首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 678 毫秒
1.
Houben GJ 《Ground water》2006,44(5):668-675
In many cases, the operation of wells is hampered by the formation of mineral incrustations. From field studies, it is known that the distribution of incrustations in wells is quite inhomogeneous. Flow models were calculated to assess the hydraulic background of this phenomenon. For horizontal flow, the screen section facing the natural flow direction receives the majority of the total inflow. This phenomenon increases with increasing natural gradients of flow. The vertical distribution of water intake is also quite inhomogeneous. In partially penetrating wells, the uppermost part of the screen receives much more inflow than the deeper screen sections. These flow inhomogenities involve elevated flow velocities and may cause increased influx of shallow, oxygenated water, all conditions favorable for incrustation growth. Field investigations on incrusting wells clearly show that the identified screen areas of elevated flow are indeed much more prone to incrustation deposition. Such sections require more attention during rehabilitations. A suction flow control device can help to homogenize the inflow but can cause elevated entrance loss when affected by incrustation buildup itself.  相似文献   

2.
A model coupling fluid hydraulics in a borehole with fluid flow in an aquifer is developed in this paper. Conservation of momentum is used to create a one-dimensional steady-state model of vertical flow in an open borehole combined with radially symmetric flow in an aquifer and with inflow to the well through the wellbore screen. Both laminar and turbulent wellbore conditions are treated. The influence of inflow through the wellbore screen on vertical flow in the wellbore is included, using a relation developed by Siwoń (1987) . The influence of inflow reduces the predicted vertical variation in head up to 15% compared to a calculation of head losses due to fluid acceleration and the conventional Colebrook-White formulation of friction losses in a circular pipe. The wellbore flow model is embedded into the MODFLOW-2000 ground water flow code. The nonlinear conservation of momentum equations are iteratively linearized to calculate the conductance terms for vertical flow in the wellbore. The resulting simulations agree favorably with previously published results when the model is adjusted to meet the assumptions of the previous coupled models.  相似文献   

3.
A transient axisymmetric saturated-unsaturated numerical flow model was coupled with a particle tracking model to investigate the movement of contaminants when a shallow unconfined aquifer is pumped at a constant rate. The particle tracking model keeps track of locations and masses of solutes in the aquifer, and the time of capture by the well. At the end of each time-step the flow model solves the Richard's equation for the hydraulic head distribution from which elemental velocities are calculated. Solutes are then displaced for a period equivalent to the time-step using both the magnitude and direction of the elemental velocities. Numerical experiments were performed to investigate effluent concentrations in wells with screens of different length and in different positions relative to zones of stratified contamination. At early times of pumping the effluent concentrations were similar to the concentrations adjacent to the well screen, but at late times, the concentrations approached the vertically averaged concentration in the aquifer. Time to attain the vertically averaged concentration was determined by the well geometry, initial location of the contaminant plume in relation to the well screen, and hydraulic properties of the aquifer. The results are consistent with the hydraulics of flow to a pumping well and of particular importance, they demonstrate that short-term pump tests could give erroneous design concentrations for pump-and-treat systems. The model provides a means of quantifying arrival times and mixing ratios. It could therefore provide a useful means of designing production wells in aquifers with stratified contamination and more efficient recovery systems for aquifer remediation.  相似文献   

4.
Models for contaminant transport in streams commonly idealize transient storage as a well mixed but immobile system. These transient storage models capture rapid (near‐stream) hyporheic storage and transport, but do not account for large‐scale, stage‐dependent interaction with the alluvial aquifer. The objective of this research was to document transient storage of phosphorus (P) in coarse gravel alluvium potentially influenced by large‐scale, stage‐dependent preferential flow pathways (PFPs). Long‐term monitoring was performed at floodplain sites adjacent to the Barren Fork Creek and Honey Creek in northeastern Oklahoma. Based on results from subsurface electrical resistivity mapping which was correlated to hydraulic conductivity data, observation wells were installed both in higher hydraulic conductivity and lower hydraulic conductivity subsoils. Water levels in the wells were monitored over time, and water samples were obtained from the observation wells and the stream to document P concentrations at multiple times during high flow events. Contour plots indicating direction of flow were developed using water table elevation data. Contour plots of total P concentrations showed the alluvial aquifer acting as a transient storage zone, with P‐laden stream water heterogeneously entering the aquifer during the passage of a storm pulse, and subsequently re‐entering the stream during baseflow conditions. Some groundwater in the alluvial floodplains had total P concentrations that mirrored the streams' total P concentrations. A detailed analysis of P forms indicated that particulate P (i.e. P attached to particulates greater than 0·45 µm) was a significant portion of the P transport. This research suggests the need for more controlled studies on stage‐dependent transient storage in alluvial systems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Vic Kelson 《Ground water》2012,50(6):918-926
Groundwater flow models are commonly used to design new wells and wellfields. As the spatial scale of the problem is large and much local‐scale detail is not needed, modelers often utilize two‐dimensional (2D) or quasi three‐dimensional models based on the Dupuit‐Forchheimer assumption. Dupuit models offer a robust set of tools for simulating regional groundwater flow including interactions with surface waters, the potential for well interference, and varying aquifer properties and recharge rates. However, given an assumed operating water level or drawdown at a well screen, Dupuit models systematically overpredict well yields. For design purposes, this discrepancy is unacceptable, and a method for predicting accurate well yields is needed. While published methods exist for vertical wells, little guidance is available for predicting yields in horizontal screens or collector wells. In plan view, a horizontal screen has a linear geometry, and will likely extend over several neighboring cells that may not align with rows or columns in a numerical model. Furthermore, the model must account for the effects of converging three‐dimensional (3D) flow to the well screens and hydraulic interference among the well screens; these all depend on the design of a specific well. This paper presents a new method for simulating the yield of angled or horizontal well screens in numerical groundwater flow models, specifically using the USGS code MODFLOW. The new method is compared to a detailed, 3D analytic element model of a collector well in a field of uniform flow.  相似文献   

6.
Siting wells near streams requires an accurate estimate of the quantity of water derived from the river due to pumping. A number of hydrogeological and hydraulic parameters influence this value. This study estimates stream depletion under steady-state conditions for a variety of hydrogeological systems. A finite differences model was used to analyze several hydrogeological situations, and for each of these the stream depletion was estimated using an advective transport method. An empirical equation for stream depletion was obtained for the case of a stream that partially penetrates the aquifer and a pumping well that is screened over a portion of the aquifer. The derived equation, which is valid for both isotropic and anisotropic conditions, expresses stream depletion as a function of the unit inflow to the river, the discharge of the pumping well, the well screen length, the distance between the river and pumping well, the wetted perimeter, and a new parameter called "overlap," which is defined to be the distance between the riverbed and the top of well screen. The overlap parameter makes it possible to consider indirectly the vertical component of flow, which is accentuated when the well is screened below the streambed. The formula proposed here should be useful in deciding where to locate a pumping well and to decide the appropriate length of its screen.  相似文献   

7.
大地震引起了左家庄和宝坻(相距~50km)两井中截然不同的同震水位响应.我们用水位的气压和潮汐响应来分析解释此现象.结果表明,宝坻井的观测含水层中存在页岩,且此井受裂隙影响很大,储水效应较差.页岩的复杂裂隙或者各向异性可能会导致此井观测含水层处于半封闭状态,从而导致垂直向排水的发生.通过多方计算分析后,我们将这两口井划分为两种模型—1.水平流动模型;2.水平流动+垂直流动的混合流动模型.由于裂隙影响,宝坻井的观测含水层介质与外界的水力沟通性在震前就较强(震前渗透率就比较大),所以宝坻井观测含水层与外界的孔隙压差异较小,导致同震渗透率上升较小甚至没有变化,这些因素是导致该井同震水位变化幅度总是非常微小的原因.  相似文献   

8.
A new type of vertical circulation well (VCW) is used for groundwater dewatering at construction sites. This type of VCW consists of an abstraction screen in the upper part and an injection screen in the lower part of a borehole, whereby drawdown is achieved without net withdrawal of groundwater from the aquifer. The objective of this study is to evaluate the operation of such wells including the identification of relevant factors and parameters based on field data of a test site and comprehensive numerical simulations. The numerical model is able to delineate the drawdown of groundwater table, defined as free‐surface, by coupling the arbitrary Lagrangian–Eulerian algorithm with the groundwater flow equation. Model validation is achieved by comparing the field observations with the model results. Eventually, the influences of selected well operation and aquifer parameters on drawdown and on the groundwater flow field are investigated by means of parameter sensitivity analysis. The results show that the drawdown is proportional to the flow rate, inversely proportional to the aquifer conductivity, and almost independent of the aquifer anisotropy in the direct vicinity of the well. The position of the abstraction screen has a stronger effect on drawdown than the position of the injection screen. The streamline pattern depends strongly on the separation length of the screens and on the aquifer anisotropy, but not on the flow rate and the horizontal hydraulic conductivity.  相似文献   

9.
Thomas J. Burbey   《Journal of Hydrology》2006,330(3-4):422-434
Field measurements consisting of water levels from a municipal well and three-dimensional surface deformations and strains from high-precision GPS measurements at various radial distances from the well were collected as part of a 62-day controlled aquifer test at Mesquite, NV. These measurements were used as observations in several numerical models and a parameter estimation code to characterize and constrain hydraulic and mechanical properties of a 400 m thick basin-fill aquifer. A parsimonious approach was used in conceptualizing the aquifer system. Nonetheless, results from the calibrated deformation and flow models accurately reproduced the observed head and deformations during the first 20 days of pumping, the time at which a new equilibrium was achieved. Surface deformations were shown to reflect hydraulic anisotropy and direction of principal conductivity. In addition, the radius of influence and cone of depression from pumping was approximated in spite of the fact that no monitoring well data existed at the site. Sensitivity analysis indicates that cyclical head values are most sensitive to changes in horizontal hydraulic conductivity, while time-dependent vertical deformations are most sensitive to changes in skeletal specific storage. This investigation shows that GPS monitoring can be used in place of costly monitoring wells to characterize aquifers for water-management purposes where skeletal deformation tends to be elastic.  相似文献   

10.
An Analysis of Low-Flow Ground Water Sampling Methodology   总被引:1,自引:0,他引:1  
Low-flow ground water sampling methodology can minimize well disturbance and aggravated colloid transport into samples obtained from monitoring wells. However, in low hydraulic conductivity formations, low-flow sampling methodology can cause excessive drawdown that can result in screen desaturation and high ground water velocities in the vicinity of the well, causing unwanted colloid and soil transport into ground water samples taken from the well. Ground water velocities may increase several fold above that of the natural setting. To examine the drawdown behavior of a monitoring well, mathematical relationships can be developed that allow prediction of the steady-state drawdown for constant low-flow pumping rates based on well geometry and aquifer properties. The equations also estimate the time necessary to reach drawdown equilibrium. These same equations can be used to estimate the relative contribution of water entering a sampling device from either the well standpipe or the aquifer. Such equations can be useful in planning a low-flow sampling program and may suggest when to collect a water sample. In low hydraulic conductivity formations, the equations suggest that drawdown may not stabilize for well depths, violating the minimal drawdown requirement of the low-flow technique. In such cases, it may be more appropriate to collect a slug or passive sample from the well screen, under the assumption that the water in the well screen is in equilibrium with the surrounding aquifer.  相似文献   

11.
Characterization of a multilayer aquifer using open well dilution tests   总被引:1,自引:0,他引:1  
West LJ  Odling NE 《Ground water》2007,45(1):74-84
An approach to characterization of multilayer aquifer systems using open well borehole dilution is described. The approach involves measuring observation well flow velocities while a nearby extraction well is pumped by introducing a saline tracer into observation wells and collecting dilution vs. depth profiles. Inspection of tracer profile evolution allows discrete permeable layers within the aquifer to be identified. Dilution profiles for well sections between permeable layers are then converted into vertical borehole flow velocities and their evolution, using an analytic solution to the advection-dispersion equation applied to borehole flow. The dilution approach is potentially able to measure much smaller flow velocities that would be detectable using flowmeters. Vertical flow velocity data from the observation wells are then matched to those generated using a hydraulic model of the aquifer system, "shorted" by the observation wells, to yield the hydraulic properties of the constituent layers. Observation well flow monitoring of pumping tests represents a cost-effective alternative or preliminary approach to pump testing each layer of a multilayer aquifer system separately using straddle packers or screened wells and requires no prior knowledge of permeable layer depths and thicknesses. The modification described here, of using tracer dilution rather than flowmeter logging to obtain well flow velocities, allows the approach to be extended to greater well separations, thus characterizing a larger volume of the aquifer. An example of the application of this approach to a multilayer Chalk Aquifer in Yorkshire, Northeast England, is presented.  相似文献   

12.
Pumping test evaluation of stream depletion parameters   总被引:1,自引:0,他引:1  
Lough HK  Hunt B 《Ground water》2006,44(4):540-546
  相似文献   

13.
Pumping test data for surficial aquifers are commonly analyzed under the assumption that the base of the aquifer corresponds to the bottom of the test wells (i.e., the aquifer is truncated). This practice can lead to inaccurate hydraulic conductivity estimates, resulting from the use of low saturated thickness values with transmissivity estimates, and not accounting for the effects of partially penetrating wells. Theoretical time-drawdown data were generated at an observation well in a hypothetical unconfined aquifer for various values of saturated thickness and were analyzed by standard curve-matching techniques. The base of the aquifer was assumed to be the bottom of the pumping and observation wells. The overestimation of horizontal hydraulic conductivity was found to be directly proportional to the error in assumed saturated thickness, and to the (actual) ratio of vertical to horizontal hydraulic conductivity (Kv/Kh). Inaccurately high estimates of hydraulic conductivity obtained by aquifer truncation can lead to overestimates of ground water velocity and contaminant plume spreading, narrow capture zone configuration estimates, and overestimates of available ground water resources.  相似文献   

14.
Moore R  Kelson V  Wittman J  Rash V 《Ground water》2012,50(3):355-366
We present results of a design study performed for the Saylorville Wellfield in Iowa, which is owned and operated by the Des Moines Water Works. The purpose of this study was to estimate wellfield capacity and provide a preliminary design for two radial collector wells to be constructed in the outwash aquifer along the Des Moines River near Saylorville, Iowa. After a field investigation to characterize the aquifer, regional two-dimensional and local three-dimensional, steady-state groundwater flow modeling was performed to locate and design the wells. This modeling was the foundation for design recommendations based on the relative performance of 12 collector well designs with varying lateral numbers, elevations, screen lengths, and orientations. For each site, alternate designs were evaluated based on model estimates of the capacity, the percent of surface water captured, and the production per unit length of screen. Many of our results are consistent with current design practices based on experience and intuition, but our methods allow for a quantitative approach for comparing alternate designs. Although the results are site-specific, the framework for evaluating the hydraulic design of the Saylorville radial collector wells is broadly applicable and could be used at other riverbank filtration sites. In addition, many of the conclusions from this design study may apply at other sites where construction of radial collector wells is being considered.  相似文献   

15.
Faults can act as flow barriers or conduits to groundwater flow by introducing heterogeneity in permeability. We examine the hydrogeology of the Sandwich Fault Zone, a 137 km long zone of high-angle faults in northern Illinois, using a large-scale historic aquifer test. The fault zone is poorly understood at depth due to the majority of the faults being buried by glacial deposits and its near-vertical orientation which limits geologic sampling across faults. The aquifer test—perhaps one of the largest in terms of overall withdrawal in North American history—was conducted in 1942 at a facility adjacent to the fault zone. More than 34,000 m3/day was pumped for 37 days from nine multiaquifer wells open to the stratified Cambrian-Ordovician sandstone aquifer system. We modeled the aquifer test using a transient MODFLOW-USG model and simulated pumping wells with the CLN package. We tested numerous fault core/damage zone conceptualizations and calibrated to drawdown values recorded at production and observation wells. Our analysis indicates that the fault zone is a low-permeability feature that inhibits lateral movement of groundwater and that there is at least an order of magnitude decrease in horizontal hydraulic conductivity in the fault core compared to the undeformed sandstone. Large head declines have occurred north of the fault zone (over 300 m since predevelopment conditions) and modifying fault zone parameters significantly affects calibration to regional drawdown on a decadal scale. The flow-barrier behavior of the fault zone has important implications for future groundwater availability in this highly stressed region.  相似文献   

16.
Purge and pump samples from screened wells reflect concentration averaging and contaminant redistribution by wellbore flow. These issues were assessed in a screened well at the Hanford Site by investigating the vertical profile of a technetium-99 plume in a conventional well under static and pumped conditions. Specific conductance and technetium-99 concentrations were well correlated, and this enabled measurement of specific conductance to be used as a surrogate for technetium-99 concentration. Time-series measurements were collected during purging from three specific conductance probes installed in the well at 1.2, 3.1, and 4.9 m below the static water level in a 7.7-m-deep screened well. The vertical contaminant profile adjacent to the well in the aquifer was calculated using the concentration profile in the well during pumping, the pumping flow rate, and a wellbore flow and mixing model. The plume was found to be stratified in the aquifer—the highest concentrations occurred adjacent to the upper part of the screened interval. The purge and pump sample concentrations were 41% to 58% of the calculated peak concentration in the aquifer. Plume stratification in the aquifer adjacent to the well screen became more pronounced as pumping continued. Extended pumping may have partially reversed the effect of contaminant redistribution in the aquifer by wellbore flow and allowed the stratification of the plume to be more observable. It was also found that the vertical profile of contamination in the well under static (i.e., nonpumping conditions) was not representative of the profile in the aquifer. Thus, passive or micropurge sampling techniques, which sample the wellbore water at different depths, would not yield results representative of the aquifer in this well.  相似文献   

17.
Domestic Well Capture Zone and Influence of the Gravel Pack Length   总被引:1,自引:0,他引:1  
Domestic wells in North America and elsewhere are typically constructed at relatively shallow depths and with the sand or gravel pack extending far above the intake screen of the well (shallow well seal). The source areas of these domestic wells and the effect of an extended gravel pack on the source area are typically unknown, and few resources exist for estimating these. In this article, we use detailed, high-resolution ground water modeling to estimate the capture zone (source area) of a typical domestic well located in an alluvial aquifer. Results for a wide range of aquifer and gravel pack hydraulic conductivities are compared to a simple analytical model. Correction factors for the analytical model are computed based on statistical regression of the numerical results against the analytical model. This tool can be applied to estimate the source area of a domestic well for a wide range of conditions. We show that an extended gravel pack above the well screen may contribute significantly to the overall inflow to a domestic well, especially in less permeable aquifers, where that contribution may range from 20% to 50% and that an extended gravel pack may lead to a significantly elongated capture zone, in some instances, nearly doubling the length of the capture zone. Extending the gravel pack much above the intake screen therefore significantly increases the vulnerability of the water source.  相似文献   

18.
The association between hydrocarbon‐rich reservoirs and organic‐rich source rocks means unconventional oil and gas plays usually occur in mature sedimentary basins—where large‐scale conventional development has already taken place. Abandoned wells in proximity to hydraulic fracturing could be affected by increased fluid pressures and corresponding newly generated fractures that directly connect (frac hit) to an abandoned well or to existing fractures intersecting an abandoned well. If contaminants migrate to a pathway hydraulically connected to an abandoned well, upward leakage may occur. Potential effects of hydraulic fracturing on upward flow through a particular type of leaky abandoned well—abandoned oil and gas wells converted into water wells were investigated using numerical modeling. Several factors that affect flow to leaky wells were considered including proximity of a leaky well to hydraulic fracturing, flowback, production, and leaky well abandonment methods. The numerical model used historical records and available industry data for the Eagle Ford Shale play in south Texas. Numerical simulations indicate that upward contaminant migration could occur through leaky converted wells if certain spatial and hydraulic conditions exist. Upward flow through leaky converted wells increased with proximity to hydraulic fracturing, but decreased when flowback and production occurred. Volumetric flow rates ranged between 0 and 0.086 m3/d for hydraulic‐fracturing scenarios. Potential groundwater impacts should be paired with plausible transport mechanisms, and upward flow through leaky abandoned wells could be unrelated to hydraulic fracturing. The results also underscore the need to evaluate historical activities.  相似文献   

19.
Due to differences in hydraulic conductivity and effects of well construction geometry, groundwater lateral flow through a monitoring well typically differs from groundwater flow in the surrounding aquifer. These differences must be well understood in order to apply passive measuring techniques, such as passive flux meters (PFMs) used for the measurement of groundwater and contaminant mass fluxes. To understand these differences, lab flow tank experiments were performed to evaluate the influences of the well screen, the surrounding filter pack and the presence of a PFM on the natural groundwater flux through a monitoring well. The results were compared with analytical calculations of flow field distortion based on the potential theory of Drost et al. (1968). Measured well flow field distortion factors were found to be lower than calculated flow field distortion factors, while measured PFM flow field distortion factors were comparable to the calculated ones. However, this latter is not the case for all conditions. The slotted geometry of the well screen seems to make a correct analytical calculation challenging for conditions where flow field deviation occurs, because the potential theory assumes a uniform flow field. Finally, plots of the functional relationships of the distortion of the flow field with the hydraulic conductivities of the filter screen, surrounding filter pack and corresponding radii make it possible to design well construction to optimally function during PFM applications.  相似文献   

20.
Arsenic in groundwater is a serious problem in New England, particularly for domestic well owners drawing water from bedrock aquifers. The overlying glacial aquifer generally has waters with low arsenic concentrations but is less used because of frequent loss of well water during dry periods and the vulnerability to surface‐sourced bacterial contamination. An alternative, novel design for shallow wells in glacial aquifers is intended to draw water primarily from unconsolidated glacial deposits, while being resistant to drought conditions and surface contamination. Its use could greatly reduce exposure to arsenic through drinking water for domestic use. Hypothetical numerical models were used to investigate the potential hydraulic performance of the new well design in reducing arsenic exposure. The aquifer system was divided into two parts, an upper section representing the glacial sediments and a lower section representing the bedrock. The location of the well, recharge conditions, and hydraulic properties were systematically varied in a series of simulations and the potential for arsenic contamination was quantified by analyzing groundwater flow paths to the well. The greatest risk of arsenic contamination occurred when the hydraulic conductivity of the bedrock aquifer was high, or where there was upward flow from the bedrock aquifer because of the position of the well in the flow system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号