首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three new certified reference materials (CRM), certified for the platinum-group elements (PGE), GPt-8, GPt-9 and GPt-10 were developed based on the previous CRMs IGGE GPt-1 to GPt-7. The PGE concentration of GPt-8 is about 1 ng g-1. GPt-9 and GPt-10 are ore samples with PGE concentrations of more than 1 μg g-1. A multi-laboratory collaborative analysis scheme was adopted in the certification procedure, in which nine highly-experienced institutes and laboratories participated. The samples were analysed for the six platinum-group elements by nickel sulfide mini fire assay, with Te coprecipitation, and were determined by ICP-MS. Osmium was determined by isotope dilution.  相似文献   

2.
The platinum-group elements (PGE) and gold have been determined in twenty international rock reference materials by inductively coupled plasma-mass spectrometry (ICP-MS) after pre-concentration by a nickel sulfide fire assay. It was possible to achieve determination limits for a 50 g sample that ranged from 1 pg g-1 (Rh) to 23 pg g-1 (Au). Compared to published certified and recommended values for rock reference materials, the trueness of the method was found to be good. However, in some cases we observed large deviations for all elements in the sub 10 ng g-1 range within individual reference sample splits. Our results show that the PGE and Au are inhomogeneously distributed in the reference materials analysed here, where they are present in low concentrations, using 50 g test portions.  相似文献   

3.
The direct analysis of nickel sulfide fire assay buttons by UV laser ablation ICP-MS was used to determine the platinum-group elements and gold in the following reference materials: UMT-1, WPR-1, WMG-1, GPt-4, GPt-6 and CHR-Bkg. The instrument was calibrated with buttons prepared using quartz doped with the appropriate standard solutions. Analytical precision (RSD) was generally better than 10%, although occasional higher RSDs may infer local heterogeneities within nickel sulfide buttons. Good or excellent agreement was observed between analysed and reference material values except Rh in UMT-1 and WMG-1, which suffered an interference from copper. Detection limits calculated as 10 s quantitation limits were Au (1.7 ng g−1), Pd (3.3 ng g−1), Pt (8.3 ng g−1), Os (1.3 ng g−1), Rh (1 ng g−1), Ru (5 ng g−1) and Ir (0.7 ng g−1).  相似文献   

4.
Trace elements in the Geological Survey of Japan carbonate reference materials Coral JCp-1 and Giant Clam JCt-1 were determined by inductively coupled plasma-mass spectrometry after digestion with 2% v/v HNO3. A standard addition method was adopted in this determination in order to neutralise the Ca matrix effect. In addition, Sc, Y, In and Bi were used as internal standards to control the matrix effect and correct instrumental drift. Of the eighteen elements measured in JCp-1, precisions for fourteen elements, including Cu, Cd and Ba, were better than 10% RSD and concentrations ranged from 0.002 μg g-1 (Cs) to 8.02 μg g-1 (Ba). The concentrations of measured trace elements in JCt-1, except for Cu, were lower than those in JCp-1. Precisions for all elements with concentrations higher than 0.04 μg g-1 in JCt-1 were also better than 10% RSD and concentrations were found to be between 0.001 μg g-1 (Cs) and 4.84 μg g-1 (Ba). The concentrations of more than fifteen trace elements in the aragonite reference materials are reported here for the first time. Both reference materials are suitable for use in geochemical studies of environmental reconstruction based upon biogenic carbonate materials.  相似文献   

5.
The microanalytical capability of laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to determine ultra trace elemental concentrations has been demonstrated by the analysis of two low concentration glass standard reference materials, NIST SRM 614 and 616. Results for fifty two elements at concentrations in the low ng g-1 range are compared with those determined using secondary ion mass spectrometry (SIMS). Both techniques provide results at these concentrations that generally agree within 95% confidence limits, demonstrating the accuracy for ultra-trace level of in situ determinations by the two techniques. At concentrations of less than 20 ng g-1 in NIST SRM 616, an accuracy and precision of better than 10% has been obtained for most mono-isotopic rare earth elements, when a spot size of 50 μm is used. Limits of detection for selected elements were as low as 0.5 ng g-1.  相似文献   

6.
New sample preparation and ion-exchange separation methods as well as instrumental measurement protocols were established for the determination of trace-level Cd, In, and Te concentrations in geological materials by isotope-dilution mass spectrometry. High precision isotope ratio measurements were performed with a multiple collector inductively coupled plasma-mass spectrometer (MC-ICP-MS). The mass biases incurred for In and Te were corrected by adding and monitoring Pd and Sb standard solutions, respectively. Mass fractionation of Cd was corrected by using the mass fractionation factor calculated from the measurement of a standard solution. The measurement precision was better than 1 % for Cd, In and Te. Detection limits were < 1 ng g-1 for Cd, < 0.02 ng g-1 for In and Te. Using these new analytical techniques, the concentrations of Cd, In and Te were determined in six international geological reference materials. Concentrations could be reproduced within 3% for Cd, 4% for In and 10% for Te. Sample heterogeneity and volatility problems might have been the reason for the relatively large differences between Te replicates. Our results displayed excellent reproducibility compared with those of other techniques and agree well with data from previously published recommended values.  相似文献   

7.
Some recent experiments on the determination of Au and the platinum-group elements (PGE) in geochemical samples are reviewed. Emphasis is given to the determination of ultra-low levels of PGE concentrations in resistant matrices, including chromites, molybdenites and ultrabasic ores. The problems and features of PGE determination in samples of various chemical composition are considered. For each sample type studied, a series of sample preparation techniques are proposed. These techniques included acid digestion, fusion with sodium peroxide, cold sintering with an oxidizing mixture of Na2O2+ Na2CO3 and also oxidizing fluorination with bromine trifluoride. A new approach for preparing geochemical material prior to digestion, based on mechano-chemical activation with simultaneous hyperfine grinding, is proposed and studied. The instrumental determination of PGE contents was carried out directly by AAS from extracted organic phases. It was found that a combination of digestion processes was required to achieve geochemical background levels of Au and PGE concentrations with the following detection limits: Pd, Rh - 1 ng g−1, Pt, Ru - 10 ng g−1, Au - 0.2 ng g−1, Ag - 0.1 ng g−1. The uncertainty in PGE and Au determination in geochemical samples is dependent on metal concentration, and also on their distribution in samples. The total analytical uncertainty of the proposed method is between 15-30%.  相似文献   

8.
We present a new method that determines precisely and accurately rare earth elements (REE) at the sub-ng g-1 level in ultramafic rocks based on acid dissolution and quadrupole ICP-MS with systematic interference corrections on each sample. The method is demonstrated by analyses of the international geochemical reference materials, PCC-1 (peridotite), DTS-1 (dunite) and DTS-2 (dunite) provided by the United States Geological Survey (USGS), and JP-1 (peridotite) issued by the Geological Survey of Japan (GSJ). Detection limits, as rock equivalent, were calculated to be 0.01-0.08 ng g-1 for our instrument, which is sufficiently low compared to the REE concentrations of ultramafic rocks. In addition, procedural blanks of the proposed method were 0.2-5 pg, which is negligible even for the ultra-low level REE determinations. Reproducibility obtained from separate dissolutions and measurements of USGS DTS-2 and GSJ JP-1 was 3-6%, which corresponds to the high-precision data obtained by ID-TIMS or magnetic sector field ICP-MS with a desolvating nebuliser. The REE data determined exhibit smooth chondrite-normalised REE patterns for all of the tested geochemical reference materials, and the abundances are in good agreement with recently published data.  相似文献   

9.
A new technique for the in situ analysis of Re, Au, Pd, Pt and Rh in natural basalt glass by laser ablation (LA)-ICP-MS is described. The method involves external calibration against NIST SRM 612/613 or 614/615 glass certified reference materials, internal standardisation using Ca, and ablation with a 200 μm wide beam spot and a pulsed laser repetition rate of 50 Hz. Under these conditions, sensitivities for Re, Au, Pd, Pt and Rh analyte ions are ˜ 5000 to 100,000 cps/μg g-1. This is sufficient to make measurements precise to ˜ 10% at the 2-10 μg g-1 level, which is well within the range of concentrations expected in many basalts. For LA-ICP-MS calibration and a demonstration of the accuracy of the technique, concentrations of Re, Au, Pd, Pt and Rh in the NIST SRM 610/611 (˜ 1 to 50 μg g-1), 612/613 (˜ 1 to 7 μg g-1), 614/615 (˜ 0.2 to 2 μg g-1) and 616/617 (˜ 0.004 to 2 μg g-1) glasses were determined by solution-nebulisation (SN)-ICP-MS. Using the 612/613 or 614/615 glasses as calibration standards, LA-ICP-MS measurements of these elements in the other NIST glasses fell within ˜ 15% of those determined by SN-ICP-MS. Replicate LA-ICP-MS analyses of the 612/613 and 614/615 glasses indicate that, apart from certain anomalous domains, the glasses are homogeneous for Re, Au, Pd, Pt and Rh to better than 3.5%. Two LA-ICP-MS analyses of natural, island-arc basalt glasses exhibit large fractionations of Re, Au and Pd relative to Pt and Rh, compared to the relative abundances in the primitive mantle.  相似文献   

10.
Nanometre-sized alumina was chemically modified with gallic acid (GA) and used as a solid phase adsorption material for the determination of trace amounts of V, Nb and Ta in natural water, soil and stream sediment samples by inductively coupled plasma-mass spectrometry. The effects of pH, sample flow rate and volume, elution solution and interfering ions on the recovery of the analytes were investigated. The results showed that V, Nb and Ta could be adsorbed at pH 4.0 and recovered with 1 ml of 2.0 mol l-1 HCl. Under optimised conditions, the adsorption capacity of GA-modified nanometre-sized Al2O3 was found to be 7.0, 8.9, 13.3 mg g-1 for V, Nb and Ta, respectively. The limits of detection were as low as 0.25, 0.24 and 0.66 ng l-1 for V, Nb and Ta, respectively with a concentration factor of fifty. The recovery of V, Nb and Ta for spiked water samples was between 85.7 and 116%. The developed method has also been applied to the determination of trace V, Nb and Ta in soil and stream sediment certified materials, and the determined values were in a good agreement with the certified values.  相似文献   

11.
The analytical capabilities of laser ablation (LA)-ICP-MS in determining Li, Be and B at trace levels in geological samples have been tested on a series of glass reference materials and natural samples. The LA-ICP-MS instrument used consisted of a sector-field ICP-MS coupled with a laser ablation microprobe operating at either 266 or 213 nm wavelength. Reference glasses from NIST (SRM 612, 614 and 616) and MPI-DING (KL2-G, ML3B-G, StHs6/80-G, GOR128-G, GOR132-G, T1-G and ATHO-G) were selected to develop the analytical method and to assess the best instrumental configuration. A series of calcic amphiboles with different Li, Be and B concentrations were also analysed using both LA-ICP-MS and SIMS to test the applicability of the method to natural minerals. Results indicated that with a spot size of 40 μm the agreement between measured and reference values of Li, Be and B is generally better than 10% for NIST SRM 612 and 20% for NIST SRM 614. Average reproducibility at the 2s level was 10% for Li, 20% for Be and 15% for B. Limits of detection were approximately 100 ng g-1 for Be and B and 200 ng g-1 for Li. These results were confirmed by analyses carried out on natural amphiboles and compared well in terms of precision and accuracy with those commonly achieved by SIMS.  相似文献   

12.
One or two gram aliquots of twelve reference materials with low platinum-group element (PGE) abundances (Ir concentrations ranging from 30 to 510 pg g-1) were analysed by isotope dilution ICP-MS using an on-line chromatographic matrix separation after acid digestion in a high pressure asher (HPA-S) to determine the concentrations of Ru, Pd, Re, Ir and Pt. Osmium concentrations were determined via ID-ICP-MS but as volatile OsO4, whereas Rh concentrations were calculated by comparing the peak areas of the chromatographic peak with that of a standard solution. Validation of the method was performed and the concepts of traceability and measurement uncertainty were applied to assure comparability. The reference materials BCR-2, BHVO-1, BHVO-2, BIR-1, DNC-1, EN026 10D-3, MAG-1, RGM-1, SCo-1, SDO-1, TDB-1 and W-2 were investigated to test for their usefulness for certification. The use of TDB-1 is highly recommended because it is homogeneous at the two gram level and many values based on several different analytical procedures have been published. It is recommended that our efforts should focus on the certification of this reference material to reduce the uncertainties of its currently certified values (Pd and Pt only) and to assign certified values to the other PGE and Re. It is necessary to have at least one well-characterised RM for validation of methods applied to the analysis of PGE and Re in low abundance samples, although the matrix of TDB-1 might not completely match those of many samples.  相似文献   

13.
The oxidation states of chromium in GSJ JSO-2 (artificially contaminated soil) and three other geochemical reference materials (GSJ JSO-1, JLS-1 and JMS-1) were observed using X-ray near edge structure (XANES). For comparison, other artificially contaminated soil materials (mimic-JSO-2) were prepared by adding Cr(VI) into JSO-1. Their oxidation states of chromium were determined using XANES. The chromium contents were 1118 μg g-1 for JSO-2, 1352 μg g-1 for mimic-JSO-2 and 69-113 μg g-1 for the other reference materials. Most chromium was present as hexavalent in mimic-JSO-2. No hexavalent species were detected in other samples. These results for chromium oxidation state in JSO-2 and mimic-JSO-2 obtained with XANES resembled those obtained from a chemical extraction method. The present JSO-2 has no trace of Cr(VI), although Cr(VI) was added as a major species during preparation. On the other hand, the content of Cr(VI) obtained in mimic-JSO-2 agreed with the original Cr(VI) content. A time-elapse study showed that Cr(VI) contents in mimic-JSO-2 decreased gradually to 70% of the original abundance during 240-day preservation in dry conditions. Moreover, the abundance of Cr(VI) decreased markedly to 15% after 240 days in the wet mimic-JSO-2 containing 20% m/m of water. These experiments suggested that soil humidity enhanced the reduction of Cr(VI) and that Cr(VI) was reduced even in dry conditions. Consequently, it is reasonable to infer that Cr(VI) doped into JSO-2 was completely reduced to Cr(III) during the preservation period of 5 years. The certification of the long-term stability of the chemical form in reference materials will be much more important in future.  相似文献   

14.
A simple and accurate method to determine fluorine and chlorine contents in small amounts (∼ 30 mg) in rock has been developed using ion chromatography after extraction by alkaline fusion. Powdered sample was mixed with sodium carbonate and zinc oxide at a mass ratio of 1:3:1, and was fused in an electric furnace at 900 °C for 30-40 minutes. An aqueous solution obtained by dissolving the fused silicate rock was diluted to the appropriate concentration of sodium carbonate (< ∼ 24 mmol l-1) to minimise the tailing effect on F- during ion chromatography caused by the large amount of carbonate species originating from the flux. Fluorine and chlorine contents were then determined by a standard additions method. Based on the relative standard deviation of the backgrounds, detection limits of both fluorine and chlorine were ∼ 4 μg g-1, when 30 mg test portions were fused and diluted by a factor of 1200. We also report new fluorine and chlorine contents in nine GSJ (Geological Survey of Japan) reference materials, including peridotite (JP-1), granite (JG-1a), basalts (JB-1b, 2 and 3), andesites (JA-1 and 2) and rhyolites (JR-1 and 2). Fluorine and chlorine contents in the reference materials in this study were consistent with previously reported values. Reproducibilities were < 10 % for samples with F and Cl concentrations of > 20 μg g-1 and < 20 % with F and Cl < 20 μg g-1.  相似文献   

15.
We found that the suppression of signals for 88Sr, 140Ce and 238U in rock solution caused by rock matrix in ICP-MS (matrix effects) was reduced at high power operation (1.7 kW) of the ICP. To make the signal suppression by the matrix negligible, minimum dilution factors (DF) of the rock solution for Sr, Ce and U were 600, 400 and 113 at 1.1, 1.4 and 1.7 kW, respectively. Based on these findings, a rapid and precise determination method for Rb, Sr, Y, Cs, Ba, REE, Pb, Th and U using FI (flow injection)-ICP-MS was developed. The amount of the sample solution required for FI-ICP-MS was 0.2 ml, so that 1.8 mg sample was sufficient for analysis with a detection limit of several ng g-1. Using this method, we determined the trace element concentrations in the USGS rock reference materials, DTS-1, PCC-1, BCR-1 and AGV-1, and the GSJ rock reference materials, JP-1, JB-1, -2, -3, JA-1, -2 and -3. The reproducibilities (RSD %) in replicate analyses (n=5) of BCR-1, AGV-1, JB-1, -2, -3, JA-1, -2, and -3 were < 6 %, and typically 2.5%. The difference between the average concentrations of this study for BCR-1 and those of the reference values were < 2%. Therefore, it was concluded that the method can give reliable data for trace elements in silicate rocks.  相似文献   

16.
The concentrations of fifty trace elements, including relatively volatile elements and transition metal elements, in fused glasses of Geological Survey of Japan rock reference materials GSJ JR-2, JA-1, JA-2, JB-1a, JB-3, JGb-1 and JF-1 were determined by particle (proton) induced X-ray emission (PIXE) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The fused glasses were prepared by rapid fusion and subsequent quenching in welded platinum capsules and were found to be homogeneous for major elements and for trace elements with concentrations of more than 1 μg g-1 within the observed precision (± 10% mean) on a 70 μm sampling scale. The values obtained by PIXE and LA-ICP-MS for the transition elements (Cr, Mn, Fe, Ni and Cu), the relatively volatile elements (Zn, Ga, Rb and Pb) and the refractory elements (Y, Zr, Nb and Th) with concentrations greater than a few μg g-1 showed good agreement (within 10 % relative difference). The values for almost all the elements detected at concentrations higher than 1 μg g-1 as determined by LA-ICP-MS also agreed well with the reference values (mean relative difference < ± 10%), except for B and Cu. The good agreement confirmed the appropriateness of the NIST SRM 600 series glass calibration reference material for LA-ICP-MS analysis of glasses with variable major-element compositions for almost all elements. The concentrations of Cu in all the samples were lower than the reference values, which was attributed to adsorption of the transition metals onto the platinum capsule during preparation.  相似文献   

17.
18.
The beryllium and zirconium contents of 45 geochemical reference samples have been determined by inductively coupled plasma after fusion of the samples with lithium metaborate and dissolution of the melt in dilute nitric acid. The method described here is rapid and sample preparation straightforward. Good agreement is shown with previously published results for these two elements. A correction has to be made for an interference due to vanadium in determining the beryllium content, and there is a slight interference due to yttrium in the determination of zirconium. The detection limit for beryllium is about 0.2 μg g-1 and for zirconium about 15 μg g-1 in the sample.  相似文献   

19.
Promising methods have been developed recently for the determination of selenium (Se) and tellurium (Te) in geological materials at ng g−1 and lower levels, using hydride generation-inductively coupled plasma-mass spectrometry. Here we report on a new isotope dilution-hydride generation-inductively coupled plasma-mass spectrometry (ID-HG-ICP-MS) method for the simultaneous determination of Se and Te, which is applied to basalts, and modified compared to previous work. The basalts were attacked and dissolved with hydrofluoric and nitric acid, spiked with enriched isotopes, and passed through a cation exchange column (AG 50-X8 100–200 mesh) to separate the major cations that interfere with Se and Te detection (e.g., Fe). The detection limits of this method were 0.010 ng g−1 for Se and 0.0030 ng g−1 for Te, well below the concentrations of Se and Te expected in basalts. The precision of the method for Se was 12.2 to 15.1% and for Te was 4.6 to 7.2% RSD from replicate analyses of basalt reference samples. The accuracy for Se determinations was 61 to 94% and for Te 28 to 100% of values previously reported in the literature for selected USGS reference materials.  相似文献   

20.
Two Re-Os dating reference material molybdenites were prepared. Molybdenite JDC and molybdenite HLP are from a carbonate vein-type molybdenum-(lead)-uranium deposit in the Jinduicheng-Huanglongpu area of Shaanxi province, China. The samples proved to be homogeneous, based on the coefficient of variation of analytical results and an analysis of variance test. The sampling weight was 0.1 g for JDC and 0.025 g for HLP. An isotope dilution method was used for the determination of Re and Os. Sample decomposition and pre-concentration of Re and Os prior to measurement were accomplished using a variety of methods: acid digestion, alkali fusion, ion exchange and solvent extraction. Negative thermal ionisation mass spectrometry and inductively coupled plasma-mass spectrometry were used for the determination of Re and 187Os concentration and isotope ratios. The certified values include the contents of Re and Os and the model ages. For HLP, the Re content was 283.8 ± 6.2 μg g−1, 187Os was 659 ± 14 ng g−1 and the Re-Os model age was 221.4 ± 5.6 Ma. For JDC, the Re content was 17.39 ± 0.32 μg g−1, 187Os was 25.46 ± 0.60 ng g−1 and the Re-Os model age was 139.6 ± 3.8 Ma. Uncertainties for both certified reference materials are stated at the 95% level of confidence. Three laboratories (from three countries: PR. China, USA, Sweden) joined in the certification programme. These certified reference materials are primarily useful for Re-Os dating of molybdenite, sulfides, black shale, etc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号