首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 754 毫秒
1.
River reaches downstream of dams with constant residual discharge often lack sediment supply and periodic high flows due to dam sediment retention and flow regulation, respectively. To test a novel multi-deposit methodology for defining environmental flows for activating the dynamics of the river morphology downstream of dams, a flood was released from Rossens Dam in Switzerland. This event was combined for the first time with a multi-deposit configuration of sediment replenishment consisting of four artificial deposits allocated as alternate bars along the riverbanks as a restoration measure. To validate the sediment transport behaviour observed in laboratory tests, stones were equipped with radiofrequency identification (RFID) passive integrated transponder (PIT) tags, a fixed antenna was installed at the river bed and a mobile antenna was used to enable the investigation of the erosion, transport and deposition of replenished sediments. The duration of the erosion period was determined for the tracked stones, and average transport velocities were found to be on the order of 10–3 m/s. To estimate the erosion efficiency of the flood, defined as the eroded tagged stones compared with the released water volume, the hydrograph was divided into different periods: rising limb, constant peak discharge, decreasing limb. During the rising limb of the flood, which lasted for 20% of the total flood duration, more than 40% of the PIT tags were transported. The defined erosion efficiency is a measure to support the hydrographic design of artificial flood releases from dams. The deposition of tagged stones resulted in a repeating cluster formation, as expected from previous laboratory experiments, creating an increase in hydraulic habitat diversity. Comparison of the results obtained in the field and from laboratory experiments confirmed the robustness of the multi-deposit sediment replenishment method. Combined with the knowledge gained on the erosion efficiency, these results could motivate further applications and research into multi-deposit sediment replenishment techniques as a habitat-oriented river restoration measure. © 2020 John Wiley & Sons, Ltd.  相似文献   

2.
The artificial replenishment of sediment is used as a method to re-establish sediment continuity downstream of a dam. However, the impact of this technique on the hydraulics conditions, and resulting bed morphology, is yet to be understood. Several numerical tools have been developed during last years for modeling sediment transport and morphology evolution which can be used for this application. These models range from 1D to 3D approaches: the first being over simplistic for the simulation of such a complex geometry; the latter requires often a prohibitive computational effort. However, 2D models are computationally efficient and in these cases may already provide sufficiently accurate predictions of the morphology evolution caused by the sediment replenishment in a river. Here, the 2D shallow water equations in combination with the Exner equation are solved by means of a weak-coupled strategy. The classical friction approach considered for reproducing the bed channel roughness has been modified to take into account the morphological effect of replenishment which provokes a channel bed fining. Computational outcomes are compared with four sets of experimental data obtained from several replenishment configurations studied in the laboratory. The experiments differ in terms of placement volume and configuration. A set of analysis parameters is proposed for the experimental-numerical comparison, with particular attention to the spreading, covered surface and travel distance of placed replenishment grains. The numerical tool is reliable in reproducing the overall tendency shown by the experimental data. The effect of fining roughness is better reproduced with the approach herein proposed. However, it is also highlighted that the sediment clusters found in the experiment are not well numerically reproduced in the regions of the channel with a limited number of sediment grains.  相似文献   

3.
1 INTRODUCTIONIn recent years, the concePt of long-term sustained use of reservoirs has been addressed because areservoir is very much considered to be a nonrenewable resource (Morris and Fan, l998). Technically,many options for reservoir sedAnentation control can be utlized to pursue the sustainable develoPment ofwater resources. In general, reduction of incoming sedimen yields from watersheds is often emPloyedin conjunction with hydraulic methods such as flushing or density currnt vot…  相似文献   

4.
Many urban rivers receive significant inputs of metal‐contaminated sediments from their catchments. Restoration of urban rivers often creates increased slack water areas and in‐channel vegetation growth where these metal‐contaminated sediments may accumulate. Quantifying the accumulation and retention of these sediments by in‐channel vegetation in urban rivers is of importance in terms of the planning and management of urban river restoration schemes and compliance with the Water Framework Directive. This paper investigates sediment properties at four sites across three rivers within Greater London to assess the degree to which contaminated sediments are being retained. Within paired restored and unrestored reaches at each site, four different bed sediment patch types (exposed unvegetated gravel, sand, and silt/clay (termed ‘fine’) sediments, and in‐channel vegetated sediments) were sampled and analysed for a range of metals and sediment characteristics. Many samples were found to exceed Environment Agency guidelines for copper (Cu), lead (Pb) and zinc (Zn) and Dutch Intervention Values for Cu and Zn. At all sites, sediments accumulating around in‐channel vegetation were similar in calibre and composition to exposed unvegetated fine sediments. Both bed sediment types contained high concentrations of pseudo‐total and acetic acid extractable metal concentrations, potentially due to elevated organic matter and silt/clay content, as these are important sorbtion phases for metals. This implies that the changed sediment supply and hydraulic conditions associated with river restoration may lead to enhanced retention of contaminated fine sediments, particularly around emergent plants, frequently leading to the development of submerged and emergent landforms and potential river channel adjustments. High pseudo‐total metal concentrations were also found in gravel bed sediments, probably associated with iron (Fe) and manganese (Mn) oxyhydroxides and discrete anthropogenic metal‐rich particles. These results highlight the importance of understanding the potential effects of urban river restoration upon sediment availability and channel hydraulics and consequent impacts upon sediment contaminant dynamics and storage. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Lewis and Clark Lake is located on the main stream of the Missouri River. The reservoir is formed behind Gavins Point dam near Yankton, South Dakota, U.S.A. The Lewis and Clark Lake reach extends about 40 km from the Gavins Point dam. The reservoir delta has been growing since the closure of Gavins Point dam in 1955 and has resulted in a 21% reduction of storage within the maximum pool of the reservoir. Among several sediment management methods, drawdown flushing has been recommended as a possible management technique. The engineering viability of removing sediments deposited in the lake should be examined by numerical modeling before implementing a drawdown flushing. GSTARS4 was used for this study and calibrated by using measured data from 1975 to 1995. Channel cross-section changes and amount of flushed sediment were predicted with four hypothetical flow scenarios. The flushing efficiencies of all scenarios were estimated by comparing the ratios between water consumption and flushed sediment during flushing.  相似文献   

6.
1 INTRODUCTION The construction of more than 75,000 dams and reservoirs on rivers in the United States (Graf, 1999) has resulted in alteration of the hydrology, geometry, and sediment flow in many of the river channels downstream of dams. Additionally, hydrologic and geomorphic impacts lead to changes in the physical habitat affecting both the flora and fauna of the riparian and aquatic environments. Legislation for protection of endangered species as well as heightened interest in ma…  相似文献   

7.
Riffle‐pool sequences are a common feature of gravel‐bed rivers. However, mechanisms of their generation and maintenance are still not fully understood. In this study a monitoring approach is employed that focuses on analysing cross‐sectional and longitudinal channel geometry of a large floodplain river (Vereinigte Mulde, Sachsen‐Anhalt, Germany) with a high temporal and spatial resolution, in order to conclude from stage‐dependant morphometric changes to riffle and pool maintaining processes. In accordance with previous authors, pool cross‐sections of the Mulde River are narrow and riffle cross‐sections are wide suggesting that they should rather be addressed as two general types of channel cross‐sections than solely as bedforms. At high flows, riffles and pools in the study reaches changed in length and height but not in position. Pools were scoured and riffles aggraded, a development which was reversed during receding flows below the threshold of 0·4Qbf (40% bankfull discharge). An index for the longitudinal amplitude of riffle‐pool sequences, the bed undulation intensity or bedform amplitude, is introduced and proved to be highly significant as a form parameter, its first derivative as a process parameter. The process of pool scour and riffle fill is addressed as bedform maintenance or bedform accentuation. It is indicated by increasing longitudinal bed amplitudes. According to the observed dynamics of bed amplitudes, maintenance of riffle‐pool sequences lags behind discharge peaks. Maximum bed amplitudes may be reached with a delay of several days after peak discharges. Increasing bed undulation intensity is interpreted to indicate bed mobility. Post‐flood decrease of the bed undulation intensity indicates a retrograde phase when transport from pools to riffles has ceased and bed mobility is restricted to riffle tails and heads of pools. This type of transport behaviour is referred to as disconnected mobility. The comparison of two river reaches, one with undisturbed sediment supply, the other with sediment deficit, suggests that high bed undulation intensity values at low flows indicate sediment deficit and potentially channel degrading conditions. It is more generally hypothesized that channel bed undulations constitute a major component of form roughness and that increased bed amplitudes are an important feature of channel bed adjustment to sediment deficit be it temporally during late floods or permanently due to a supply limitation of bedload. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
9.
《Continental Shelf Research》2006,26(17-18):2281-2298
Since the 1960s a series of large reservoirs have been built in the upper and middle reaches of the Huanghe River. Changes caused by these reservoirs include a decrease in flood discharge and sediment load to the lower reaches and conversely, an increase of the silt concentration in the river water. This accumulation of silt in the river channel is a serious problem in the lower Huanghe River and has caused abnormal and distorted flow courses in the river bed. These effects include: shrinkage of the river channel, frequent dewatering (i.e., zero flow) in the river-mouth area, and hanging rivers (i.e., a river channel elevated above its floodplain). The zero-flow portion of the river has gradually extended upstream for nearly the entire 700 km of the lower reach. Utilization of the floodplains for agriculture and temporary villages has become a major problem. To counter these changes and situations, new measures, new methodology, and new thinking must be adapted incorporating results from the recent works on sediment transport and accumulation. Water conservancy works (dams, pumping stations, siphon-intakes, etc.) are typically used for adjustment of river water and sediment discharges and for irrigation and hydro-power generation. Recently, they are also being used to conduct tests using the reservoir water/sediment mix to flush out sediments deposited in the channel bed and transport the sediment to places where it is needed or into the Bohai Sea. Additionally, the future of the new deltaic sub-lobe in the Bohai Sea (developed in 1996) and the present estuary needs to be considered with respect to future development.  相似文献   

10.
《国际泥沙研究》2016,(3):257-263
The effects of sedimentation reduction at the Nakdong River Estuary Barrage (NREB) in Korea were quantitatively analyzed with respect to different sediment control methods using the calibrated and validated two-dimensional model. The countermeasures of sediment dredging, sediment flushing, channel geometry change, and a combination of flushing and channel geometry change were examined for the approach channel of the NREB. The flood event and channel geometries of the 3.8 km section upstream of the NREB surveyed before and after dredging in 2007 were used for modeling conditions. As a result, the half of sediments dredged in 2007 could be eliminated naturally by floods without dredging. The numerical simulation of sediment flushing indicated that the deposition height decreased in the entire simulation section with the minimum and maximum reductions from 0.3 m to 1.3 m in deposition height. The channel contraction method produced quantitatively the largest amount of sedimentation reduction and sediment flushing and dredging followed. Sedimentation reduction by a combination of flushing and channel contraction was up 10%compared to the individual method of channel contraction.  相似文献   

11.
12.
The mining of alluvial tin in the Ringarooma basin began in 1875, reached a peak in 1900–20, and had virtually ceased by 1982. During that time 40 million m3 of mining waste were supplied to the main river, quickly replacing the natural bed material and requiring major adjustments to the channel. Based on estimates of sediment supply from more than 50 widely scattered mines and the frequency of flows capable of transporting the introduced load, the river's transport history is reconstructed using a mass-conservation model. Because of the lengthy time period (110 years) and river distance (75 km) involved, the model cannot predict detailed change but it does reproduce the main pattern of sediment movement in which successive phases of aggradation and degradation progress downstream. Peak storage is predicted in that part of the river where braiding and anastomosis are best developed. Aggradation was most rapid in the upper reaches close to major supply points, becoming slower and later with distance downstream. Channel width increased by up to 300 per cent where the valley floor was broad and braiding became relatively common. Bridges had frequently to be replaced. While bed levels were still rising in lower reaches, degradation began in upper ones, notably after 1950, and by 1984 had progressed downriver over 30 km. Rates of incision reached 0·5 m yr?1, especially in the early 1970s when record high flows occurred. As a result of degradation the bed material became gravelly through either reexposure of the original bed or lag concentration of coarser fractions. Also a narrower unbraided channel has developed. The river is beginning to heal itself and upper reaches now have reasonably stable beds but at least another 50 years will be required for the river to cleanse its channel of mining debris.  相似文献   

13.
An updated linear computer model for meandering rivers with incision has been developed. The model simulates the bed topography, flow field, and bank erosion rate in an incised meandering channel. In a scenario where the upstream sediment load decreases (e.g., after dam closure or soil conservation), alluvial river experiences cross section deepening and slope flattening. The channel migration rate might be affected in two ways: decreased channel slope and steeped bank height. The proposed numerical model combines the traditional one-dimensional (1D) sediment transport model in simulating the channel erosion and the linear model for channel meandering. A non-equilibrium sediment transport model is used to update the channel bed elevation and gradations. A linear meandering model was used to calculate the channel alignment and bank erosion/accretion, which in turn was used by the 1D sediment transport model. In the 1D sediment transport model, the channel bed elevation and gradations are represented in each channel cross section. In the meandering model, the bed elevation and gradations are stored in two dimensional (2D) cells to represent the channel and terrain properties (elevation and gradation). A new method is proposed to exchange information regarding bed elevations and bed material fractions between 1D river geometry and 2D channel and terrain. The ability of the model is demonstrated using the simulation of the laboratory channel migration of Friedkin in which channel incision occurs at the upstream end.  相似文献   

14.
This paper focuses on surface–subsurface water exchange in a steep coarse‐bedded stream with a step‐pool morphology. We use both flume experiments and numerical modelling to investigate the influence of stream discharge, channel slope and sediment hydraulic conductivity on hyporheic exchange. The model step‐pool reach, whose topography is scaled from a natural river, consists of three step‐pool units with 0.1‐m step heights, discharges ranging between base and over‐bankfull flows (scaled values of 0.3–4.5 l/s) and slopes of 4% and 8%. Results indicate that the deepest hyporheic flow occurs with the steeper slope and at moderate discharges and that downwelling fluxes at the base of steps are highest at the largest stream discharges. In contrast to findings in a pool‐riffle morphology, those in this study show that steep slopes cause deeper surface–subsurface exchanges than gentle slopes. Numerical simulation results show that the portion of the hyporheic zone influenced by surface water temperature increases with sediment hydraulic conductivity. These experiments and numerical simulations emphasize the importance of topography, sediment permeability and roughness elements along the channel surface in governing the locations and magnitude of downwelling fluxes and hyporheic exchange. Our results show that hyporheic zones in these steep streams are thicker than previously expected by extending the results from streams with pool‐riffle bed forms. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Dam removal has been demonstrated to be one of the most frequent and effective fluvial restoration actions but at most dam removals, especially of small dams, there has been little geomorphological monitoring. The results of the geomorphological monitoring implemented in two dams in the rivers Urumea and Leitzaran (northern Spain) are presented. The one from the River Urumea, originally 3.5 m high and impounding 500 m of river course, was removed instantaneously whereas that in the River Leitzaran, 12.5 m high, and impounding 1500 m of river course, is in its second phase of a four‐stage removal process. Changes in channel morphology, sediment size and mobility and river bed morphologies were assessed. The monitoring included several different techniques: topographical measurements of the channel, terrestrial laser scanner measurements of river bed and bars, sediment grain size and transport; all of them repeated in four (May, August, November 2011 and May 2012) and five (July and September 2013, April and August 2014 and June 2015) fieldwork campaigns in the River Urumea and River Leitzaran, respectively. Geomorphic responses of both dam removals are presented, and compared. Morphological channel adjustments occurred mainly shortly after dam removals, but with differences among the one removed instantaneously, that was immediate, whereas that conducted by stages took longer. Degradational processes were observed upstream of both dams (up to 1.2 m and 4 m in the River Urumea and River Leitzaran, respectively), but also aggradational processes (pool filling), upstream of Inturia Dam (2.85 m at least). Less evident aggradational processes were observed downstream of the dams (up to 0.37 m and 0.50 m in the River Urumea and River Leitzaran, respectively). Flood events, especially a 100 year flood registered during the monitoring period of Mendaraz Dam removal, reactivated geomorphological processes as incision and bank erosion, whereas longitudinal profile recovery, grain‐size sorting and upstream erosion took longer. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Restoration projects in the United States typically have among the stated goals those of increasing channel stability and sediment storage within the reach. Increased interest in ecologically based restoration techniques has led to the consideration of introducing beavers to degraded channels with the hope that the construction of beaver dams will aggrade the channel. Most research on beaver dam modification to channels has focused on the long‐term effects of beavers on the landscape with data primarily from rivers in the western United States. This study illustrated that a role exists for beavers in the restoration of fine‐grained, low gradient channels. A channel on the Atlantic Coastal Plain was analyzed before, during, and after beaver dams were constructed to evaluate the lasting impact of the beaver on channel morphology. The channel was actively evolving in a former reservoir area upstream of a dam break. Colonization by the beaver focused the flow into the channel, allowed for deposition along the channel banks, and reduced the channel width such that when the beaver dams were destroyed in a flood, there was no channel migration and net sediment storage in the reach had increased. However, the majority of the deposition occurred at the channel banks, narrowing the channel width, while the channel incised between sequential beaver dams. The study indicated that where channels are unstable laterally and bank erosion is a concern, the introduction of beavers can be a useful restoration tool. However, because of the likelihood of increased channel bed erosion in a reach with multiple beaver dams, they may not be the best solution where aggradation of an incised channel bed is the desired result. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Hydrologic changes have a great impact on the long-term river morphology. The most common anthropic cause is the construction of dams, which often reduces both the discharge regime and sediment transport, producing a narrowing and degradation of the river bed. In this study we propose a simple, lumped morphodynamic model that describes fluvial cross-section dynamics consequent to changes in discharge and sediment transport induced by external factors. The model provides the temporal dynamics of the river width and bed quote. These dynamics result not to be trivial and can exhibit non monotonic behavior, with aggradations and degradations, and narrowing and widening. The model has been tested on real rivers using data obtained from field studies. The agreement between the outcomes and the data measured in the field works is always satisfactory.  相似文献   

18.
Three different methods to analyse fine sediment deposits on a gravel bar using pictures are presented in this paper. A manual digitization and deposits zone delineation are performed as well as two different automated procedures. The three methods are applied on aerial pictures taken in 2006 by a drone from a height around 150 m above the study site. Two other sets of pictures taken in 2010 are also studied: the first set was obtained from the left side bank of the river at approximately 15m above the gravel bar whereas the second one was taken from a helicopter flying 600~m above the ground. These methods were used to estimate the surface of fine sediment deposits before and after flushing events. They yield similar results even if the first automated procedure is able to capture smaller patches of fine sediments. The total surface of fine sediment deposits seems to be similar before and after a flushing event, but the distribution appears quite different. Before a flushing event, a significant amount of fine sediment deposits are mixed with coarser sediments. After the flushing event, one can observe more large fine sediment deposits located on the downstream part of the secondary channel and at the channel margin. Most of the small fine sediment deposit patches were washed out. A short discussion is provided on the possible dynamics of fine sediment deposits over the gravel bar.  相似文献   

19.
1 INTRODUCTION The transport of sediment in rivers with active floodplains is a two-dimensional process because the main channel and the floodplain can have very different transport capacities. Therefore, two-dimensional (2D) models are often used to simulate the streamwise and transverse variations of sediment erosion and deposition. Many 2D numerical models have been presented to simulate sediment transport in floodplains (James, 1985; Pizzuto, 1987; Howard, 1992; Nicholas and Walli…  相似文献   

20.
The distribution of particulate matter within river channels, including sediments, nutrients and pollutants, is fundamental to the survival of aquatic organisms. However, the interactions between flow and sediment transport at the patch scale of river systems represents an under‐researched component of physical habitat studies, particularly those concerning the characterization of ‘physical biotopes’ (riffles, runs, pools, glides). This paper describes a field methodology for exploring the transfer of particulate matter at small scales within river channels, which may be used to aid hydraulic habitat characterization. The field protocol combines field measurement of high frequency flow properties, to characterize hydraulic habitat units, and deployment of spatial arrays of turbidity probes, to detect the passage of artificially‐induced sediment plumes through different biotope units. Sediment plumes recorded by the probes are analysed quantitatively in the manner of the flood hydrograph, and qualitative inferences are made on the dominant mixing processes operating within different parts of the channel. Relationships between the nature of spatio‐temporal hydraulic variations within glide, riffle and pool biotopes, and the character and mixing behaviour of sediment plumes within these habitat units are identified. Results from these preliminary experiments suggest that investigating and characterizing the transfer and storage of sediments, nutrients and pollutants within and between different biotopes is a viable avenue for further research, with potential to contribute to improved physical habitat characterization for river management and habitat restoration. The experiments are also an illustration of the value of neglected synergies between process geomorphology, ecology and river hydraulics. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号