首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Experiments to determine the thickness of glaciers by high frequency prospecting were carried out on the Austrian glacier Hintereisferner in 1938. After the war electrohydrographical measurements on glacier rivulets were carried out in the Kaprun Valley. The resistance of the glacier water fluctuates according to the time of season. It depends on the respective composition of these waters (Fig. 2). Therefore the geologic and mineralogic properties of the glacier-water may be deducted from the electric resistance. Especially the amount of surface water may be deducted (Fig. 3). An example is shown in Fig. 4.  相似文献   

2.
In this paper, we describe the importance of hyporheic dynamics within Andersen Creek and Von Guerard Stream, Taylor Valley, Antarctica, from the 2010–2011 melt season using natural tracers. Water collection started at flow onset and continued, with weekly hyporheic‐zone sampling. The water δ18O and δD values were isotopically lighter in the beginning and heavier later in the season. D‐excess measurements were used as an indicator of mixing because an evaporative signature was evident and distinguishable between 2 primary end‐members (glacier meltwater and hyporheic zone). Hyporheic‐zone influence on the channel water was variable with a strong control on streamwater chemistry, except at highest discharges. This work supports previous research indicating that Von Guerard Stream has a large, widespread hyporheic zone that varies in size with time and discharge. Andersen Creek, with a smaller hyporheic zone, displayed hyporheic‐zone solute interaction through the influence from subsurface hypersaline flow. Overall, the evolution of Taylor Valley hyporheic‐zone hydrology is described seasonally. In mid‐December, the hyporheic zone is a dynamic system exchanging with the glacier meltwater in the channel, and with diminishing flow in January, the hyporheic zone drains back into the channel flow also impacting stream chemistry. This work adds new information on the role of hyporheic zone–stream interaction in these glacier meltwater streams.  相似文献   

3.
The origin, formation and evolution of volcanic sands are less well known than the formation of the much more common quartz‐rich sand sheets. Combining active volcanism and a cold climate, Iceland is covered for about 21% of its surface by sandy areas. The sands were analyzed in detail at two sites and results reveal their diverse origins. The first site is Dyngjusandur, located north of Vatnajökull, and the second site is the Lambahraun area, located south of Langjökull. At both sites, the sand origin is determined from field observations (wind directions from ventifacts), chemical and mineralogical analyses of rocks and sands. At Dyngjusandur, the sand is dominated by glass grains, a situation typical of sand plains in Iceland. Hyaloclastite ridges presently buried beneath Vatnajökull are the dominant source of the sand, and only large size plagioclase crystals (0.5 cm) in sands seem to be derived from the lava flows. Hyaloclastite ridges were crushed by glaciers and mechanically eroded sediments were washed out by melt‐water onto flood plains. The sand chemical composition is spatially homogeneous and similar to the average composition of neighboring sub‐aerial lava flows, reflecting efficient mixing of distinct sources below the glacier. The presence of sand north of Dyngjujökull can be taken as a way to explore the average chemical composition of non‐exposed volcanic material beneath the glacier. In the case of Lambahraun, prevailing winds indicate several potential sources of sand at the north of the sand sheet. Comparison of chemical and mineralogical analyses of sands and rock samples helped to refine the exact origin. In contrast with the first site, the sand is dominated by crystals and is chemically consistent with a mixture of material derived from the lava flows of Eldborgir and Skersli shield volcanoes. Analysis of the contact between the lava flows and the glacier reveals that basaltic sand grains formed as the result of recent advances of the glacier abrading the rocks. The direct interaction of glacial and fluvio‐glacial activity with basaltic plains appears to be necessary to produce a large amount of sands in a relatively short period of time (<4000 years). This site appears to be an excellent natural laboratory for further studies concerning the sand evolution and physical sorting processes in basaltic material, which have important implications for understanding aeolian processes on Mars. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Cold‐based glaciers exist in low temperature and low humidity environments in which shortwave radiation is the largest source of energy to the glacier surface and the energy budget is very sensitive to the surface albedo. Consequently, the presence of relatively low volumes of debris on glacier surfaces has a significant impact on the timing, magnitude and rate of ablation at the surface. The aim of this study is to understand how the presence of sediment on the glacier surface at the start of the melt season can affect meltwater generation and delivery on a cold‐based glacier. A combination of field measurements, energy balance modelling and chemical mixing modelling were used on the Wright Lower Glacier, McMurdo Dry Valleys, Antarctica, between October 2005 and January 2006 to address this aim. In this system, sediment was transported onto the glacier surface during the winter months (March–October) by foehn winds, which reduced surface albedo at the start of the summer melt season. The areas of the glacier on which sediment accumulated began to melt earlier than other parts of the glacier and experienced a longer melt season. Over the study period, the total ablation on the dirty surfaces was nine times greater than for clean ice. Ablation on the dirty surfaces is dominated by melting, whereas sublimation dominates the clean ice. As the sediment was unevenly distributed over the glacier surface, the variation in melt amount and timing drove the development of a cryoconite hole system. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Near-surface processes on glaciers, including water flow over bare ice and through seasonal snow and firn, have a significant effect on the speed, volume and chemistry of water flow through the glacier. The transient nature of the seasonal snow profoundly affects the water discharge and chemistry. Water flow through snow is fairly slow compared with flow over bare ice and a thinning snowpack on a glacier decreases the delay between peak meltwater input and peak stream discharge. Furthermore, early spring melt flushes the snowpack of solutes and by mid-summer the melt water flowing into the glacier is fairly clean by comparison. The firn, a relatively constant feature of glaciers, attenuates variations in water drainage into the glacier by temporarily storing water in saturated layer. Bare ice exerts opposite influences by accentuating variations in runoff by water flowing over the ice surface. The melt of firn and ice contributes relatively clean (solute-free) water to the glacier water system.  相似文献   

6.
Radar surveys of Bench Glacier, Alaska, collected over five field seasons between 2002 and 2006 reveal a surface layer of radar transparent ice in this temperate valley glacier. The transparent layer covers the up‐glacier half of the ablation zone and is defined by a distinct lack of the radar scattering events considered typical of temperate ice. Radar scattering ice underlies the transparent zone, and extends to the surface elsewhere on the glacier. We observed the layering in constant offset radar surveys conducted with characteristic frequencies ranging from 5 MHz to 100 MHz. The radar transparent layer extends from the surface to 20 m depth on average, but up to 50 m in some places. Bench Glacier's transparent layer appears similar to the cold surface layer of polythermal glaciers, however, observations in over 50 boreholes on Bench Glacier suggest there is no cold ice corresponding to the radar transparent layer. We conclude that spatially extensive radar‐transparent layers normally used to identify cold ice in polythermal glaciers are present in some temperate glaciers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Glaciers of the McMurdo dry valleys (MDVs) Antarctica are the main source of streamflow in this polar desert. Because summer air temperatures hover near 0°C small changes in the energy balance strongly affect meltwater generation. Here we demonstrate that increased surface roughness, which alters the turbulent transfer of energy between the ice surface and atmosphere, yields a detectable increase in meltwater runoff. At low elevations on the glaciers, basin-like topography became significantly rougher over 13 years between repeat lidar surveys, yielding greater melt. In contrast, the smoother ice at higher elevation exhibited no detectable change in roughness. We pose a conceptual model of the cycle of glacier surface change as a result of climate forcing whereby glacier surfaces transition from being dominated by sublimation to becoming increasingly melt-dominated, which is reversible under prolonged cool periods. This research advances our understanding of warm season effects on polar glaciers.  相似文献   

8.
Debris cover on glaciers is an important component of glacial systems as it influences climate–glacier dynamics and thus the lifespan of glaciers. Increasing air temperatures, permafrost thaw and rock faces freshly exposed by glacier downwasting in accumulation zones result in increased rockfall activity and debris input. In the ablation zone, negative mass balances result in an enhanced melt-out of englacial debris. Glacier debris cover thus represents a clear signal of climate warming in mountain areas. To assess the temporal development of debris on glaciers of the Eastern Alps, Austria, we mapped debris cover on 255 glaciers using Landsat data at three time steps. We applied a ratio-based threshold classification technique and analysed glacier catchment characteristics to understand debris sources better. Across the Austrian Alps, debris cover increased by more than 10% between 1996 and 2015 while glaciers retreated in response to climate warming. Debris cover distribution shows significant regional variability, with some mountain ranges being characterised by mean debris cover on glaciers of up to 75%. We also observed a general rise of the mean elevation of debris cover on glaciers in Austria. The debris cover distribution and dynamics are highly variable due to topographic, lithological and structural settings that determine the amount of debris delivered to and stored in the glacier system. Despite strong variation in debris cover, all glaciers investigated melted at increasing rates. We conclude that the retarding effects of debris cover on the mass balance and melt rate of Austrian glaciers is strongly subdued compared with other mountain areas. The study indicates that, if this trend continues, many glaciers in Austria may become fully debris covered. However, since debris cover seems to have little impact on melt rates, this would not lead to prolonged existence of debris-covered ice compared with clean ice glaciers.  相似文献   

9.
Human‐accelerated climate change is quickly leading to glacier‐free mountains, with consequences for the ecology and hydrology of alpine river systems. Water origin (i.e., glacier, snowmelt, precipitation, and groundwater) is a key control on multiple facets of alpine stream ecosystems, because it drives the physico‐chemical template of the habitat in which ecological communities reside and interact and ecosystem processes occur. Accordingly, distinct alpine stream types and associated communities have been identified. However, unlike streams fed by glaciers (i.e., kryal), groundwater (i.e., krenal), and snowmelt/precipitation (i.e., rhithral), those fed by rock glaciers are still poorly documented. We characterized the physical and chemical features of these streams and investigated the influence of rock glaciers on the habitat template of alpine river networks. We analysed two subcatchments in a deglaciating area of the Central European Alps, where rock glacier‐fed, groundwater‐fed, and glacier‐fed streams are all present. We monitored the spatial, seasonal, and diel variability of physical conditions (i.e., water temperature, turbidity, channel stability, and discharge) and chemical variables (electrical conductivity, major ions, and trace element concentrations) during the snowmelt, glacier ablation, and flow recession periods of two consecutive years. We observed distinct physical and chemical conditions and seasonal responses for the different stream types. Rock glacial streams were characterized by very low and constant water temperatures, stable channels, clear waters, and high concentrations of ions and trace elements that increased as summer progressed. Furthermore, one rock glacier strongly influenced the habitat template of downstream waters due to high solute export, especially in late summer under increased permafrost thaw. Given their unique set of environmental conditions, we suggest that streams fed by thawing rock glaciers are distinct river habitats that differ from those normally classified for alpine streams. Rock glaciers may become increasingly important in shaping the hydroecology of alpine river systems under continued deglaciation.  相似文献   

10.
Unlike temperate and polythermal proglacial streams, the proglacial streams in Taylor Valley (TV), Antarctica, are derived primarily from glacier surface melt with no subglacial or groundwater additions. Solute responses to flow reflect only the interaction of glacial meltwater with the valley floor surrounding the stream channel. We have investigated the major, minor and trace element 24‐h variations of two proglacial melt streams, Andersen Creek and Canada Stream, originating from the Canada Glacier in TV, Antarctica. Both streams exhibited diel mid‐austral summer diurnal flow variation, with maximum flow being more than 50 times the minimum flow. Dissolved (< 0.4 µm) major, minor and trace solute behaviors through diel periods were strongly controlled by the availability of readily solubilized material on the valley floor and hyporheic‐biological exchanges. Anderson Creek had generally greater solute concentrations than Canada Stream because of its greater receipt of eolian sediment. Andersen Creek also acquired greater solute concentrations in the rising limb of the hydrograph than the falling limb because of dissolution of eolian material at the surface of the stream channel coupled with minimal hyporheic‐biological exchange. Conversely, Canada Stream had less available eolian sediment, but a greater hyporheic‐biological exchange, which preferentially removed trace and major solutes in the rising limb and released them in the falling limb. Given the dynamic nature of discharge, eolian, and hyporheic‐biological processes, solute loads in TV streams are difficult to predict. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Rock glaciers and large ice-debris complexes are common in many mountain ranges and are especially prominent in semi-arid mountains such as the Andes or the Tien Shan. These features contain a significant amount of ice but their occurrence and evolution are not well known. Here, we present an inventory of the ice-debris complexes for the Ak-Shiirak, Tien Shan's second largest glacierised massif, and a holistic methodology to investigate two characteristic and large ice-debris complexes in detail based on field investigations and remote sensing analysis using Sentinel-1 SAR data, 1964 Corona and recent high resolution stereo images. Overall, we found 74 rock glaciers and ice-debris complexes covering an area of 11.2 km2 (3.2% of the glacier coverage) with a mean elevation of about 3950 m asl. Most of the complexes are located south-east of the main ridge of Ak-Shiirak. Ground penetrating radar (GPR) measurements reveal high ice content with the occurrence of massif debris-covered dead-ice bodies in the parts within the Little Ice Age glacier extent. These parts showed significant surface lowering, in some places exceeding 20 m between 1964 and 2015. The periglacial parts are characterised by complex rock glaciers of different ages. These rock glaciers could be remnants of debris-covered ice located in permafrost conditions. They show stable surface elevations with no or only very low surface movement. However, the characteristics of the fronts of most rock glacier parts indicate slight activity and elevation gains at the fronts slight advances. GPR data indicated less ice content and slanting layers which coincide with the ridges and furrows and could mainly be formed by glacier advances under permafrost conditions. Overall, the ice content is decreasing from the upper to the lower part of the ice-debris complexes. Hence, these complexes, and especially the glacier-affected parts, should be considered when assessing the hydrological impacts of climate change. © 2018 John Wiley & Sons, Ltd.  相似文献   

12.
Tetsuya  Waragai 《Island Arc》2005,14(4):368-377
Abstract   Calcretes can be observed on the surface of old moraines around Batura Glacier in the upper Hunza Valley, Karakoram Mountains, Pakistan. They develop as a calcareous crust cementing small gravels under boulders. In order to understand the genesis of the calcrete crust, a variety of methods were employed: (i) study of mineralogy and geochemistry of a calcrete crust precipitated on the lateral moraine using X-ray diffractometer and electron probe microanalysis; (ii) analysis of solute chemistry of surface water and ice bodies around the Batura Glacier; and (iii) accelerator mass spectrometry 14C dating of the crust itself. The results indicate that the calcrete crust has definite laminated layers composed of a fine-grain and compact calcite layer, and a mineral fragment layer. The chemical composition of the calcite layer is approximately 60% CaO and 1% MgO. The mineral fragment layer consists of rounded grain materials up to 0.2 mm in diameter. It shows a graded bedding structure with fine grains of quartz, albite and muscovite. Meanwhile, as the Paleozoic Pasu limestone is distributed around the terminal of Batura Glacier, Ca cations dissolve in the melt water of the glacier. Accordingly, the calcrete crust is precipitated by decreases in CO2 partial pressure from glacier ice and evaporation of the melt water, including high concentration of Ca2+ at ephemeral streams and small ponds stagnating between the moraine and glacial ice. On the basis of the AMS 14C age, the calcrete is considered to have formed approximately 8200 calibrated years bp under the Batura glacial stage.  相似文献   

13.
Abstract

Most Latin American glaciers are located in the tropical Andes. The melting processes of Glacier “15” on Antisana volcano were studied to understand the relationship between glacier retreat and natural climate variability and global climate change. Glaciers on the Antisana volcano are crucial sources of water as they feed the headwater rivers that supply Quito with potable water. The aim of this study was to build empirical models based on multiple correlations to reconstruct the mass loss of glaciers over a period of 10 years at three scales: local (data recorded by meteorological stations located around the volcano), regional (data from stations located around the country) and global (re-analysis data). Data quality was checked using graphical and statistical methods. Several empirical models based on multiple correlations were created to generate longer time series (42 and 115 years) of the mass balance for the glacier ablation zone. The long mass balance series were compared with the temperature variation series of the Earth’s surface in the Southern Hemisphere to estimate the relation between the mass balance and global warming. Our results suggest that the meteorological factors that best correlate with mass balance are temperature and wind.
Editor D. Koutsoyiannis  相似文献   

14.
The retreat of mountain glaciers and ice caps has dominated the rise in global sea level and is likely to remain an import component of eustatic sea‐level rise in the 21st century. Mountain glaciers are critical in supplying freshwater to populations inhabiting the valleys downstream who heavily rely on glacier runoff, such as arid and semi‐arid regions of western China. Owing to recent climate warming and the consequent rapid retreat of many glaciers, it is essential to evaluate the long‐term change in glacier melt water production, especially when considering the glacier area change. This paper describes the structure, principles and parameters of a modified monthly degree‐day model considering glacier area variation. Water balances in different elevation bands are calculated with full consideration of the monthly precipitation gradient and air temperature lapse rate. The degree‐day factors for ice and snow are tuned by comparing simulated variables to observation data for the same period, such as mass balance, equilibrium line altitude and glacier runoff depth. The glacier area–volume scaling factor is calibrated with the observed glacier area change monitored by remote sensing data of seven sub‐basins of the Tarim interior basin. Based on meteorological data, the glacier area, mass balance and runoff are estimated. The model can be used to evaluate the long‐term changes of melt water in all glacierized basins of western China, especially for those with limited observation data. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
The precipitation process of subglacial chemical deposits is closely related to the subglacial hydrologic processes and the physical, chemical reactions on the ice-bedrock interfaces. Thus the chemical deposits can serve as a nice proxy for the study of subglacial envi- ronment and a great deal of researches have been done on them during the 1970s and 1980s[1─7]. The alpine glaciers in Northwest China develop in the very continental environment with a comparatively slow subglacial process, du…  相似文献   

16.
Until now, alpine glacial meltwaters have been assumed to consist of two components, dilute quickflow and concentrated delayed flow, the mixing of which has been regarded as chemically conservative for the major dissolved ions and electrical conductivity. Dye tracing results suggest that this two-component model adequately represents the sub-glacial hydrology of the Haut Glacier d'Arolla, Switzerland. However, laboratory dissolution experiments in which various concentrations of glacial rock flour are placed in dilute solutions show that this rock flour is highly reactive and suggest that bulk meltwaters may acquire significant amounts of solute through rapid chemical reactions with suspended sediment which occur after mixing of the two components. This view is supported by detailed analysis of variations in the hydrochemistry of meltwaters draining from the Haut Glacier d'Arolla over three diurnal cycles during the 1989 melt season. Variations in the composition of bulk meltwaters are controlled by two main factors: dilution of the delayed flow component by quickflow, and the extent of post-mixing reactions. The latter depends on the suspended sediment concentration in bulk meltwaters and on the duration of contact between these waters and suspended sediment. Seasonal changes in the magnitude of these factors result in changes in the character and causes of diurnal variations in meltwater chemistry. In June, these variations reflect discharge-related variations in residence time within a distributed subglacial drainage system; in July, when a channelized drainage system exists beneath the lower glacier, they primarily reflect the dilution of delayed flow by quickflow; in August, when suspended sediment concentrations are particularly high, they reflect varying degrees of solute acquisition by post-mixing reactions with suspended sediment that take place in arterial channels at the glacier bed.  相似文献   

17.
Rock glaciers are slowly flowing mixtures of debris and ice occurring in mountains. They can represent a reservoir of water, and melting ice inside them can affect surface water hydrochemistry. Investigating the interactions between rock glaciers and water bodies is therefore necessary to better understand these mechanisms. With this goal, we elucidate the hydrology and structural setting of a rock glacier–marginal pond system, providing new insights into the mechanisms linking active rock glaciers and impounded surface waters. This was achieved through the integration of waterborne geophysical techniques (ground penetrating radar, electrical resistivity tomography and self‐potentials) and heat tracing. Results of these surveys showed that rock glacier advance has progressively filled the valley depression where the pond is located, creating a dam that could have modified the level of impounded water. A sub‐surface hydrological window connecting the rock glacier to the pond was also detected, where an inflow of cold and mineralised underground waters from the rock glacier was observed. Here, greater water contribution from the rock glacier occurred following intense precipitation events during the ice‐free season, with concomitant increasing electrical conductivity values. The outflowing dynamic of the pond is dominated by a sub‐surface seepage where a minor fault zone in bedrock was found, characterised by altered and highly‐fractured rocks. The applied approach is evaluated here as a suitable technique for investigating logistically‐complex hydrological settings which could be possibly transferred to wider scales of investigation. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
The geochemical, mineralogical and lithological composition of modern stream bed material is examined in order to characterize sources and evaluate downstream mixing of sediments in the upper Fraser River drainage basin, British Columbia. The <63 µm fraction is emphasized for its relative mobility and ease of analysis using instrumental neutron activation. Overall, the composition of the stream sediments closely re?ects bedrock distribution. Samples dominated by limestone and dolostone, calcite and dolomite, and related elements (Ca, Mg, Sr etc.) correspond to Lower and Middle Cambrian carbonate bedrock largely con?ned to the Moose River sub‐basin. Clastic and non‐quartzite metamorphic lithologies, primary and secondary aluminosilicate minerals and related elements (Al, Cs, Rb etc.) are largely derived from Miette Group bedrock and associated with the uppermost Fraser River sub‐basin. Except in the case of the Moose River/Fraser River junction, the determination of proportional tributary contributions is complicated by variable or delayed mixing, localized ?oodplain or valley side sources, and limited contrast between source areas. At present the Moose River sub‐basin contributes a greater proportion of the total and ?ne‐grained sediment loads of the combined Fraser River than would be expected from drainage basin area alone. The imbalance is related to greater relief, precipitation and runoff in the Moose River sub‐basin; however, the spatial association of carbonate‐rich stream sediments, ice cover and carbonate bedrock exposure indicates that glaciers play a particularly important roll in generating ?ne‐grained ?uvial sediment. Since differences in glacier cover and glacier potential in the two major sub‐basins are likely to be persistent, and since relative sediment yields from the sub‐basins can be determined from sediment composition, a potential indicator of glacier variation and climate change during the Holocene is therein available. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
Recent understanding of chemical weathering in glacierized catchments has been focused on mid-latitude, Alpine catchments; comparable studies from the high latitudes are currently lacking. This paper attempts to address this deficiency by examining solute provenance, transport and denudation in a glacierized catchment at 78°N in the Svalbard High Arctic archipelago. Representative samples of snow, glacier ice, winter proglacial icing and glacier meltwater were obtained from the catchment during spring and summer 1993 and analysed for major ion chemistry. Seasonal variations in the composition of glacier meltwater occur and are influenced by proglacial solute acquisition from the icing at the very start of the melt season, and subsequently by a period of discharge of concentrated snowmelt caused by snowpack elution; weathering within the ice-marginal channels that drain the glacier, particularly carbonation reactions, continues to furnish solute to meltwater when suspended sediment concentrations increase later in the melt season. Partitioning the solute flux into its various components (sea-salt, crustal, aerosol and atmospheric sources) shows that c. 25% of the total flux is sea salt derived, consistent with the maritime location of the glacier, and c. 71% is crustally derived. Estimated chemical denudation, 160 meq m−2 a−1 sea salt-corrected cation equivalent weathering rate, is somewhat low compared with other studied glacierized catchments (estimates in the range 450–1000 meq m−2 a−1), which is probably attributable to the relatively short melt season and low specific runoff in the High Arctic. A positive relationship was identified between discharge and CO2 drawdown owing to carbonation reactions in turbid meltwater. © 1997 John Wiley & Sons, Ltd.  相似文献   

20.
Himalayan basins have considerable snow‐ and glacier‐covered areas, which are an important source of water, particularly during summer season. In the Himalayan region, in general, the glacier melt season is considered to be from May to October. Changes in hydrological characteristics of the runoff over the melt season can be understood by studying the variation in time to peak and time lag between melt generation and its emergence as runoff. In the present study, the runoff‐delaying characteristics of Gangotri Glacier, one of the largest glaciers in the Indian Himalayas, have been studied. For this purpose, hourly discharge and temperature data were collected near the snout of the glacier (4000 m) for three ablation seasons (2004–2006). The diurnal variations in discharge and temperature provided useful information on water storage and runoff characteristics of the glacier. In the early stages of the ablation period, poor drainage network and stronger storage characteristics of the glaciers due to the presence of seasonal snow cover resulted in a much delayed response of melt water, providing a higher time lag and time to peak as compared to the peak melt season. A comparison of runoff‐delaying parameters with the discharge ratio clearly indicated that changes in time lag and time to peak are inversely correlated with variations in discharge. Impact of such meltwater storage and delaying characteristics of glaciers on hydropower projects being planned/developed on glacier‐fed streams in India has been discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号