electrical and TDEM inversions, a satisfactory joint inversion model can be derived without supplying additional a priori information.  相似文献   

15.
Jamal Asfahani 《水文研究》2007,21(21):2934-2943
Twenty‐nine Schlumberger electrical soundings were carried out in the Salamiyeh region in Syria using a maximum current electrode separation of 1 km. Three soundings were made at existing boreholes for comparison. Aquifer parameters of hydraulic conductivity and transmissivity were obtained by analysing pumping test data from the existing boreholes. An empirical relationship between hydraulic conductivity determined from the pumping test and both resistivity and thickness of the Neogene aquifer has been established for these boreholes in order to calculate the geophysical hydraulic conductivity. A close agreement has been obtained between the computed hydraulic conductivity and that determined from the pumping test. The relationship established has, therefore, been generalized in the study area in order to evaluate hydraulic conductivity and transmissivity at all the points where geoelectrical measurements have been carried out. This generalization allows one to derive maps of the hydraulic conductivity and transmissivity in the study area based on geoelectrical measurements. These maps are important in future modelling processes oriented towards better exploitation of the aquifers. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
The digital computer technique described for interpreting resistivity soundings over a horizontally stratified earth requires two steps. First, the kernel function is evaluated numerically from the inverse Hankel transform of the observed apparent resistivity curve. Special attention is given to the inversion of resistivity data recorded over a section with a resistant basement. The second step consists in the least-squares estimation of layer resistivities and thicknesses from the kernel function. For the case of S or T-equivalent beds only one layer-parameter can be obtained, either the longitudinal conductance, or the transverse resistance respectively. Two examples given in the paper show that a wide tolerance is permitted for Choosing the starting values of the layering parameters in the successive approximation procedure. Another important feature for practical applications is good convergence of the iterations. The method is probably best suited for interpreting profiles of electrical soundings with the purpose of mapping approximately horizontal interfaces at depth.  相似文献   

17.
The indirect method of interpreting resistivity data is capable only of limited success because of the difficulty of calculating type curves for complex structures. Consequently a need arises for a direct method of interpretation for complex generalized structures. Such a technique for the direct interpretation of apparent resistivity data, obtained by electrical soundings carried out over two-dimensional structures, has been developed from an examination of the Hankel transform of such data. The method is based on the observation that the asymptotic expansion of the Hankel transform is critically dependent upon the minimum distance between the measuring device and the surface of discontinuity in resistivity. The variation in the across strike direction may be mapped by a sequence of depth soundings made parallel to each other and separated in the across strike direction.  相似文献   

18.
基于光滑约束的最小二乘法是三维电阻率反演的主要方法,但该方法在某些情况下存在着多解性较强的问题,且普遍耗时较长,严重制约了三维反演方法的推广与发展.为改善上述问题,将表征模型参数变化范围的不等式约束作为先验信息引入最小二乘线性反演方法中,有效地改善了反演结果的精度,降低了反演的多解性问题.为了解决耗时较长的问题,基于预条件共轭梯度(PCG)算法和Cholesky分解法的特点提出了一套优化三维电阻率反演计算效率的计算方案.在该方案中,Cholesky分解法被用来求解敏感度矩阵计算中的多个点源场的正演问题,Cholesky分解法只需对总体系数矩阵进行一次分解,然后对不同的右端向量进行回代即可.将预条件共轭梯度法引入到三维电阻率反演方程的求解中,将雅可比迭代中的对角阵作为预处理矩阵,其具有求逆方便、无需内存空间的特点,有效地加快了收敛速度.对合成数据以及实测数据的反演算例表明,借助不等式约束和反演效率优化方案,最小二乘反演方法可得到较为精确的反演结果,有效地提高了反演计算效率,具有良好的推广前景.  相似文献   

19.
研讨了频率域电磁法中不同源装置的大地电磁测深、线源频率电磁测深和偶极源频率电磁测深阻抗视电阻率的源效应影响特征。在唯象分析的基础上,提出了几种电磁测深法阻抗视电阻率的相互换算法──源效应校正法(大地电磁测深二维TE极化视电阻率和其它两种电磁法的赤道装置二维阻抗视电阻车)。模型试验表明,利用这一源效应校正法可以由大地电磁二维视电阻率近似地计算出线源频率电磁二维阻抗视电阻率。这一方法被尝试应用于由线源频率电磁二维阻抗视电阻率估算偶极源频率电磁二维阻抗视电阻率。  相似文献   

20.
Due to increase in population and agricultural activities, the aquifer of Quetta Valley is under tremendous stress and the water table is declining at an increasing rate. This situation necessitates evaluation of the aquifer system, for which information about geometry of the aquifer is a prerequisite. However, there are no drilling-to-bedrock data available; therefore, electrical resistivity, seismic reflection and gravity methods were employed to determine geometry of the aquifer. Interpretation of vertical electrical soundings provided information about the depth-tobedrock at some specific points, whereas seismic reflection delineated bedrock topography along two lines. The depths to bedrock inferred from electrical resistivity and seismic reflection data were used as constraints in the modeling of gravity data. 2.75D gravity models were constructed along lines with a regular spacing. Map of depth-to-bedrock was prepared by contouring the depth given by the gravity models. Combination of these geophysical methods depicted the geometry of the aquifer. This example shows that in a similar geological setting proper integration of geophysical exploration methods can determine the aquifer geometry with an acceptable reliability and at an appropriate cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号