首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Remediation of ground water pollution at old landfills with no engineered leachate collection system is a demanding and costly operation. It requires control of the landfill body, since the majority of the pollutants are still present in the landfilled waste for decades after the site has been closed. However removing the source is an attractive approach to managing leachate plumes. Natural attenuation has been implemented for petroleum hydrocarbon plumes and chorinated solvent plumes, primarily in the United States. Natural attenuation has not yet gained a foothold with respect to leachate plumes, however. Based on the experience gained from 10 years of research on two Danish landfills, it is suggested that natural attenuation is a feasible approach but is more complicated and demanding than in the case of petroleum hydrocarbons and chlorinated solvent.  相似文献   

2.
More than 70 individual VOCs were identified in the leachate plume of a closed municipal landfill. Concentrations were low when compared with data published for other landfills, and total VOCs accounted for less than 0.1% of the total dissolved organic carbon. The VOC concentrations in the core of the anoxic leachate plume are variable, but in all cases they were found to be near or below detection limits within 200 m of the landfill. In contrast to the VOCs, the distributions of chloride ion, a conservative tracer, and nonvolatile dissolved organic carbon, indicate little dilution over the same distance. Thus, natural attenuation processes are effectively limiting migration of the VOC plume. The distribution of C2-3-benzenes, paired on the basis of their octanol-water partition coefficients and Henry's law constants, were systematically evaluated to assess the relative importance of volatilization, sorption, and biodegradation as attenuation mechanisms. Based on our data, biodegradation appears to be the process primarily responsible for the observed attenuation of VOCs at this site. We believe that the alkylbenzenes are powerful process probes that can and should be exploited in studies of natural attenuation in contaminated ground water systems.  相似文献   

3.
We present a forward-modeling investigation of time-dependent ground magnetometric resistivity (MMR) anomalies associated with transient leachate transport in groundwater systems. Numerical geo-electrical models are constructed based on the hydrological simulation results of leachate plumes from a highly conceptualized landfill system and the resultant MMR responses are computed using a modified finite difference software MMR2DFD. Three transmitter configurations (i.e., single source, MMR-TE, and MMR-TM modes) and two hydrological models (i.e., uniform and faulted porous media) are considered. Our forward modeling results for the uniform porous medium indicates that the magnetic field components perpendicular to the dominant current flow contain the most information of the underground targets and the MMR-TE mode is an appropriate configuration for detecting contaminant plumes. The modeling experiments for the faulted porous medium also confirm that the MMR method is capable of mapping and monitoring the extent of contaminant plumes in aroundwater systems.  相似文献   

4.
Since the 1990s, questions have arisen as to whether the release of ethanol‐blended fuel will inhibit natural attenuation of other gasoline constituents in groundwater. This study evaluated the hypothesis that ethanol affects hydrocarbon attenuation and whether the use of ethanol‐blended fuel alters the applicability of monitored natural attenuation (MNA) as an approach for managing risks at fuel‐release sites. Groundwater data from California's GeoTracker database were used to compare attenuation of benzene, toluene, methyl tert‐butyl ether (MTBE), and tert‐butyl alcohol (TBA) at sites with and without detections of ethanol. Excel‐based tools were developed to conduct attenuation evaluations on thousands of wells simultaneously. Ethanol was detected at least once in 4.5% of the wells and 0.6% of the samples of which it was analyzed. The distribution of Mann‐Kendall concentration trend analysis results and first‐order attenuation rates were essentially the same at sites with or without ethanol detections. Median plume lengths were shorter at sites where ethanol had not been detected compared to sites where ethanol was detected (36 vs. 43 m for benzene; 36 vs. 42 m for toluene; 43 vs. 52 m for MTBE; and 44 vs. 59 m for TBA). However, the distribution of plume lengths was similar irrespective of ethanol concentrations, suggesting other factors may influence plume elongation. Finally, while anaerobic ethanol degradation can result in methane generation, the distributions of methane concentrations were the same at sites with and without ethanol detections. These results suggest that the use of ethanol‐blended fuel should not limit the application of MNA at most biodegrading fuel‐release sites.  相似文献   

5.
Two borehole geophysical methods—electromagnetic induction and natural gamma radiation logs—were used to vertically delineate landfill leachate plumes in a glacial aquifer. Geophysical logs of monitoring wells near two land-fills in a glacial aquifer in west-central Vermont show that borehole geophysical methods can aid in interpretation of geologic logs and placement of monitoring well screens to sample landfill leachate plumes.
Zones of high electrical conductance were delineated from the electromagnetic log in wells near two landfills. Some of these zones were found to correlate with silt and clay units on the basis of drilling and gamma logs. Monitoring wells were screened specifically in zones of high electrical conductivity that did not correlate to a silt or clay unit. Zones of high electrical conductivity that did not correlate to a silt or clay unit were caused by the presence of ground water with a high specific conductance, generally from 1000 to 2370 μS/cm (microsiemens per centimeter at 25 degrees Celsius). Ambient ground water in the study area has a specific conductance of approximately 200 to 400 μS/cm. Landfill leachate plumes were found to be approximately 5 to 20 feet thick and to be near the water table surface.  相似文献   

6.
We examined the spatiotemporal changes of microbial communities in relation to hydrochemistry variation over time and space in an aquifer polluted by landfill leachate (Banisveld, The Netherlands). Sampling in 1998, 1999, and 2004 at the same time of the year revealed that the center of the pollution plume was hydrochemically rather stable, but its upper fringe moved to the surface over time, especially at distances greater than 40 m away from the landfill. Complex and spatiotemporal heterogeneous bacterial and eukaryotic communities were resolved using denaturing gradient gel electrophoresis (DGGE) of 16S and 18S rRNA gene fragments. Large fluctuations were noted in the eukaryotic communities associated with strongly polluted and cleaner groundwater. The bacterial communities in strongly polluted samples were different from those in cleaner groundwater in 1998 and 1999, but no longer in 2004. The temporal variation in microbial communities was greater than the spatial variation: the 1998 bacteria communities in strongly polluted groundwater were more related to each other than to those recovered in 1999 and 2004. During the three sampling periods, the bacterial communities were more stable close to the landfill than at larger distances from the landfill. Overall, pollution appears to have only a minor influence on microbial communities. The considerable spatiotemporal variation in microbial community composition may contribute to better biodegradation of pollutants. Designing management strategies for natural attenuation of aquifer pollution will benefit from further long‐term, high‐density monitoring of changes in microbial communities, their diversity and physiological properties, in relation to changes in hydrochemistry.  相似文献   

7.
Like tree rings, high‐resolution soil sampling of low‐permeability (low‐k) zones can be used to evaluate the style of source history at contaminated sites (i.e., historical pattern of concentration and composition vs. time since releases occurred at the interface with the low‐k zone). This is valuable for the development of conceptual site model (CSM) and can serve as an important line of evidence supporting monitored natural attenuation (MNA) as a long‐term remedy. Source histories were successfully reconstructed at two sites at Naval Air Station Jacksonville using a simple one‐dimensional (1D) model. The plume arrival time and historical composition were reconstructed from the time initial releases that were suspected to occur decades earlier. At the first site (Building 106), the source reconstructions showed relatively constant source concentrations, but significant attenuation over time in the downgradient plume in the transmissive zone, suggesting MNA may not be an appropriate remedy if source control is a requirement, but attenuation processes are clearly helping to maintain plume stability and reduce risk. At the second site (Building 780), source concentrations in the transmissive zone showed an approximately a one order of magnitude over time, but apparently less attenuation in the downgradient plume. The source reconstruction method appeared to reflect site remediation efforts (excavation, soil vapor extraction) implemented in the 1990s. Finally, a detailed analysis using molecular biological tools, carbon isotopes, and by‐products suggests that most degradation activity is associated with high‐k zones but not with low‐k zones at these source areas. Overall, the source reconstruction methodology provided insight into historical concentration trends not obtainable otherwise given the limited long‐term monitoring data.  相似文献   

8.
Landfills are the final depositories for a wide range of solid waste from both residential and commercial sources, and therefore have the potential to produce leachate containing many organic compounds found in consumer products such as pharmaceuticals, plasticizers, disinfectants, cleaning agents, fire retardants, flavorings, and preservatives, known as emerging contaminants (ECs). Landfill leachate was sampled from landfill cells of three different age ranges from two landfills in Central Oklahoma. Samples were collected from an old cell containing solid waste greater than 25 years old, an intermediate age cell with solid waste between 16 and 3 years old, and operating cell with solid waste less than 5 years old to investigate the chemical variability and persistence of selected ECs in landfill leachate of differing age sources. Twenty‐eight of 69 analyzed ECs were detected in one or more samples from the three leachate sources. Detected ECs ranged in concentration from 0.11 to 114 μg/L and included 4 fecal and plant sterols, 13 household\industrial, 7 hydrocarbon, and 4 pesticide compounds. Four ECs were solely detected in the oldest leachate sample, two ECs were solely detected in the intermediate leachate sample, and no ECs were solely detected in the youngest leachate sample. Eleven ECs were commonly detected in all three leachate samples and are an indication of the contents of solid waste deposited over several decades and the relative resistance of some ECs to natural attenuation processes in and near landfills.  相似文献   

9.
This paper aims to explore information from the literature for emphasizing the state‐of‐the art and progress in landfill leachate generation, fate and migration, and treatment. Leachate composition is discussed in terms of types of waste disposed and the processes occurring within landfill. The focus is also on potential pathways of environmental contamination by leachate, which may increase environmental and human health risk. The analysis addresses the opportunity and support for decision making concerning alternatives for leachate management and treatment. Advantages and limitations of treatment methods and processes are discussed considering leachate transfer, physico‐chemical methods, biodegradation, and combined methods.  相似文献   

10.
A three‐dimensional model for predicting redox controlled, multi‐species reactive transport processes in groundwater systems is presented. The model equations were fully integrated within a MODFLOW‐family reactive transport code, RT3D. The model can simulate organic compound biodegradation coupled to different terminal electron acceptor processes. A computational approach, which uses the spatial and temporal distribution of the rates of different redox reactions, is proposed to map redox zones. The method allows one to quantify and visualize the biological degradation reactions occurring in three distinct patterns involving fringe, pseudo‐core and core processes. The capabilities of the numerical model are demonstrated using two hypothetical examples: a batch problem and a simplified two‐dimensional reactive transport problem. The model is then applied to an unconfined aquifer underlying a leaking landfill located near the city of Turin, in Piedmont (Italy). At this site, high organic load from the landfill leachate activates different biogeochemical processes, including aerobic degradation, denitrification, manganese reduction, iron reduction, sulfate reduction and methanogenesis. The model was able to describe and quantify these complex biogeochemical processes. The proposed model offers a rational framework for simulating coupled reactive transport processes occurring beneath a landfill site. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
城市垃圾渗滤液是一种成分复杂,有机物、氨氮浓度高的难处理废水。有关垃圾渗滤液的研究已成为国内外环保领域研究的热点,根据国内外最新研究进展,分析了垃圾渗滤液处理技术的现状及发展趋势,重点介绍了化学法、物化法、物化生联合法以及土地处理法等多种处理方法,并对处理工艺的选取提出了一些建议。  相似文献   

12.
Ground water scientists have made significant advances in understanding the soil interactions, hydrogeology, fate and transport, and subsurface microbiology of aromatic hydrocarbons (BTEX) in aquifer systems. It is now generally recognized that a major factor responsible for the attenuation and mass reduction of BTEX in plumes is the widespread occurrence of hydrocarbon biodegradation by indigenous soil microorganisms in aquifer material. Most well-studied BTEX plumes that develop from the accidental release of gasoline fuels contain low levels of soluble hydrocarbons (< 1 to 5000 ppb) and have been shown to be spatially confined because of natural biotransformation mechanisms. These in situ processes are controlled by source and aquifer characteristics, permeability, sorption, and geochemical properties of the aquifer. Many laboratory subsoil-ground water microcosms and field studies (10 to 20 C) have demonstrated the rapid biodecay (1 to SO percent/day for microcosms and 0.5 to 1.5 percent/day for plumes) of these aromatic compounds under primarily aerobic conditions (i.e., those with sufficient dissolved oxygen). The ability to implement ground water bioremediation will depend upon our understanding of source control and aquifer recharge effects on the spatial distribution of plumes. In addition, estimating the biodegradation of sorbed BTEX, determining limits and potential for in situ biostimulation of soluble plumes, and establishing data requirements for predictive modeling of natural attenuation will be useful for this remediation technology. The use of these tools to manage ground water quality appears to represent the most practical alternative, particularly for low-risk ground water supplies.  相似文献   

13.
Investigations of geology, hydrogeology, and ground water chemistry in the aquifer downgradient from Sjoelund Landfill, Denmark, formed the basis for an evaluation of natural attenuation as a remediation technology for phenoxy acid herbicides at the site. Concentrations of phenoxy acids were up to 65 μg/L in the ground water, primarily 4-chlor-2-methylphenoxypropionic acid (MCPP) and 2,4-dichlorophenoxypropionic acid (dichlorprop). Mass removal of the phenoxy acids was shown within 50 to 100 m of the landfill by calculation of contaminant fluxes passing transects at three distances. There was accordance between increasing oxygen concentrations and decreasing phenoxy acid concentrations with distance from the landfill, indicating that aerobic degradation was a major mass removal process. Presence of high concentrations of putative anaerobic phenoxy acid metabolites suggested that anaerobic degradation was also occurring. Laboratory degradation experiments using sediment and ground water from the aquifer supported aerobic and anaerobic degradability of MCPP at the site. It was concluded that natural attenuation may be applicable as a remedy for the phenoxy acids at the Sjoelund Landfill site, although uncertainties related to calculations of chloride and phenoxy acid fluxes at a complex site and identification of specific in situ indicators were encountered. Thus, there is a pronounced need for development and broader experience with evaluation tools for natural attenuation of phenoxy acids, such as specific metabolites, changes in enantiomeric fractions, compound-specific stable carbon isotope ratios, or microbial fingerprints.  相似文献   

14.
The distribution of particulate matter within river channels, including sediments, nutrients and pollutants, is fundamental to the survival of aquatic organisms. However, the interactions between flow and sediment transport at the patch scale of river systems represents an under‐researched component of physical habitat studies, particularly those concerning the characterization of ‘physical biotopes’ (riffles, runs, pools, glides). This paper describes a field methodology for exploring the transfer of particulate matter at small scales within river channels, which may be used to aid hydraulic habitat characterization. The field protocol combines field measurement of high frequency flow properties, to characterize hydraulic habitat units, and deployment of spatial arrays of turbidity probes, to detect the passage of artificially‐induced sediment plumes through different biotope units. Sediment plumes recorded by the probes are analysed quantitatively in the manner of the flood hydrograph, and qualitative inferences are made on the dominant mixing processes operating within different parts of the channel. Relationships between the nature of spatio‐temporal hydraulic variations within glide, riffle and pool biotopes, and the character and mixing behaviour of sediment plumes within these habitat units are identified. Results from these preliminary experiments suggest that investigating and characterizing the transfer and storage of sediments, nutrients and pollutants within and between different biotopes is a viable avenue for further research, with potential to contribute to improved physical habitat characterization for river management and habitat restoration. The experiments are also an illustration of the value of neglected synergies between process geomorphology, ecology and river hydraulics. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
The extent of natural attenuation is an important consideration in determining the most appropriate corrective action at sites where ground water quality has been impacted by releases of petroleum hydrocarbons or other chemicals. The objective of this study was to develop a practical approach that would evaluate natural attenuation based on easily obtained field data and field tested indicators of natural attenuation. The primary indicators that can he used to evaluate natural attenuation include plume characteristics and dissolved oxygen levels in ground water. Case studies of actual field sites show that plumes migrate more slowly than expected, reach a steady state, and decrease in extent and concentration when natural attenuation is occurring. Background dissolved oxygen levels greater than 1 to 2 mg/L and an inverse correlation between dissolved oxygen and contaminant levels have been identified through laboratory and field studies as key indicators of aerobic biodegradation. an important attenuation mechanism. Secondary indicators such as geochemical data, and more intensive methods such as contaminant mass balances, laboratory microcosm studies, and detailed ground water modeling can demonstrate natural attenuation as well. The recommended approach for evaluating natural attenuation is to design site assessment activities so that required data such as dissolved oxygen levels and historical plume flow path concentrations are obtained. With the necessary data, the primary indicators should be applied to evaluate natural attenuation. II the initial evaluation suggests that natural attenuation is a viable corrective action alternative, then a monitoring plan should be implemented to verify the extent of natural attenuation.  相似文献   

16.
Sulfate reducing conditions are widely observed in groundwater plumes associated with petroleum hydrocarbon releases. This leads to sulfate depletion in groundwater which can limit biodegradation of hydrocarbons (usually benzene, toluene, ethylbenzene, xylenes [BTEX] compounds) and can therefore result in extended timeframes to achieve groundwater cleanup objectives by monitored natural attenuation. Under these conditions, sulfate addition to the subsurface can potentially enhance BTEX biodegradation and facilitate enhanced natural attenuation. However, a delivery approach that enables effective contact with the hydrocarbons and is able to sustain elevated and uniform sulfate concentrations in groundwater remains a key challenge. In this case study, sulfate addition to a groundwater plume containing predominantly benzene by land application of agricultural gypsum and Epsom salt is described. Over 4 years of groundwater monitoring data from key wells subjected to pilot‐scale and site‐wide land application events are presented. These are compared to data from pilot testing employing liquid Epsom salt injections as an alternate sulfate delivery approach. Sulfate land application, sulfate retention within the vadose zone, and periodic infiltration following ongoing precipitation events resulted in elevated sulfate concentrations (>150 mg/L) in groundwater that were sustained over 12 months between application events and stimulated benzene biodegradation as indicated by declines in dissolved benzene concentration, and compound‐specific isotope analysis data for carbon in benzene. Long‐term groundwater benzene concentration reductions were achieved in spite of periodic rebounds resulting from water table fluctuations across the smear zone. Land application of gypsum is a potentially cost‐effective sulfate delivery approach at sites with open, unpaved surfaces, relatively permeable geology, and shallow hydrocarbon impacts. However, more research is needed to understand the fate and persistence of sulfate and to improve the likelihood of success and effectiveness of this delivery approach.  相似文献   

17.
Sites impacted by per- and polyfluoroalkyl substances (PFAS) pose significant challenges to investigation and remediation, including very low cleanup objectives, limited information on natural PFAS degradation processes in the subsurface, and the apparent mobility and persistence of PFAS. Consequently, monitored natural attenuation (MNA) may be considered less applicable to PFAS compared to biodegradable classes of chemicals such as petroleum hydrocarbons and chlorinated solvents that can completely biodegrade to innocuous end products. However, MNA has proven effective for certain non-degrading metals, metalloids, and radionuclides (e.g., chromium, arsenic, and uranium). To assess the applicability of MNA to PFAS, this paper reviews the fate and transport properties of PFAS in conjunction with the various physiochemical factors that control the subsurface movement of chemicals. This analysis demonstrates that two important retention processes: (1) chemical retention in the form of PFAS precursors, and (2) geochemical retention in the form of sorption and matrix diffusion to mitigate the movement and potential impacts of PFAS in groundwater that may form the scientific basis for applying MNA to PFAS contamination. This paper describes the scientific and regulatory basis for using MNA to manage PFAS-impacted groundwater.  相似文献   

18.
In recent years there has been increasing interest in the application of passive technologies to reduce or remove contaminants from the subsurface environment including soil and ground water. In most cases, the impetus for this interest lies in a perceived savings compared with more traditional remedial alternatives. In a few cases, the infrastructure at contaminated sites, such as buildings, paved areas, and utilities, makes the use of conventional remedial measures difficult and expensive.
To demonstrate that natural processes are effective in reaching established goals, it is necessary to determine that transformation processes are taking place at a rate that is protective of human health and the environment and that these processes will continue for an acceptable period of time. The basic conditions that must be present to confirm natural attenuation processes arc taking place are discussed along with the behavior of contaminated plumes, monitoring requirements, data analysis, rates of degradation, and mathematical modeling.  相似文献   

19.
Treatment of nitrogen in landfill leachate has received considerable attention recently because of the relatively low levels at which some nitrogen species (i.e., NH3) can be toxic to aquatic life forms. This study reports on the results of a three-year, pilot-scale field trial demonstrating the use of infiltration bed and nitrate barrier technology to achieve nitrogen removal in landfill leachate. The infiltration bed comprises an unsaturated sand layer overlying a saturated layer of waste cellulose solids (sawdust), which acts as a carbon source for heterotrophic denitrification. When loaded at a rate of 1 to 3 cm/day, the infiltration bed was successful at lowering leachate inorganic nitrogen (NH4++ NO3-) levels averaging 24.8 mg/L N by 89%, including 96% in the third year of operation. The surface water discharge criteria for un-ionized ammonia (NH3) were met on all occasions in the treated leachate during the second and third years of operation. Nitrogen attenuation is presumed to occur by a two-step process in which leachate NH4+ is first oxidized to NO3- in the unsaturated sand layer and then is converted to nitrogen gas (N2) by denitrification occurring in the underlying sawdust layer. Mass balance calculations suggest that the sawdust layer has sufficient carbon to allow denitrification to proceed for long periods (1.0 to 30 years) without replenishment. Because this technology is simple to construct and is relatively maintenance free, it should be attractive for use at smaller landfills where the installation of conventional treatment plants may not be feasible.  相似文献   

20.
The fate of hydrocarbons in the subsurface near Bemidji, Minnesota, has been investigated by a multidisciplinary group of scientists for over a quarter century. Research at Bemidji has involved extensive investigations of multiphase flow and transport, volatilization, dissolution, geochemical interactions, microbial populations, and biodegradation with the goal of providing an improved understanding of the natural processes limiting the extent of hydrocarbon contamination. A considerable volume of oil remains in the subsurface today despite 30 years of natural attenuation and 5 years of pump‐and‐skim remediation. Studies at Bemidji were among the first to document the importance of anaerobic biodegradation processes for hydrocarbon removal and remediation by natural attenuation. Spatial variability of hydraulic properties was observed to influence subsurface oil and water flow, vapor diffusion, and the progression of biodegradation. Pore‐scale capillary pressure‐saturation hysteresis and the presence of fine‐grained sediments impeded oil flow, causing entrapment and relatively large residual oil saturations. Hydrocarbon attenuation and plume extent was a function of groundwater flow, compound‐specific volatilization, dissolution and biodegradation rates, and availability of electron acceptors. Simulation of hydrocarbon fate and transport affirmed concepts developed from field observations, and provided estimates of field‐scale reaction rates and hydrocarbon mass balance. Long‐term field studies at Bemidji have illustrated that the fate of hydrocarbons evolves with time, and a snap‐shot study of a hydrocarbon plume may not provide information that is of relevance to the long‐term behavior of the plume during natural attenuation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号