首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This work continues the analysis of variable density flow in groundwater systems. It focuses on both thermohaline (double-diffusive) and three-dimensional (3D) buoyancy-driven convection processes. The finite-element method is utilized to tackle these complex non-linear problems in two and three dimensions. The preferred numerical approaches are discussed regarding appropriate basic formulations, balance-consistent discretization techniques for derivative quantitites, extension of the Boussinesq approximation, proper constraint conditions, time marching schemes, and computational strategies for solving large systems. Applications are presented for the thermohaline Elder and salt dome problem as well as for the 3D extension of the Elder problem with and without thermohaline effects and a 3D Bénard convection process. The simulations are performed by using the package FEFLOW. Conclusions are drawn with respect to numerical efforts and the appropriateness for practical needs.  相似文献   

2.
We review the state of the art in modeling of variable-density flow and transport in porous media, including conceptual models for convection systems, governing balance equations, phenomenological laws, constitutive relations for fluid density and viscosity, and numerical methods for solving the resulting nonlinear multifield problems. The discussion of numerical methods addresses strategies for solving the coupled spatio-temporal convection process, consistent velocity approximation, and error-based mesh adaptation techniques. As numerical models for those nonlinear systems must be carefully verified in appropriate tests, we discuss weaknesses and inconsistencies of current model-verification methods as well as benchmark solutions. We give examples of field-related applications to illustrate specific challenges of further research, where heterogeneities and large scales are important.  相似文献   

3.
This study proposes the use of several problems of unstable steady state convection with variable fluid density in a porous layer of infinite horizontal extent as two-dimensional (2-D) test cases for density-dependent groundwater flow and solute transport simulators. Unlike existing density-dependent model benchmarks, these problems have well-defined stability criteria that are determined analytically. These analytical stability indicators can be compared with numerical model results to test the ability of a code to accurately simulate buoyancy driven flow and diffusion. The basic analytical solution is for a horizontally infinite fluid-filled porous layer in which fluid density decreases with depth. The proposed test problems include unstable convection in an infinite horizontal box, in a finite horizontal box, and in an infinite inclined box. A dimensionless Rayleigh number incorporating properties of the fluid and the porous media determines the stability of the layer in each case. Testing the ability of numerical codes to match both the critical Rayleigh number at which convection occurs and the wavelength of convection cells is an addition to the benchmark problems currently in use. The proposed test problems are modelled in 2-D using the SUTRA [SUTRA––A model for saturated–unsaturated variable-density ground-water flow with solute or energy transport. US Geological Survey Water-Resources Investigations Report, 02-4231, 2002. 250 p] density-dependent groundwater flow and solute transport code. For the case of an infinite horizontal box, SUTRA results show a distinct change from stable to unstable behaviour around the theoretical critical Rayleigh number of 4π2 and the simulated wavelength of unstable convection agrees with that predicted by the analytical solution. The effects of finite layer aspect ratio and inclination on stability indicators are also tested and numerical results are in excellent agreement with theoretical stability criteria and with numerical results previously reported in traditional fluid mechanics literature.  相似文献   

4.
It can be very time consuming to use the conventional numerical methods, such as the finite element method, to solve convection–dispersion equations, especially for solutions of large-scale, long-term solute transport in porous media. In addition, the conventional methods are subject to artificial diffusion and oscillation when used to solve convection-dominant solute transport problems. In this paper, a hybrid method of Laplace transform and finite element method is developed to solve one- and two-dimensional convection–dispersion equations. The method is semi-analytical in time through Laplace transform. Then the transformed partial differential equations are solved numerically in the Laplace domain using the finite element method. Finally the nodal concentration values are obtained through a numerical inversion of the finite element solution, using a highly accurate inversion algorithm. The proposed method eliminates time steps in the computation and allows using relatively large grid sizes, which increases computation efficiency dramatically. Numerical results of several examples show that the hybrid method is of high efficiency and accuracy, and capable of eliminating numerical diffusion and oscillation effectively.  相似文献   

5.
A distributed-parameter physically-based solute transport model using a novel approach to describe surface-subsurface interactions is coupled to an existing flow model. In the integrated model the same surface routing and mass transport equations are used for both hillslope and channel processes, but with different parametrizations for these two cases. For the subsurface an advanced time-splitting procedure is used to solve the advection-dispersion equation for transport and a standard finite element scheme is used to solve Richards equation for flow. The surface-subsurface interactions are resolved using a mass balance-based surface boundary condition switching algorithm that partitions water and solute into actual fluxes across the land surface and changes in water and mass storage. The time stepping strategy allows the different time scales that characterize surface and subsurface water and solute dynamics to be efficiently and accurately captured. The model features and performance are demonstrated in a series of numerical experiments of hillslope drainage and runoff generation.  相似文献   

6.
The Galerkin finite element method coupled with the Crank-Nicolson time advance procedure is often used as a numerical analog for unsaturated soil-moisture transport problems. The Crank-Nicolson procedure leads to numerical mass balance problems which results in instability. A new temporal and spatial integration procedure is proposed that exactly satisfies mass balance for the approximating function used. This is accomplished by fitting polynomials continuously throughout the time and space domain and integrating the governing differential equations. To reduce computational effort, the resulting higher order polynomials are reduced to quadratic and linear piece-wise continuous polynomial approximation functions analogous to the finite element approach. Results indicate a substantial improvement in accuracy over the combined Galerkin and Crank-Nicolson methods when comparing to simplified problems where analytical solutions are available.  相似文献   

7.
A test case has been developed for three-dimensional simulations of variable-density flow and solute transport in discretely-fractured porous media. The simulation domain is a low-permeability porous matrix cube containing a single non-planar fracture. The initial solute concentration is zero everywhere. A constant solute concentration is assigned to the top of the domain, which increases near-top fluid density and induces downward density-driven flow. The test case is therefore comparable to downwelling of a dense brine below a saline disposal basin or a waste repository. Numerous fingers and distinct convection cells develop early in the fracture but the fingers later coalesce and convection becomes less apparent. To help test other variable-density flow and transport models, results of the test case are presented both qualitatively (concentration contours and velocity fields) and quantitatively (penetration depth, mass flux, total mass stored, maximum fracture and matrix velocity).  相似文献   

8.
The development of a displacement finite element formulation and its application to convective transport problems is presented. The formulation is based on the introduction of a generalized quantity defined as transport displacement. The governing equation is expressed in terms of this quantity and by using generalized coordinates a variational form of the governing equation is obtained. This equation may be solved by any numerical method, though it is of particular interest for application of the finite element method. Two finite element models are derived for the solution of convection-diffusion boundary value problems. The performance of the two element models is discussed and numerical results are given for different cases of convection and diffusion with two types of boundary conditions. The numerical results obtained show not only the efficiency of the numerical models in handling pure convection, pure diffusion and mixed convection-diffusion problems, but also good stability and accuracy. The applications of the developed numerical models are not limited to diffusion-convection problems but can also be applied to other types of problems such as mass transfer, hydrodynamics and wave propagation.  相似文献   

9.
Upscaling pore-scale processes into macroscopic quantities such as hydrodynamic dispersion is still not a straightforward matter for porous media with complex pore space geometries. Recently it has become possible to obtain very realistic 3D geometries for the pore system of real rocks using either numerical reconstruction or micro-CT measurements. In this work, we present a finite element–finite volume simulation method for modeling single-phase fluid flow and solute transport in experimentally obtained 3D pore geometries. Algebraic multigrid techniques and parallelization allow us to solve the Stokes and advection–diffusion equations on large meshes with several millions of elements. We apply this method in a proof-of-concept study of a digitized Fontainebleau sandstone sample. We use the calculated velocity to simulate pore-scale solute transport and diffusion. From this, we are able to calculate the a priori emergent macroscopic hydrodynamic dispersion coefficient of the porous medium for a given molecular diffusion Dm of the solute species. By performing this calculation at a range of flow rates, we can correctly predict all of the observed flow regimes from diffusion dominated to convection dominated.  相似文献   

10.
This work deals with a comparison of different numerical schemes for the simulation of contaminant transport in heterogeneous porous media. The numerical methods under consideration are Galerkin finite element (GFE), finite volume (FV), and mixed hybrid finite element (MHFE). Concerning the GFE we use linear and quadratic finite elements with and without upwind stabilization. Besides the classical MHFE a new and an upwind scheme are tested. We consider higher order finite volume schemes as well as two time discretization methods: backward Euler (BE) and the second order backward differentiation formula BDF (2). It is well known that numerical (or artificial) diffusion may cause large errors. Moreover, when the Péclet number is large, a numerical code without some stabilising techniques produces oscillating solutions. Upwind schemes increase the stability but show more numerical diffusion. In this paper we quantify the numerical diffusion for the different discretization schemes and its dependency on the Péclet number. We consider an academic example and a realistic simulation of solute transport in heterogeneous aquifer. In the latter case, the stochastic estimates used as reference were obtained with global random walk (GRW) simulations, free of numerical diffusion. The results presented can be used by researchers to test their numerical schemes and stabilization techniques for simulation of contaminant transport in groundwater.  相似文献   

11.
A convection-diffusion equation arises from the conservation equations in miscible and immiscible flooding, thermal recovery, and water movement through desiccated soil. When the convection term dominates the diffusion term, the equations are very difficult to solve numerically. Owing to the hyperbolic character assumed for dominating convection, inaccurate, oscillating solutions result. A new solution technique minimizes the oscillations. The differential equation is transformed into a moving coordinate system which eliminates the convection term but makes the boundary location change in time. We illustrate the new method on two one-dimensional problems: the linear convection-diffusion equation and a non-linear diffusion type equation governing water movement through desiccated soil. Transforming the linear convection diffusion equation into a moving coordinate system gives a diffusion equation with time dependent boundary conditions. We apply orthogonal collocation on finite elements with a Crank-Nicholson time discretization. Comparisons are made to schemes using fixed coordinate systems. The equation describing movement of water in dry soil is a highly non-linear diffusion-type equation with coefficients varying over six orders of magnitude. We solve the equation in a coordinate system moving with a time-dependent velocity, which is determined by the location of the largest gradient of the solution. The finite difference technique with a variable grid size is applied, and a modified Crank-Nicholson technique is used for the temporal discretization. Comparisons are made to an exact solution obtained by similarity transformation, and with an ordinary finite difference scheme on a fixed coordinate system.  相似文献   

12.
The transport and fate of reactive chemicals in groundwater is governed by equations which are often difficult to solve due to the nonlinear relationship between the solute concentrations for the liquid and solid phases. The nonlinearity may cause mass balance errors during the numerical simulation in addition to numerical errors for linear transport system. We have generalized the modified Picard iteration algorithm of Celia et al.5 for unsaturated flow to solve the nonlinear transport equation. Written in a ‘mixed-form’ formulation, the total solute concentration is expanded in a Taylor series with respect to the solution concentration to linearize the transport equation, which is then solved with a conventional finite element method. Numerical results of this mixed-form algorithm are compared with those obtained with the concentration-based scheme using conventional Picard iteration. In general, the new solver resulted in negligible mass balance errors (< ∥10−8∥%) and required less computational time than the conventional iteration scheme for the test examples, including transport involving highly nonlinear adsorption under steady-state as well as transient flow conditions. In contrast, mass balance errors resulting from the conventional Picard iteration method were higher than 10% for some highly nonlinear problems. Application of the modified Picard iteration scheme to solve the nonlinear transport equation may greatly reduce the mass balance errors and increase computational efficiency.  相似文献   

13.
Numerous cold regions water flow and energy transport models have emerged in recent years. Dissimilarities often exist in their mathematical formulations and/or numerical solution techniques, but few analytical solutions exist for benchmarking flow and energy transport models that include pore water phase change. This paper presents a detailed derivation of the Lunardini solution, an approximate analytical solution for predicting soil thawing subject to conduction, advection, and phase change. Fifteen thawing scenarios are examined by considering differences in porosity, surface temperature, Darcy velocity, and initial temperature. The accuracy of the Lunardini solution is shown to be proportional to the Stefan number. The analytical solution results obtained for soil thawing scenarios with water flow and advection are compared to those obtained from the finite element model SUTRA. Three problems, two involving the Lunardini solution and one involving the classic Neumann solution, are recommended as standard benchmarks for future model development and testing.  相似文献   

14.
A discontinuous Galerkin (DG) finite element method is described for the two-dimensional, depth-integrated shallow water equations (SWEs). This method is based on formulating the SWEs as a system of conservation laws, or advection–diffusion equations. A weak formulation is obtained by integrating the equations over a single element, and approximating the unknowns by piecewise, possibly discontinuous, polynomials. Because of its local nature, the DG method easily allows for varying the polynomial order of approximation. It is also “locally conservative”, and incorporates upwinded numerical fluxes for modeling problems with high flow gradients. Numerical results are presented for several test cases, including supercritical flow, river inflow and standard tidal flow in complex domains, and a contaminant transport scenario where we have coupled the shallow water flow equations with a transport equation for a chemical species.  相似文献   

15.
Boundary conditions are required to close the mathematical formulation of unstable density‐dependent flow systems. Proper implementation of boundary conditions, for both flow and transport equations, in numerical simulation are critical. In this paper, numerical simulations using the FEFLOW model are employed to study the influence of the different boundary conditions for unstable density‐dependent flow systems. A similar set up to the Elder problem is studied. It is well known that the numerical simulation results of the standard Elder problem are strongly dependent on spatial discretization. This work shows that for the cases where a solute mass flux boundary condition is employed instead of a specified concentration boundary condition at the solute source, the numerical simulation results do not vary between different convective solution modes (i.e., plume configurations) due to the spatial discretization. Also, the influence of various boundary condition types for nonsource boundaries was studied. It is shown that in addition to other factors such as spatial and temporal discretization, the forms of the solute transport equation such as divergent and convective forms as well as the type of boundary condition employed in the nonsource boundary conditions influence the convective solution mode in coarser meshes. On basis of the numerical experiments performed here, higher sensitivities regarding the numerical solution stability are observed for the Adams‐Bashford/Backward Trapezoidal time integration approach in comparison to the Euler‐Backward/Euler‐Forward time marching approach. The results of this study emphasize the significant consequences of boundary condition choice in the numerical modeling of unstable density‐dependent flow.  相似文献   

16.
The objective of this paper is to demonstrate the formulation of a numerical model for mass transport based on the Bhatnagar–Gross–Krook (BGK) Boltzmann equation. To this end, the classical chemical transport equation is derived as the zeroth moment of the BGK Boltzmann differential equation. The relationship between the mass transport equation and the BGK Boltzmann equation allows an alternative approach to numerical modeling of mass transport, wherein mass fluxes are formulated indirectly from the zeroth moment of a difference model for the BGK Boltzmann equation rather than directly from the transport equation. In particular, a second-order numerical solution for the transport equation based on the discrete BGK Boltzmann equation is developed. The numerical discretization of the first-order BGK Boltzmann differential equation is straightforward and leads to diffusion effects being accounted for algebraically rather than through a second-order Fickian term. The resultant model satisfies the entropy condition, thus preventing the emergence of non-physically realizable solutions including oscillations in the vicinity of the front. Integration of the BGK Boltzmann difference equation into the particle velocity space provides the mass fluxes from the control volume and thus the difference equation for mass concentration. The difference model is a local approximation and thus may be easily included in a parallel model or in accounting for complex geometry. Numerical tests for a range of advection–diffusion transport problems, including one- and two-dimensional pure advection transport and advection–diffusion transport show the accuracy of the proposed model in comparison to analytical solutions and solutions obtained by other schemes.  相似文献   

17.
Solute transport is usually modeled by the advection-dispersion-reaction equation. In the standard approach, mechanical dispersion is a tensor with principal directions parallel and perpendicular to the flow vector. Since realistic scenarios include nonuniform and unsteady flow fields, the governing equation has full tensor mechanical dispersion. When conventional grid-based numerical methods are used, approximation of the cross terms arising from the off-diagonal terms cause nonphysical solution with oscillations. As an example, for the common scenario of contaminant input into a domain with zero initial concentration, the cross-dispersion terms can result in negative concentrations that can wreak havoc in reactive transport applications. To address this issue, we use the well-known flux-corrected-transport (FCT) technique for a standard finite volume method. Although FCT has most often been used to eliminate oscillations resulting from discretization of the advection term for explicit time stepping, we show that it can be adapted for full-tensor dispersion and implicit time stepping. Unlike other approaches based on new discretization techniques (e.g., mimetic finite difference, nonlinear finite volume), FCT has the advantage of being flexible and widely applicable. Implementation of FCT requires solving an additional system of equations at each time step, using a modified “low order” matrix and a modified right-hand-side vector. To demonstrate the flexibility of FCT, we have modified the well-known and widely used groundwater solute transport simulator, MT3DMS. We apply the new simulator, MT3DMS-FCT, to several benchmark problems that suffer from negative concentrations when using MT3DMS. The new results are mass conservative and strictly nonnegative.  相似文献   

18.
This paper presents and compares several numerical solutions of the coupled system of Navier–Stokes and Darcy equations. The schemes are based on combinations of the finite element method and the discontinuous Galerkin method. Accuracy and robustness of the methods are investigated for heterogeneous porous media. The importance of local mass conservation for filtration problems is also discussed.  相似文献   

19.
The Stokes problem describes flow of an incompressible constant-viscosity fluid when the Reynolds number is small so that inertial and transient-time effects are negligible. The numerical solution of the Stokes problem requires special care, since classical finite element discretization schemes, such as piecewise linear interpolation for both the velocity and the pressure, fail to perform. Even when an appropriate scheme is adopted, the grid must be selected so that the error is as small as possible. Much of the challenge in solving Stokes problems is how to account for complex geometry and to capture important features such as flow separation. This paper applies adaptive mesh techniques, using a posteriori error estimates, in the finite element solution of the Stokes equations that model flow at pore scales. Different selected numerical test cases associated with various porous geometrics are presented and discussed to demonstrate the accuracy and efficiency of our methodology.  相似文献   

20.
Existing analytical solutions to 2D and 3D contaminant transport problems are limited by the mathematically convenient assumption of uniform flow. An approximate method is developed herein for coordinate mapping of 2D (vertically-averaged) transport solutions to non-uniform steady-state irrotational and divergence-free flow fields in single-layer aquifers. The method enables existing analytical transport solutions to be applied to aquifer systems with wells, non-uniform saturated thickness, surface water features, and (to a limited degree) heterogeneous hydraulic conductivity and recharge. This mass-conservative coordinate mapping approach is inexact in its approximation of the dispersion process but is still sufficiently accurate for many simple flow systems. The degree of model error is directly proportional to the variation of velocity magnitude within the domain. These mapped analytical solutions are compared to numerical simulation results and the coordinate mapping errors are investigated. The methods described herein may be used in the traditional capacity of analytical transport models, i.e., screening and preliminary site assessment, without sacrificing accuracy by assuming locally uniform flow conditions or applying an ad-hoc coordinate transformation. The solutions benefit from the traditional advantages of analytical methods, particularly the removal of artifacts due to spatial and temporal discretization: no time-stepping or numerical discretization is required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号