首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Non-linear tidal constituents, such as the overtide M4 or the compound tide MS4, are generated by interaction in shallow seas of the much larger astronomically forced “primary” tidal constituents (e.g., M2, S2). As such, errors in modeling these “secondary” shallow-water tides might be expected to be caused first of all by errors in modeling the primary constituents. Thus, in the context of data assimilation, observations of primary-constituent harmonic constants can indirectly constrain shallow-water constituents. Here we consider variational data assimilation for primary and secondary tidal constituents as a coupled problem, using a simple linearized perturbation theory for weak interactions of the dominant primary constituents. Variation of the resulting penalty functional leads to weakly non-linear Euler–Lagrange equations, which we show can be solved approximately with a simple two-stage scheme. In the first stage, data for the primary constituents are assimilated into the linear shallow water equations (SWE), and the resulting inverse solutions are used to compute the quadratic interactions in the non-linear SWE that constitute the forcing for the secondary constituents. In the second stage, data for the compound or overtide constituent are assimilated into the linear SWE, using a prior forced by the results of the first stage. We apply this scheme to assimilation of TOPEX/Poseidon and Jason altimetry data on the Northwest European Shelf, comparing results to a large set of shelf and coastal tide gauges. Prior solutions for M4, MS4 and MN4 computed using inverse solutions for M2, S2, and N2 dramatically improve fits to validation tide gauges relative to unconstrained forward solutions. Further assimilation of along-track harmonic constants for these shallow-water constituents reduces RMS differences to below 1 cm on the shelf, approaching the accuracy of the validation tide gauge harmonic constants.  相似文献   

2.
《Journal of Geodynamics》2009,47(3-5):78-89
We analyzed gravity data obtained in Juneau and global positioning system (GPS) data obtained from three PBO sites in southeastern Alaska (SE-AK), which are part of a US research facility called ‘EarthScope’, and we compared the obtained tidal amplitudes and phases with those estimated from the predicted tides including both effects of the body tide and ocean tide. Global tide models predict the ocean tides in this region of complex coastline and bathymetry. To improve the accuracy of prediction, we developed a regional ocean tide model in SE-AK.Our comparison results suggest: (1) by taking into account the ocean tide effect, the amplitude differences between the observation and the predicted body tide is remarkably reduced for both the gravity and displacement (e.g. for the M2 constituent, 8.5–0.3 μGal, and 2.4–0.1 cm at the AB50 GPS site in Juneau in terms of the vector sum of three components of the north–south, east–west and up–down), even though the ocean tide loading is large in SE-AK. (2) We have confirmed the precise point positioning (PPP) method, which was used to extract the tidal signals from the original GPS time series, works well to recover the tidal signals. Although the GPS analysis results still contain noise due to the atmosphere and multipath, we may conclude that the GPS observation surely detects the tidal signals with the sub-centimeter accuracy or better for some of the tidal constituents. (3) In order to increase the accuracy of the tidal prediction in SE-AK, it is indispensable to improve the regional ocean tide model developed in this study, especially for the phase.  相似文献   

3.
《Journal of Geodynamics》2010,49(3-5):253-259
We observe the Earth tidal fields at diurnal and semi-diurnal periods using Kinematic Precise Point Positioning (KPPP) GPS analysis. Our KPPP GPS solutions compare well with super-conducting gravimeter (SG) observations and a theoretical Earth tidal model, that includes both ocean tide loading model and body tides. We make a high resolution map of the observed Earth tidal response fields using the Japanese GEONET GPS network which consists of 1200 sites. We find that: (1) the average phase of GPS data lags 0.11 ± 0.04° from our theoretical Earth tidal model, (2) the average amplitude ratio between GPS and the theoretical Earth tidal model is 1.007 ± 0.003, (3) the amplitude in the Kyushu district is about 1.0–1.5 ± 0.3% larger than in the Hokkaido district, and (4) the amplitude at the Japan Sea side is about 0.5 ± 0.2% larger than that at the Pacific Ocean side. These results suggest that we may be able to place constraints on Earth structure using GPS-derived tidal information.  相似文献   

4.
《Journal of Geodynamics》2010,49(3-5):331-339
The Free Core Nutation (FCN) is investigated with the help of its resonance effect on the tidal amplitudes in Superconducting Gravimeter (SG) records of the GGP network. The FCN resonance parameters are combined in a resonance equation involving the Earth's interior parameters. The sensitivity of the FCN parameters to the diurnal tidal waves demonstrates that the quality factor of the FCN is strongly dependent on the accuracy of the imaginary part estimates of the gravimetric factors close to the resonance. The weak amplitude of Ψ1 tidal wave on the Earth, which is the closest in frequency to the FCN, in addition to errors in ocean loading correction, explains the poor determination of the quality factor Q from surface gravimetric data. The inversion of tidal gravimetric factors leads to estimates of the period, Q and resonance strength of the FCN. We show that, by inverting log(Q) instead of Q, the results using the least-squares method optimized using the Levenberg–Marquardt algorithm are in agreement with the Bayesian probabilistic results and agree with the results obtained from VLBI nutation data. Finally, a combined inversion of 7 GGP European SG data is performed giving T = 428 ± 3 days and 7762 < Q < 31,989 (90% C.I.). An experimental estimate of the internal pressure Love number is also proposed.  相似文献   

5.
R/S analysis is used in this work to investigate the fractal correlations in terms of the Hurst exponent for the 1998–2011 seismicity data in Southern Mexico. This region is the most seismically active area in Mexico, where epicenters for severe earthquakes (e.g., September 19, 1985, Mw = 8.1) causing extensive damage in highly populated areas have been located. By only considering the seismic events that meet the Gutenberg–Ritcher law completeness requirement (b = 0.97, MGR = 3.6), we found time clustering for scales of about 100 and 135 events. In both cases, a cyclic behavior with dominant spectral components at about one cycle per year is revealed. It is argued that such a one-year cycle could be related to tidal effects in the Pacific coast. Interestingly, it is also found that high-magnitude events (Mw  6.0) are more likely to occur under increased interevent correlations with Hurst exponent values H > 0.65. This suggests that major earthquakes can occur when the tectonic stress accumulates in preferential directions. In contrast, the high-magnitude seismic risk is reduced when stresses are uniformly distributed in the tectonic shell. Such cointegration between correlations (i.e., Hurst exponent) and macroseismicity is confirmed for spatial variations of the Hurst exponent. In this way, we found that, using the Hurst exponent standpoint, the former presumed Michoacan and the Guerrero seismic gaps are the riskiest seismic zones. To test this empirical finding, two Southern Mexico local regions with large earthquakes were considered. These are the Atoyac de Alvarez, Guerrero (Mw = 6.3), and Union Hidalgo, Oaxaca (Mw = 6.6), events. In addition, we used the Loma Prieta, California, earthquake (October 17, 1989, Mw = 6.9) to show that the high-magnitude earthquakes in the San Andreas Fault region can also be linked to the increments of determinism (quantified in terms of the Hurst exponent) displayed by the stochastic dynamics of the interevent period time series. The results revealed that the analysis of seismic activity by means of R/S analysis could provide further insights in the advent of major earthquakes.  相似文献   

6.
The amplitude and phase of 11 tidal constituents for the English Channel and southern North Sea are calculated using a frequency domain, finite element model. The governing equations — the shallow water equations — are modifed such that sea level is calculated using an elliptic equation of the Helmholz type followed by a back-calculation of velocity using the primitive momentum equations. Triangular elements with linear basis functions are used. The modified form of the governing equations provides stable solutions with little numerical noise. In this field-scale test problem, the model was able to produce the details of the structure of 11 tidal constituents including O1, K1, M2, S2, N2, K2, M4, MS4, MN4, M6, and 2MS6.  相似文献   

7.
《Continental Shelf Research》1999,19(14):1833-1848
A well-defined front in temperature and salinity separates the stratified Clyde Sea water from the vertically well mixed water of the North Channel. The detailed structure of the front was observed in autumn 1990 by a combination of, repeated crossings of the front using a ship-borne ADCP and a towed undulating CTD system, and the deployment of a fixed mooring system with temperature, salinity and velocity sensors for a period of 12 days. The results show that the front was situated on the Great Plateau near a contour of log10(H/U32)=2.7∼3.7 where H is the water depth and U2 the amplitude of M2 tidal velocity. The temperature structure in the Clyde Sea was inverted and the Clyde Sea surface temperature was lower than that of the vertically well mixed water in the North Channel. Since the salinity gradient was stronger than the temperature gradient with fresher water on the surface, the density structure was predominantly controlled by salinity. There were indications of warm and saline bottom water upwelling on the mixed side of the front during spring tides. This upwelling disappeared and the salinity and temperature structure at the front was more diffuse during the neap tide period. A jet-like along-front residual current was observed flowing to the northwest in the surface layer with a counter flow to the southeast in the bottom layer. The vertical difference in velocity was about 9 cm s−1 and was approximately consistent with the shear determined from the thermal wind relation. Both cross- and along-front components of the current observed at the mooring station varied in response to the advection of the front, although both components had large variations with periods of less than one day and several days. The front was advected past the mooring system by a mean flow from the North Channel to the inner basin, while oscillating 3–5 km back and forth with the tidal currents. From the velocity at a current meter mooring and CTD data, the front was estimated to have moved up to 20 km during the observational period and the cross frontal velocity was inferred to be 3–4 cm s−1.  相似文献   

8.
《Continental Shelf Research》1999,19(15-16):1905-1932
The M2 tidal component of the flow in the Dover Straits is reconstructed using a natural combination of two independent data sources: HF Ocean Surface Current Radar (HF OSCR) system and coastal tidal measurements. The method used is the variational data assimilation technique into a quasi-linearized finite element tidal model. The model uses triangular elements with horizontal resolution varying from 800 to 1200 m. It is controlled by the boundary conditions at open boundaries, which are adjusted to fit the available data in an optimal way. A “weak” formulation of the dynamical constraints is used. The interpolation scheme allows small (0.01%) deviations from the exact dynamics specified by the model. The optimal state of M2 parameters (sea surface elevation and depth-averaged velocities) is used to map both the M2 tidal flux through the strait and the M2 energy flux. The respective values obtained are the tidal flux amplitude 1.18±0.09×106 m3 s−1, the net residual transport (Stoke's drift) 40±3×103 m3 s−1, and the net energy flux 1.19±0.09×1010 W. These figures within the statistically estimated error band are in the close agreement with those obtained by Prandle et al., 1993. A rigorous error analysis is performed using an explicit inversion of the Hessian matrix, associated with the assimilation scheme. As a result, error charts for M2 velocities and sea surface elevation are obtained. It is shown that OSCR data combined with coastal level measurements and constrained by dynamics is able to provide quite accurate velocity estimates whose errors vary within the range of 0.05–0.45 m s−1 depending upon the location. Error maps also enable us to determine areas requiring better coverage by data, thus forming a basis of optimization approach to the design of the HFR measurements. The use of variational assimilation technique in providing integrated interpolation patterns from various sources of data demonstrates its capabilities in relation to future oceanographic monitoring systems of shelf circulation.  相似文献   

9.
Many authors have proposed that the study of seismicity rates is an appropriate technique for evaluating how close a seismic gap may be to rupture. We designed an algorithm for identification of patterns of significant seismic quiescence by using the definition of seismic quiescence proposed by Schreider (1990). This algorithm shows the area of quiescence where an earthquake of great magnitude may probably occur. We have applied our algorithm to the earthquake catalog on the Mexican Pacific coast located between 14 and 21 degrees of North latitude and 94 and 106 degrees West longitude; with depths less than or equal to 60 km and magnitude greater than or equal to 4.3, which occurred from January, 1965 until December, 2014. We have found significant patterns of seismic quietude before the earthquakes of Oaxaca (November 1978, Mw = 7.8), Petatlán (March 1979, Mw = 7.6), Michoacán (September 1985, Mw = 8.0, and Mw = 7.6) and Colima (October 1995, Mw = 8.0). Fortunately, in this century earthquakes of great magnitude have not occurred in Mexico. However, we have identified well-defined seismic quiescences in the Guerrero seismic-gap, which are apparently correlated with the occurrence of silent earthquakes in 2002, 2006 and 2010 recently discovered by GPS technology.  相似文献   

10.
Studies by many scientists show that Hebei, China is an area with strong correlation between the tidal force and the occurrences of major earthquakes, the Xingtai earthquake of 1966, the Hejian earthquake of 1967 and the Tangshan earthquake of 1976 were triggered by the tidal force, in this paper the study on the common characteristics of their occurrence times confirms these facts. The computed times of maximum horizontal of the semi diurnal solid tide tidal force show that the occurrence times of the above mentioned earthquakes were close to the times of maximum horizontal tidal force of the semi diurnal solid tide at new moon or full moon. The Longyao earthquake of M=6.8, the Ningjin earthquake of M=7.2 and the Hejian earthquake of M=6.3 occurred tens of minutes after the maximum horizontal tidal force of the semi diurnal solid tides, and the Tangshan earthquake of M=7.8 occurred 16 minutes before the maximum horizontal tidal force. The tidal forces were directed to the west. This is their temporal characteristic. It is generally accepted that the 1969 Bohai earthquake of M=7.4 and the 1975 Haicheng earthquake were not triggered by the tidal force. These events did not show such characteristics. The temporal characteristics of the earthquakes indicate that the occurrences of these events were not random, but were controlled by the tidal force from the sun and the moon, and triggered by the tidal force. These facts agree with the triggering mechanism of the tidal force, are evidences of earthquakes triggered by tidal force.  相似文献   

11.
Two accurately calibrated superconducting gravimeters (SGs) provide high quality tidal gravity records in three central European stations: C025 in Vienna and at Conrad observatory (A) and OSG050 in Pecný (CZ). To correct the tidal gravity factors from ocean loading effects we compared the load vectors from different ocean tides models (OTMs) computed with different software: OLFG/OLMP by the Free Ocean Tides Loading Provider (FLP), ICET and NLOADF. Even with the recent OTMs the mass conservation is critical but the methods used to correct the mass imbalance agree within 0.1 nm/s2. Although the different software agrees, FLP probably provides more accurate computations as this software has been optimised. For our final computation we used the mean load vector computed by FLP for 8 OTMs (CSR4, NAO99, GOT00, TPX07, FES04, DTU10, EOT11a and HAMTIDE). The corrected tidal factors of the 3 stations agree better than 0.04% in amplitude and 0.02° in phase. Considering the weighted mean of the three stations we get for O1 δc = 1.1535 ± 0.0001, for K1 δc = 1.1352 ± 0.0003 and for M2 δc = 1.1621 ± 0.0003. These values confirm previous ones obtained with 16 European stations. The theoretical body tides model DDW99/NH provides the best agreement for M2 (1.1620) and MATH01/NH for O1 (1.1540) and K1 (1.1350). The largest discrepancy is for O1 (0.05%). The corrected phase αc does not differ significantly from zero except for K1 and S2. The calibrations of the two SG's are consistent within 0.025% and agree with Strasbourg results within 0.05%.  相似文献   

12.
Observations at 8 sites in the outer central Great Barrier Reef show M2, S2, K1, and O1 tidal currents flow directly off-shelf (northeast), when the corresponding tide at Townsville is at zero height and falling, with typical amplitudes of 12, 6, 3, and 2 cm s?1. On the slope (at 300 m depth), the vertically averaged long-shelf component was small. On the shelf, the eccentricity of the tidal ellipses decreases shoreward and the tidal ellipses rotate anticlockwise. The major axes of the tidal ellipses tilt left of cross-shelf, especially for the diurnal constituents. There is satisfactory agreement between the observed and modelled cross-shelf currents. The long-shelf velocity is sensitive to the long-shelf changes in amplitude and phase of the tide heights and high quality tidal data for open boundary conditions will be required if numerical models are to model these currents satisfactorily.  相似文献   

13.
《Journal of Geodynamics》2010,49(3-5):247-252
Enceladus, one of Saturn's moons, shows significant volcanic activity identified by the Cassini spacecraft. The aim of the present study is to investigate – with the adaptation of mathematical tools used in geodynamics – the extent of tidal heating due to the mean motion resonance with Dione. For the purpose of calculations a two-layer model of Enceladus was used. The inner part of the model is a “rocky core” with a relative radius 0.55, while the outer part is composed of water ice. The results of model calculations show that the effective tidal heating is not uniformly distributed within Enceladus. It was found for the selected model of Enceladus, that the tidal heating is maximum within the depth interval (25–75) km. Due to the inhomogeneity within Enceladus, 85% of the tidal energy is generated in a volume that contains just 39% of its mass. In time intervals of 3.0 × 108 and 5.3 × 108 years the temperature increase in the relative depth range 0.70  r/aE  0.90 is approximately 270 and 370 K, respectively.  相似文献   

14.
The tropospheric zenith total delay (ZTD) derived from very long baseline interferometry (VLBI) is an important parameter of the atmosphere, reflecting various atmosphere-related processes and variations. In this paper, ZTD time series of the IVS rapid combined tropospheric product (2002–2006) with a 1-h resolution are used for the first time to investigate the diurnal and semidiurnal oscillations. Significant diurnal and semidiurnal variations of ZTD are found at all VLBI stations. The amplitude of the diurnal cycle S1 is 0.6–1.2 mm at most of the VLBI stations, and the amplitude of the semidiurnal cycle S2 is 0.2–1.9 mm, which nearly accord with the surface pressure tides S1/S2 and co-located GPS estimated S1/S2. The results indicate that the S1 and S2 behaviors are mainly dominated by the hydrostatic component, namely pressure tides. In general, the semidiurnal S2 amplitudes are slightly larger than the diurnal S1. While S1 shows no clear dependency on site altitude, S2 has a regular distribution with VLBI site altitude. The results are in accordance with predictions of the classic tidal theory [Chapman, S., Lindzen, R.S., 1970. Atmospheric Tides, Gordon and Breach, New York].  相似文献   

15.
The spectral attenuation of solar irradiation was measured during summer in two types of coastal waters in southern Chile, a north Patagonian fjord (Seno Reloncaví) and open coast (Valdivia). In order to relate the light availability with the light requirements of upper subtidal seaweeds, the saturating irradiance for photosynthesis (Ek) from PI curves was measured. In addition the UV risk was assessed. Based on the z1% of PAR, the lower limit of the euphotic zone in the studied systems averaged 21 m (Kd 0.24 m?1) in Seno Reloncaví and 18 m (Kd 0.27 m?1) in the coast of Valdivia. Photosynthesis of the studied seaweeds was saturated at markedly lower irradiances than found in their natural depths at the time of the study. Solar radiation penetrating into these depths at both locations largely supports the light requirements for the photosynthesis of subtidal species: 50–160 μmol m?2 s?1 for seaweeds from Seno Reloncaví (7 m tidal range) and 20–115 μmol m?2 s?1 for Valdivia assemblages (2 m tidal range). Optimal light conditions to saturate photosynthesis (Ek) were present at 10–16 m water depth. The attenuation of solar irradiation did not vary significantly between the fjord and coastal sites of this study. However, the underwater light climates to which seaweeds are exposed in these sites vary significantly because of the stronger influence of tidal range affecting the fjord system as compared with the open coastal site. The patterns of UV-B penetration in these water bodies suggest that seaweeds living in upper littoral zones such as the intertidal and shallow subtidal (<3 m) may be at risk.  相似文献   

16.
The nodal modulation of the diurnal (K1 and O1) and semi-diurnal (M2 and K2) tidal constituents at the coasts of the Mediterranean Sea and the eastern Atlantic is estimated and its spatial variability mapped. Fourteen hourly tide gauge records each spanning more than 18 years are considered in this analysis. Ten tide gauges are located in the Mediterranean Sea and four in the Bay of Biscay. The nodal modulation of the most energetic tidal constituent (M2) reaches up to 5 cm at the eastern Atlantic coasts, while within the Mediterranean Sea its modulation is in general less than 1.1 cm. The largest K2 nodal modulation found is 3.7 cm in the eastern Atlantic coasts. In the Mediterranean Sea, smaller modulation amplitudes, ranging between 0.4 and 1.4 cm are found. The K1 tide constituent has the largest amplitude nodal modulation within the Mediterranean Sea of 1.9 cm in the north Adriatic Sea, which is also larger than the modulation of this constituent at the eastern Atlantic coasts. The O1 tide constituent has the highest amplitude nodal modulation (1.4 cm) at the eastern Atlantic coasts. In the Mediterranean Sea the maximum value is 1 cm in the north Adriatic Sea.  相似文献   

17.
This study examines connections between mean sea level (MSL) variability and diurnal and semidiurnal tidal constituent variations at 17 open-ocean and 9 continental shelf tide gauges in the western tropical Pacific Ocean, a region showing anomalous rise in MSL over the last 20 years and strong interannual variability. Detrended MSL fluctuations are correlated with detrended tidal amplitude and phase fluctuations, defined as tidal anomaly trends (TATs), to quantify the response of tidal properties to MSL variation. About 20 significant amplitude and phase TATs are found for each of the two strongest tidal constituents, K1 (diurnal) and M2 (semidiurnal). Lesser constituents (O1 and S2) show trends at nearly half of all gauges. Fluctuations in MSL shift amplitudes and phases; both positive and negative responses occur. Changing overtides suggest that TATs are influenced by changing shallow water friction over the equatorial Western Pacific and the eastern coast of Australia (especially near the Great Barrier Reef). There is a strong connection between semidiurnal TATs at stations around the Solomon Islands and changes in thermocline depth, overtide generation, and the El Niño Southern Oscillation (ENSO). TATs for O1, K1, and M2 are related to each other in a manner that suggests transfer of energy from M2 to the two diurnals via resonant triad interactions; these cause major tidal variability on sub-decadal time scales, especially for M2. The response of tides to MSL variability is not only spatially complex, it is frequency dependent; therefore, short-term responses may not predict long-term behavior.  相似文献   

18.
This is an attempt to analyze the current lithospheric stress pattern in the Baikal rift in terms of nonlinear dynamics as an open self-organizing system in order to gain more insights into the general laws of regional seismicity. According to the suggested approach, the stress pattern inferred from seismic moments of 70,000 MLH  2.0 events that occurred in the region between 1968 and 1994 is presented as a phase portrait in the phase spaces of the seismic moments. The obtained phase portrait of the system evolution fits well a scenario with triple equilibrium bifurcation where stress bifurcations account for the frequency of M > 5.5 earthquakes. Extrapolation of the results into the nearest future indicates probability of such a bifurcation (a catastrophe of stress), i.e., there is growing risk that M  7 events may happen in the region within a few years.  相似文献   

19.
The spatial pattern and seasonal variation of denitrification were investigated during 2010–2011 in the Jiulong River Estuary (JRE) in southeast China. Dissolved N2 was directly measured by changes in the N2:Ar ratio. The results showed that excess dissolved N2 ranged from ?9.9 to 76.4 μmol L?1. Tidal mixing leads to a seaward decline of dissolved gaseous concentrations and water–air fluxes along the river-estuary gradient. Denitrification at freshwater sites varied between seasons, associated with changes in N input and water temperature. The denitrification process was controlled by the nitrate level at freshwater sites, and the excess dissolved N2 observed at the tidal zone largely originated from upstream water transport. Compared to other estuaries, JRE has a relative low gaseous removal efficiency (Ed = 12% of [DIN]; annual N removal = 24% of DIN load), a fact ascribed to strong tidal mixing, coarse-textured sediment with shallow depth before bedrock and high riverine DIN input.  相似文献   

20.
The na lidar-observed temperature diurnal tidal perturbations, based on full-diurnal-cycle observations from 2002 to 2008, are compared with tidal wave measurements by the TIMED/SABER instrument to elucidate the nature of diurnal tidal-period perturbations observed locally. The diurnal amplitude and phase profiles deduced by the two instruments are in very good agreement most of the year. However, the lidar-observed diurnal amplitudes during winter months and early spring are considerably larger than SABER observations, leading to the existence of a significant amplitude maximum of 12 K near 90 km in February and a different seasonal structure of temperature diurnal amplitude from the two instruments. The lidar-observed diurnal phase shows propagating wave characteristics during equinoctial months, but exhibit “evanescent wave” behavior in winter months, whereas SABER diurnal tidal phase exhibits propagating diurnal tidal character all year long with small seasonal variation. This anomalous tidal characteristic from the lidar observations repeats almost every winter. The exact mechanism behind this tidal feature is not fully understood, therefore further investigation and more experimental observations are necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号