首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 821 毫秒
1.
金川超大型铜镍硫化物矿床的铂族元素地球化学特征   总被引:21,自引:2,他引:19  
对金川超大型铜镍岩浆硫化物矿床岩石、矿石的铂族元素地球化学特征研究表明 ,金川岩体的平均Cu/Pd值远大于原生地幔岩浆的Cu/Pd值 ,说明其岩石为因硫化物析离而失去Pd的岩浆所结晶 ;且岩石的PGE具有部分熔融趋势 ,与地幔橄榄岩接近 ,这些均指示存在岩浆熔离作用。该矿床岩石、矿石的PGE球粒陨石标准化分布模式比较对应 ,均可分为两种类型 ,反映了岩浆多次侵入、熔离分异同时成岩成矿的特征。另外 ,PGE S关系分析表明其成岩成矿过程中有少量地壳物质混染。PGE地球化学特征参数还指示了其高镁拉斑玄武质母岩浆的性质。  相似文献   

2.
The platinum-group element geochemistry of rocks and ores from Jinchuan super-large copper-nickel sulfide deposit is systemically studied in this paper. The Cu/Pd mean ratio of Jinchuan intrusion is lower than that of original mantle magma, which indicates that these ultrabasic rocks were crystallized from magma that lost Pd in the form of melting segregation of sulfides. The PGE of the rocks show trend of partial melting, similar to that of mantle peridotite, which shows that magma formation occurs during rock-forming and ore-forming processes. The chondrite normalized PGE patterns of the rocks and ores are well related to each other, which signifies the signatures of multi-episode magmatic intrusion, melting and differentiation in the formation processes of rocks and ores. In addition, analyses about the relation between PGE and S, and study on Re-Os isotopes indicate that few contamination of the crustal substances occurred during the magmatic intrusion and the formation of deposit. However, contamination by crustal substances helps to supply part of the S for the enrichment of PGE. Meanwhile, the hydrothermal process is also advantageous for the enrichment of PGE, especially lbr Pt and Pd, due to deep melting segregation. The characteristic parameters (such as Pt/(Pt+Pd), (Pt+Pd)/(Ru+Ir+Os), Pd/Ir, Cu/(Ni+Cu), and so on.) for platinum-group elements for Jinchuan sulfide copper-nickel deposit show the same features as those for sulfide copper-nickel deposit related to basic magma, which also illustrates its original magma property representative of Mg-high tholeiite. Therefore, it is the marie (not ultramafic) magma that resulted in the formation of the superlarge sulfide copper-nickel deposit enriched in Cu and PGE. To sum up, the geochemical characteristics of platinum-group elements in rocks and ores from Jinchuan copper-nickel sulfide deposit are constrained by the continental rift tectonic environment, the parent magma features, the enriched mantel magma source, the complex metallogenesis and PGE geochemical signatures, and this would be rather significant for the study about the genetic mechanism of copper-nickel sulfide deposits.  相似文献   

3.
INTRODUCTIONLowerCambrianblackrockseriesexistsbroadlyinmorethan10provincesinSouthChina(Chenetal.,1990).Thebotomoftheseriesspo...  相似文献   

4.
铂族元素矿物共生组合(英文)   总被引:1,自引:2,他引:1  
CHEN Yuan 《现代地质》2001,15(2):131-142
由于铂族元素能有效地降低汽车尾气的污染 ,其需求量日益增加 ,对铂族元素矿床的寻找已是当务之急。着重从矿物矿床学角度对铂族元素的矿物共生特点进行了探讨。铂族元素可呈独立矿床产出 ,主要产于基性超基性层状侵入体、蛇绿岩套及阿拉斯加式侵入体中。铂族元素也伴生于铜镍矿床中 ,该类铜镍矿床主要与苏长岩侵入体、溢流玄武岩及科马提岩有关。产于基性超基性层状侵入体中的铂族矿物有铂钯硫化物、铂铁合金、钌硫化物、铑硫化物、铂钯碲化物、钯砷化物及钯的合金。这些铂族矿物可与硫化物矿物共生 ,也可与硅酸盐矿物共生 ,还可与铬铁矿及其他氧化物矿物共生。产于蛇绿岩套中的铂族矿物主要是钌铱锇的矿物 ,而铂钯铑的矿物则较少出现 ,这些铂族矿物可呈合金、硫化物、硫砷化物以及砷化物 4种形式出现。产于阿拉斯加式侵入体中的铂族矿物主要有铂铁合金、锑铂矿、硫铂矿、砷铂矿、硫锇矿及马兰矿等少数几种 ,其中铂铁合金与铬铁矿及与其同时结晶的高温硅酸盐矿物共生 ,而其他的铂族矿物则与后来的变质作用及蛇纹岩化作用中形成的多金属硫化物及砷化物共生。产于铜镍矿床中的铂族矿物主要是铂和钯的矿物。产于基性超基性层状侵入体、蛇绿岩套及阿拉斯加式侵入体中的铂族矿物的共同特点是它们均与铬铁矿?  相似文献   

5.
Summary The Jinchuan deposit is a platinum group element (PGE)-rich sulfide deposit in China. Drilling and surface sampling show that three categories of platinum group element (PGE) mineralization occur; type I formed at magmatic temperatures, type II occurs in hydrothermally altered zones of the intrusion, and type III in sheared dunite and lherzolite. All ore types were analyzed for Os, Ir, Ru, Rh, Pd, Pt and Au, as well as for Cu, Ni, Co and S. Type I ore has (Pt + Pd)/(Os + Ir + Ru + Rh) ratios of <7 and relatively flat chondrite-normalized noble metal patterns; the platinum group minerals (PGM) are dominated by sperrylite and moncheite associated with chalcopyrite, pyrrhotite and pentlandite. Type II has (Pt + Pd)/(Os + Ir + Ru + Rh) ratios from 40 to 330 and noble metal distribution patterns with a positive slope; the most common PGM are sperrylite and Pd bismuthotelluride phases concentrated mostly at the margins of base metal sulfides. Type III ores have the highest (Pt + Pd)/(Os + Ir + Ru + Rh) ratios from 240 to 710; the most abundant PGM are sperrylite and phases of the Pt–Pd–Te–Bi–As–Cl system. It is concluded that the Jinchuan deposit formed as a result of primary magmatic crystallization followed by hydrothermal remobilization, transport, and deposition of the PGE.  相似文献   

6.
朱飞霖  白梅  陶琰 《岩石学报》2017,33(7):2225-2240
核桃树富铂岩浆硫化物矿床位于四川会理县小关河地区,是峨眉山大火成岩省中含较高铂族元素含量的岩浆硫化物矿床之一。本文通过对核桃树岩体及部分硫化物矿石主量元素、微量元素及铂族元素的系统分析,讨论了该岩体的岩浆源区及母岩浆性质、地幔部分熔融程度,并探讨了其成因机制。研究认为,核桃树含矿岩体属拉斑玄武岩成因系列,具有与峨眉山玄武岩相似的微量元素组成特征,是峨眉山大火成岩省构造-岩浆活动的产物;铂族元素的原始地幔标准化配分型式与金宝山铂钯矿相似,没有PGE相对于Ni和Cu的明显亏损,Pt和Pd相对Os、Ir、Ru和Rh富集,为PPGE富集的左倾型式,Pd/Ir=1.5~13.1,低于一般大陆拉斑玄武岩,与原始地幔接近。通过岩石地球化学及模拟分析表明,成矿母岩浆MgO约为11.93%、SiO_2约为49.88%、FeOT约为13.71%、TiO_2约为2.61%,为高Mg拉斑玄武质岩浆,是由类似于洋岛玄武岩岩浆源区成分的地幔经过较高程度(约20.17%)的部分熔融形成的苦橄质岩浆演化而来。与小关河地区主要的几类岩浆硫化物矿床的镍铜铂族元素组成及硫化物熔离模式对比分析发现,核桃树高的PGE含量和低的Cu/Pd比值说明了该矿床的硫化物是从PGE不亏损的玄武质岩浆中熔离出来的,类似金宝山矿床。成岩成矿机制分析认为,部分熔融形成的苦橄质岩浆在上升的过程中,发生了以橄榄石(约12.7%)为代表的镁铁质矿物堆积,并形成残余髙镁玄武质岩浆;部分残余髙镁玄武质岩浆向浅部运移过程中,由于温度降低、混染等因素的影响,导致岩浆S饱和,触发硫化物熔离作用的发生(R值为2000~50000),熔离出硫化物熔体与岩浆通道内晶出的橄榄石构成含矿"晶粥",在构造挤压作用下,在浅部岩浆房中由于重力影响发生堆积作用形成具有较富PGE的含矿岩体,R值较大变化正好与PGE含量较大变化相对应。  相似文献   

7.
金川含矿超镁铁岩侵入体侵位序列   总被引:1,自引:0,他引:1       下载免费PDF全文
金川铜镍硫化物矿床是世界第三大镍矿床,但其成岩成矿过程及侵位机制一直存在较大争论。根据金川含矿超镁铁岩岩石学特征、穿插关系、矿物成分及地球化学特征,提出了金川含矿岩体5阶段的成岩、成矿侵位序列,它们分别是:(1)超镁铁质岩浆侵位;(2)浸染状硫化物矿浆侵位;(3)网状硫化物矿浆侵位;(4)块状硫化物矿浆侵位;(5)铂钯富集体侵位。金川铜镍(铂)矿床中Ni,Cu,Pt,Pd,Rh,Ir,Ru,及Co与S呈正相关关系;当ω(S)=5%~15%时,铂族元素发生明显的分离作用,铂族金属主要富集在铂钯富集体中。铂钯富集体是硫化物矿浆经单硫化物固溶体结晶后的残余熔浆;块状矿石是单硫化物固溶体堆积而成的产物。金川铜镍硫化物矿床的侵位机制为岩墙型岩浆通道。  相似文献   

8.
The distribution of platinum group elements (PGEs) in massive sulfides and hematite–magnetite±pyrite assemblages from the recently discovered basalt-hosted Turtle Pits hydrothermal field and in massive sulfides from the ultramafic-hosted Logatchev vent field both on the Mid-Atlantic Ridge was studied and compared to that from selected ancient volcanic-hosted massive sulfide (VHMS) deposits. Cu-rich samples from black smoker chimneys of both vent fields are enriched in Pd and Rh (Pd up to 227 ppb and Rh up to 149 ppb) when compared to hematite–magnetite-rich samples from Turtle Pits (Pd up to 10 ppb, Rh up to 1.9 ppb). A significant positive correlation was established between Cu and Rh in sulfide samples from Turtle Pits. PGE chondrite-normalized patterns (with a positive Rh anomaly and Pd and Au enrichment), Pd/Pt and Pd/Au ratios close to global MORB, and high values of Pd/Ir and Pt/Ir ratios indicate mafic source rock and seawater involvement in the hydrothermal system at Turtle Pits. Similarly shaped PGE chondrite-normalized patterns and high values of Pd/Pt and Pd/Ir ratios in Cu-rich sulfides at Logatchev likely reflect a similar mechanism of PGE enrichment but with involvement of ultramafic source rocks.  相似文献   

9.
中国铬铁矿的铂族元素分布特征   总被引:2,自引:0,他引:2  
周美付  白文吉 《矿物学报》1994,14(2):157-163
用NiS溶解和Te沉淀方法富集铂族元素(PGE),制成镍扣,再溶解于浓HCl中,使PGE和Te一起沉淀。制备的样品溶液在ELAN-5000型电感耦合等离子质谱仪(ICP-MS)上分析PGE。中国铬铁矿矿石,包括蛇绿岩套中的豆荚状铬铁矿床、非层状侵入体铬铁矿,计13个矿床(化)样品,其PGE模式表明,主要呈RU正异常模式,个别不同模式是由母岩不同以及铂族元素矿化叠加引起的。铬铁矿的PGE模式不取决于铬铁矿的化学成分,而取决于其母岩性质以及形成温度和铂族元素的熔点。  相似文献   

10.
Platinum group elements (PGE) enrichment occurs in Zn–Cu and Ni-rich ophiolities in a number of geological settings. Platinum group elements (PGE) mineralization in Pyroxenite from the Faryab ophiolities of Zagros belt in south Iran was studied. The ophiolite rocks represent blocks of Tethyan oceanic crust that were emplaced on the continental margin during the late Cretaceous period. Much of lower ophiolitic section is composed of homogeneous harzburgite, while upper sections harzburgite interlayer with dunite and pyroxenite are included. This study focused on pyroxenite that includes most of sulfide mineralization in Faryab. More than 500 samples were investigated from polished thin sections; that cover all area of Faryab. The sulfide phases include pyrrhotite, pentlandite, millerite, violarite, smythite, and heazlewoodite. The results show that in almost all the samples Os is below the 2 ppb detection limit, Platinum values vary from <5 to 91 ppb and the light PGE (Ru, Rh, and Pd) relative to the heavy PGE (Os, Ir, and Pt) are more concentrated. Calculation showed that in pyroxenites Pd–Pt is occurring with orthopyroxenite and Rh–Os is occurring in clinopyroxenite. Ni/Pd ratios in Faryab vary between 7 and 356 and Pd/Ir ratio is 0.1–27. This indicates that in Faryab area partial melt of mantle occurred. Pd/Rh ratio in Faryab is 0.1–11, and Pd/Pt varies between 0.2 and 1.5. Pd/Ir ratio in Faryab decreases and shows that PGE in Faryab occurred.  相似文献   

11.
Concentrations of Ag, Au, Cd, Co, Re, Zn and Platinum-group elements (PGE) have been determined in sulfide minerals from zoned sulfide droplets of the Noril’sk 1 Medvezky Creek Mine. The aims of the study were; to establish whether these elements are located in the major sulfide minerals (pentlandite, pyrrhotite, chalcopyrite and cubanite), to establish whether the elements show a preference for a particular sulfide mineral and to investigate the model, which suggests that the zonation in the droplets is caused by the crystal fractionation of monosulfide solid solution (mss). Nickel, Cu, Ag, Re, Os, Ir, Ru, Rh and Pd, were found to be largely located in the major sulfide minerals. In contrast, less than 25% of the Au, Cd, Pt and Zn in the rock was found to be present in these sulfides. Osmium, Ir, Ru, Rh and Re were found to be concentrated in pyrrhotite and pentlandite. Palladium and Co was found to be concentrated in pentlandite. Silver, Cd and Zn concentrations are highest in chalcopyrite and cubanite. Gold and platinum showed no preference for any of the major sulfide minerals. The enrichment of Os, Ir, Ru, Rh and Re in pyrrhotite and pentlandite (exsolution products of mss) and the low levels of these elements in the cubanite and chalcopyrite (exsolution products of intermediate solid solution, iss) support the mss crystal fractionation model, because Os, Ir, Ru, Rh and Re are compatible with mss. The enrichment of Ag, Cd and Zn in chalcopyrite and cubanite also supports the mss fractionation model these minerals are derived from the fractionated liquid and these elements are incompatible with mss and thus should be enriched in the fractionated liquid. Gold and Pt do not partition into either iss or mss and become sufficiently enriched in the final fractionated liquid to crystallize among the iss and mss grains as tellurides, bismithides and alloys. During pentlandite exsolution Pd appears to have diffused from the Cu-rich portion of the droplet into pentlandite.  相似文献   

12.
The nature of PGE-Re (PGE = Pt, Pd, Os, Ir, Ru) behavior in subcontinental lithospheric mantle was investigated using new, high precision PGE-Re abundance measurements and previously published Re-Os isotopic analyses of peridotite xenoliths from the Sierra Nevada and Mojave Province, California. Ru/Ir ratios and Ir concentrations are constant over a wide range in S content and major-element fertility indices (e.g., Mg/(Mg+Fe)), indicating that Ru and Ir are not only compatible during partial melting, but also that their partitioning behaviors may not be controlled entirely by sulfide. Pt/Ir, Pd/Ir, Os/Ir, and Re/Ir ratios range from slightly superchondritic to distinctly subchondritic for all xenoliths except for one anomalous sample (1026V), which is characterized by radiogenic 187Os/188Os, low Re/Os ratio, and large enrichments in Cu, Os, Pt, Pd, and S relative to Ir (COPPS metasomatism). Assuming chondritic initial relative abundances, the magnitudes of some of the depletions in Pt, Pd, Os, and Re relative to Ir and Ru require incompatible behavior or substantial secondary loss. In detail, some samples, which are otherwise characterized by fertile major-element indices, exhibit low S contents and subchondritic Os/Ir and Pd/Ir ratios, indicating that depletions in Pd and Os relative to Ir are not simple functions of the degree of melting as inferred from major elements. Possible mechanisms for depleting Pt, Pd, Os, and Re relative to Ir and Ru include partitioning into chromian spinels and alloys, partitioning between sulfide and sulfide liquids, mobilization by aqueous fluids, or secondary loss associated with late-stage sulfide breakdown. However, it is not possible to explain all of the depletions in Pt, Pd, Os, and Re by any single mechanism.The preferential enrichment in Os over Re and Ir in sample 1026V is somewhat paradoxical because this sample’s radiogenic 187Os/188Os requires a metasomatic agent, originating from a source with a high time-integrated Re/Os ratio. The abundant garnet websterite xenoliths may be a suitable source because they have high Re/Os ratios, radiogenic Os, and abundant garnet, which may sequester Re over Os during partial melting. However, their extremely low Os contents require the processing of large amounts of garnet websterite to concentrate enough Os into the metasomatic sulfides needed to enrich sample 1026V in Os. The homogeneity in 187Os/188Os ratio in the remaining xenoliths suggest that their Os isotopic compositions were not significantly affected by PGE metasomatism. The singular nature of 1026V’s composition emphasizes the rarity of COPPS metasomatism.  相似文献   

13.
大别造山带毛屋超镁铁岩的铂族元素研究   总被引:1,自引:1,他引:1       下载免费PDF全文
采用镍锍火试金法结合ICP-MS分析了毛屋斜方辉石岩和石榴二辉岩样品中的Ir、Ru、Rh、Pt和Pd的含量,结果显示其铂族元素(PGE)的含量随岩石类型无规律性的变化,原始地幔标准化后的铂族元素分布模式呈负斜率,Pd、Ir发生了分异。毛屋超镁铁岩铂族元素特征的形成受岩石中铂族元素的存在相制约,PPGE富集在富Cu硫化物,而IPGE以类似残留相、不熔的单硫化物固熔体形式存在,其中地壳混染也起了一定的作用;同时,成岩过程中流体的存在造成了Pt和Pd的活化。因此,单硫化物固熔体和流体的共同作用形成了毛屋超镁铁岩类似残留地幔岩的铂族元素分布特征。  相似文献   

14.
The peridotites of the Manipur Ophiolite Complex (MOC) have been examined based on mineral chemistry, major elements and PGE contents. They represent high-magnesian cumulates with Mg# > 0.90 (Mg/Mg+Fe) in olivine and Cr# > 0.12 (Cr/Cr+Al) in spinel. High Mg* contents of the olivine show that these rocks are most likely derived from partial melting of the residual upper mantle. The peridotites contain higher concentration of Palladium Group PGE (PPGE) (Rh=4.4−6.6ppb; Pd=336−458ppb and Pt=14.6−36.4ppb) than the Iridium Group PGE (IPGE) (Os=2.4−5.8ppb; Ir=3.2−4.16ppb and Ru=5.2−7ppb). These are characterized by overall enrichment of PGE concentration (σPGE=365.8 − 516.6 ppb) and high ratio of (Pt+Pd)/(Os+Ir+Ru). This suggests that the rocks are formed by partial melting and crystal fractionation of olivine-rich (picritic) magma.  相似文献   

15.
卢宜冠  和文言 《地学前缘》2018,25(6):196-208
金宝山杂岩体位于扬子板块西缘,毗邻哀牢山造山带北段,岩体中蕴含丰富的铂钯资源,是峨眉山大火成岩省(ELIP)中大型岩浆型铂族元素矿床。岩体的主要组成为辉石橄榄岩,矿体以似层状、透镜状产出于辉石橄榄岩中。地幔是镍矿床和铂族元素矿床最重要的源区,因而对Ni、Cu及PGE等元素行为的研究,是剖析岩浆型Ni-Cu-PGE矿床源区特征的一个重要研究方向。该研究获得金宝山岩体中辉橄岩铂族元素及Sr-Nd同位素数据,结合前人对ELIP中不同类型岩石系列PGE成分研究及Ni、Cu、PGE等元素在岩浆和硫化物中的分配系数,半定量模拟得到金宝山原始岩浆的形成源于地幔中高度部分熔融(25%~40%)形成的富PGE岩浆(含12.8×10-9 Pd,9.8×10-9 Pt,0.6×10-9 Rh和0.7×10-9 Ir),其铂族元素成分与ELIP苦橄岩成分相当,并且岩浆在演化的过程中遭受了10%~20%地壳混染作用。利用批式部分熔融公式及各铂族元素在硅酸盐矿物和熔体之间的分配系数反演计算得到产生金宝山熔体的地幔约含有5.3×10-9 Pd,7.5×10-9 Pt,0.75×10-9 Rh和1.5×10-9 Ir,相比原始地幔而言并没有表现出明显富集PGE的特征。这表明地幔中高度部分熔融+大量岩浆与硫化物的充分反应是形成大型岩浆型铂族元素矿床的一种可具备的条件。  相似文献   

16.
Data are presented on chromitites from the northern and southern sheets of the Il’chir ophiolite complex (Ospa–Kitoi and Khara-Nur (Kharanur) massifs). The new and published data are used to consider similarities and differences between ore chrome-spinel from the chromitites of the northern and southern ophiolite sheets as well as the species diversity of PGE minerals and the evolution of PGE mineralization. Previously unknown PGE minerals have been found in the studied chromitites.Ore chrome-spinel in the chromitites from the northern sheet occurs in medium- and low-alumina forms, whereas the chromitites from the southern sheet contain only medium-alumina chrome-spinel. The PGE minerals in the chromitites from the southern sheet are Os–Ir–Ru solid solutions as well as sulfides and sulfoarsenides of these metals. The chromitites from the northern sheet contain the same PGE minerals and diverse Rh–Pt–Pd mineralization: Pt–Ir–Ru–Os and isoferroplatinum with Ir and Os–Ir–Ru lamellae. Areas of altered chromitites contain a wide variety of low-temperature secondary PGE minerals: Pt–Cu, Pt–Pd–Cu, PdHg, Rh2SnCu, RhNiAs, PtAs2, and PtSb2. The speciation of the PGE minerals is described along with multiphase intergrowths. The relations of Os–Ir–Ru solid solutions with laurite and irarsite are considered along with the microstructure of irarsite–osarsite–ruarsite solid solutions. Zoned Os–Ir–Ru crystals have been found. Zone Os82–99 in these crystals contains Ni3S2 inclusions, which mark off crystal growth zones. Different sources of PGE mineralization are presumed for the chromitites from the northern and southern sheets.The stages of PGE mineralization have been defined for the chromitites from the Il’chir ophiolite belt. The Pt–Ir–Ru–Os and (Os, Ru)S2 inclusions in Os–Ir–Ru solid solutions might be relics of primitive-mantle PGE minerals. During the partial melting of the upper mantle, Os–Ir–Ru and Pt–Fe solid solutions formed syngenetically with the chromitites. During the late-magmatic stage, Os–Ir–Ru solid solutions were replaced by sulfides and sulfarsenides of these metals. Mantle metasomatism under the effect of reduced mantle fluids was accompanied by PGE remobilization and redeposition with the formation of the following assemblage: garutiite (Ni,Fe,Ir), zaccariniite (RhNiAs), (Ir,Ni,Cu)S3, Pt–Cu, Pt–Cu–Fe–Ni, Cu–Pt–Pd, and Rh–Cu–Sn–Sb. The zoned Os–Ir–Ru crystals in the chromitites from the northern sheet suggest dissolution and redeposition of Os–Ir–Ru primary-mantle solid solutions by bisulfide complexes. Most likely, the PGE remobilization took place during early serpentinization at 450–600 ºC and 13–16 kbar.During the crustal metamorphic stage, tectonic movements (obduction) and a change from reducing to oxidizing conditions were accompanied by the successive transformation of chrome-spinel into ferrichromite–chrome-magnetite with the active participation of a metamorphic fluid enriched in crustal components. The orcelite–maucherite–ferrichromite–sperrylite assemblage formed in epidote-amphibolitic facies settings during this stage.The PGE mineral assemblage reflects different stages in the formation of the chromitites and dunite-harzburgite host rocks and their transformation from primitive mantle to crustal metamorphic processes.  相似文献   

17.
陕西太白金矿含金角砾岩中铂族元素特征   总被引:1,自引:2,他引:1  
采用硫镍火法试金(NiS-FA)结合电感耦合等离子质谱(ICP-MS)分析了太白金矿硫化物和含金角砾岩中铂族元素的含量,结果显示,与秦岭地区八卦庙相比铂族元素含量较高,而低于原始地幔,其中铂(Pt)、钯(Pd)、钌(Ru)富集,并结合前人研究资料对铂族元素的来源和迁移机制进行探讨。铂族元素可能受深源的影响,IPGE(Ir、Os、Ru)可能主要以硫化物形式存在而PPGE(Rh、Pt、Pd)可能主要以单质存在。  相似文献   

18.
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used to measure distributions of the siderophile elements V, Fe, Co, Ni, Mo, Ru, Rh, Pd, W, Re, Os, Ir, Pt, and Au in Fremdlinge with a spatial resolution of 15 to 25 μm. A sulfide vein in a refractory inclusion in Allende (CV3-oxidized) is enriched in Rh, Ru, and Os with no detectable Pd, Re, Ir, or Pt, indicating that Rh, Ru, and Os were redistributed by sulfidation of the inclusion, causing fractionation of Re/Os and other siderophile element ratios in Allende CAIs. Fremdlinge in compact Type-A inclusions from Efremovka (CV3-reduced) exhibit subsolidus exsolution into kamacite and taenite and minimal secondary formation of V-magnetite and schreibersite. Siderophile element partitioning between taenite and kamacite is similar to that observed previously in iron meteorites, while preferential incorporation of the light PGEs (Ru, Rh, Pd) relative to Re, Os, Ir, and Pt by schreibersite was observed. Fremdling EM2 (CAI Ef2) has an outer rim of P-free metal that preserves the PGE signature of schreibersite, indicating that EM2 originally had a phosphide rim and lost P to the surrounding inclusion during secondary processing. Most Fremdlinge have chondrite-normalized refractory PGE patterns that are unfractionated, with PGE abundances derived from a small range of condensation temperatures, ∼1480 to 1468 K at Ptot = 10−3 bar. Some Fremdlinge from the same CAI exhibit sloping PGE abundance patterns and Re/Os ratios up to 2 × CI that likely represent mixing of grains that condensed at various temperatures.  相似文献   

19.
The Qingkuangshan Ni-Cu-PGE deposit, located in the Xiaoguanhe region of Huili County, Sichuan Province, is one of several Ni-Cu-PGE deposits in the Emeishan Large Igneous Province (ELIP). The ore-bearing intrusion is a mafic-ultramafic body. This paper reports major elements, trace elements and platinum-group elements in different types of rocks and sulfide-mineralized samples in the intrusion. These data are used to evaluate the source mantle characteristics, the degree of mantle partial melting, the composition of parental magma and the ore-forming processes. The results show that Qingkuangshan intrusion is part of the ELIP. The rocks have trace element ratios similar to the coeval Emeishan basalts. The primitive mantle-normalized patterns of Ni-Cu-PGE have positive slopes, and the ratios of Pd/Ir are lower than 22. The PGE compositions of sulfide ores and associated rocks are characterized by Ru depletion. The PGE contents in bulk sulfides are slightly depleted relative to Ni and Cu, which is similar to the Yangliuping Ni-Cu-PGE deposit. The composition of the parental magma for the intrusion is estimated to contain about 14.65 wt% MgO, 48.66 wt% SiO2 and 15.48 wt% FeOt, and the degree of mantle partial melting is estimated to be about 20%. In comparison with other typical Ni-Cu-PGE deposits in the ELIP, the Qingkuangshan Ni-Cu-PGE deposit has lower PGE contents than the Jinbaoshan PGE deposit, but has higher PGE contents than the Limahe and Baimazhai Ni-Cu deposit, and has similar PGE contents to the Yangliuping Ni-Cu-PGE deposit. The moderate PGE depletions in the bulk sulfide of the Qingkuanghan deposit suggest that the parental magma of the host intrusion may have undergone minor sulfide segregation at depth. The mixing calculations suggests that an average of 10% crustal contamination in the magma, which may have been the main cause of sulfide saturation in the magma. We propose that sulfide segregation from a moderately PGE depleted magma took place prior to magma emplacement at Qingkuangshan, that small amounts of immiscible sulfide droplets and olivine and chromite crystals were suspended in the ascending magma, and that the suspended materials settled down when the magma passed trough the Qingkuangshan conduit. The Qingkuangshan sulfide-bearing intrusion is interpreted to a feeder of Emeishan flood basalts in the region.  相似文献   

20.
Fourteen peridotite xenoliths collected in the Massif Central neogene volcanic province (France) have been analyzed for platinum-group elements (PGE), Au, Cu, S, and Se. Their total PGE contents range between 3 and 30 ppb and their PGE relative abundances from 0.01 to 0.001 × CI-chondrites, respectively. Positive correlations between total PGE contents and Se suggest that all of the PGE are hosted mainly in base metal sulfides (monosulfide solid solution [Mss], pentlandite, and Cu-rich sulfides [chalcopyrite/isocubanite]). Laser ablation microprobe-inductively coupled plasma mass spectrometry analyses support this conclusion while suggesting that, as observed in experiments on the Cu-Fe-Ni-S system, the Mss preferentially accommodate refractory PGEs (Os, Ir, Ru, and Rh) and Cu-rich sulfides concentrate Pd and Au. Poikiloblastic peridotites pervasively percolated by large silicate melt fractions at high temperature (1200°C) display the lowest Se (<2.3 ppb) and the lowest PGE contents (0.001 × CI-chondrites). In these rocks, the total PGE budget inherited from the primitive mantle was reduced by 80%, probably because intergranular sulfides were completely removed by the silicate melt. In contrast, protogranular peridotites metasomatized by small fractions of volatile-rich melts are enriched in Pt, Pd, and Au and display suprachondritic Pd/Ir ratios (1.9). The palladium-group PGE (PPGE) enrichment is consistent with precipitation of Cu-Ni-rich sulfides from the metasomatic melts. In spite of strong light rare earth element (LREE) enrichments (Ce/YbN < 10), the three harzburgites analyzed still display chondrite-normalized PGE patterns typical of partial melting residues, i.e., depleted in Pd and Pt relative to Ir and Ru. Likewise, coarse-granular lherzolites, a common rock type in Massif Central xenoliths, display Pd/Ir, Ru/Ir, Rh/Ir, and Pt/Ir within the 15% uncertainty range of chondritic meteorites. These rocks do not contradict the late-veneer hypothesis that ascribes the PGE budget of the Earth to a late-accreting chondritic component; however, speculations about this component from the Pd/Ir and Pt/Ir ratios of basalt-borne xenoliths may be premature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号