首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The microanalytical capability of laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to determine ultra trace elemental concentrations has been demonstrated by the analysis of two low concentration glass standard reference materials, NIST SRM 614 and 616. Results for fifty two elements at concentrations in the low ng g-1 range are compared with those determined using secondary ion mass spectrometry (SIMS). Both techniques provide results at these concentrations that generally agree within 95% confidence limits, demonstrating the accuracy for ultra-trace level of in situ determinations by the two techniques. At concentrations of less than 20 ng g-1 in NIST SRM 616, an accuracy and precision of better than 10% has been obtained for most mono-isotopic rare earth elements, when a spot size of 50 μm is used. Limits of detection for selected elements were as low as 0.5 ng g-1.  相似文献   

2.
Inductively coupled plasma-mass spectrometry (ICP-MS) after NiS fire assay-Te co-precipitation was employed in the determination of Ru, Rh, Pd, Os, Ir and Pt at ng g-1 levels in six platinum-group element (PGE) geological reference materials. In general, the average of several results was in good agreement with the certified values taking into account respective uncertainties. High relative standard deviations were observed for the reference materials GPt-3 and GPt-4. Problems associated with the NiS fire assay procedure and PGE determination at the sub-10 ng g-1 level are reviewed and discussed.  相似文献   

3.
Trace elements in the Geological Survey of Japan carbonate reference materials Coral JCp-1 and Giant Clam JCt-1 were determined by inductively coupled plasma-mass spectrometry after digestion with 2% v/v HNO3. A standard addition method was adopted in this determination in order to neutralise the Ca matrix effect. In addition, Sc, Y, In and Bi were used as internal standards to control the matrix effect and correct instrumental drift. Of the eighteen elements measured in JCp-1, precisions for fourteen elements, including Cu, Cd and Ba, were better than 10% RSD and concentrations ranged from 0.002 μg g-1 (Cs) to 8.02 μg g-1 (Ba). The concentrations of measured trace elements in JCt-1, except for Cu, were lower than those in JCp-1. Precisions for all elements with concentrations higher than 0.04 μg g-1 in JCt-1 were also better than 10% RSD and concentrations were found to be between 0.001 μg g-1 (Cs) and 4.84 μg g-1 (Ba). The concentrations of more than fifteen trace elements in the aragonite reference materials are reported here for the first time. Both reference materials are suitable for use in geochemical studies of environmental reconstruction based upon biogenic carbonate materials.  相似文献   

4.
Promising methods have been developed recently for the determination of selenium (Se) and tellurium (Te) in geological materials at ng g−1 and lower levels, using hydride generation-inductively coupled plasma-mass spectrometry. Here we report on a new isotope dilution-hydride generation-inductively coupled plasma-mass spectrometry (ID-HG-ICP-MS) method for the simultaneous determination of Se and Te, which is applied to basalts, and modified compared to previous work. The basalts were attacked and dissolved with hydrofluoric and nitric acid, spiked with enriched isotopes, and passed through a cation exchange column (AG 50-X8 100–200 mesh) to separate the major cations that interfere with Se and Te detection (e.g., Fe). The detection limits of this method were 0.010 ng g−1 for Se and 0.0030 ng g−1 for Te, well below the concentrations of Se and Te expected in basalts. The precision of the method for Se was 12.2 to 15.1% and for Te was 4.6 to 7.2% RSD from replicate analyses of basalt reference samples. The accuracy for Se determinations was 61 to 94% and for Te 28 to 100% of values previously reported in the literature for selected USGS reference materials.  相似文献   

5.
Three new certified reference materials (CRM), certified for the platinum-group elements (PGE), GPt-8, GPt-9 and GPt-10 were developed based on the previous CRMs IGGE GPt-1 to GPt-7. The PGE concentration of GPt-8 is about 1 ng g-1. GPt-9 and GPt-10 are ore samples with PGE concentrations of more than 1 μg g-1. A multi-laboratory collaborative analysis scheme was adopted in the certification procedure, in which nine highly-experienced institutes and laboratories participated. The samples were analysed for the six platinum-group elements by nickel sulfide mini fire assay, with Te coprecipitation, and were determined by ICP-MS. Osmium was determined by isotope dilution.  相似文献   

6.
The platinum-group elements (PGE) and gold have been determined in twenty international rock reference materials by inductively coupled plasma-mass spectrometry (ICP-MS) after pre-concentration by a nickel sulfide fire assay. It was possible to achieve determination limits for a 50 g sample that ranged from 1 pg g-1 (Rh) to 23 pg g-1 (Au). Compared to published certified and recommended values for rock reference materials, the trueness of the method was found to be good. However, in some cases we observed large deviations for all elements in the sub 10 ng g-1 range within individual reference sample splits. Our results show that the PGE and Au are inhomogeneously distributed in the reference materials analysed here, where they are present in low concentrations, using 50 g test portions.  相似文献   

7.
In this study, the Cd isotopic composition of various geological reference materials and anthropogenic samples was investigated. The measurements were made by multicollector ICP-MS and instrumental mass fractionation was controlled using a "sample-standard bracketing" technique. Cadmium isotopic data are reported relative to an internal Cd solution (Cd Spex) and expressed as the 114 Cd/110Cd delta value. Two other Cd solutions (Prolabo and JMC) were analysed and yielded the same 0% delta value. A fractionated Cd metal sample (Münster Cd) was used as a secondary reference material for Cd isotopic measurements and we obtained a 114 Cd/110 Cd delta value of 4.48% relative to Cd Spex solution. As opposed to multi-stage Cd purification previously published in the literature, a new one step anionic exchange purification using dilute HCl for the analysis of Cd isotopes in geological samples was developed. This method enabled a high recovery (> 95%) and effective separation of the sample matrix to be achieved. The long-term external reproducibility was evaluated at 0.12% (2 standard deviations) for the 114 Cd/110Cd ratio, based on reference solutions and replicated measurements of samples over one year. The variation of Cd isotopic composition of natural terrestrial samples is restricted to a small range of 0.4%, which is similar to previously reported results. In contrast, large variations of Cd isotopic composition were found for anthropogenic samples with values as low as −0.64% for a dust sample issued from a lead smelter and values as high as +0.50% for NIST SRM 2711 (metal-rich soil). These variations are 10 times larger than the reproducibility and suggest that Cd isotopes can be useful as tracers of anthropogenic sources of Cd in the environment.  相似文献   

8.
The analytical capabilities of laser ablation (LA)-ICP-MS in determining Li, Be and B at trace levels in geological samples have been tested on a series of glass reference materials and natural samples. The LA-ICP-MS instrument used consisted of a sector-field ICP-MS coupled with a laser ablation microprobe operating at either 266 or 213 nm wavelength. Reference glasses from NIST (SRM 612, 614 and 616) and MPI-DING (KL2-G, ML3B-G, StHs6/80-G, GOR128-G, GOR132-G, T1-G and ATHO-G) were selected to develop the analytical method and to assess the best instrumental configuration. A series of calcic amphiboles with different Li, Be and B concentrations were also analysed using both LA-ICP-MS and SIMS to test the applicability of the method to natural minerals. Results indicated that with a spot size of 40 μm the agreement between measured and reference values of Li, Be and B is generally better than 10% for NIST SRM 612 and 20% for NIST SRM 614. Average reproducibility at the 2s level was 10% for Li, 20% for Be and 15% for B. Limits of detection were approximately 100 ng g-1 for Be and B and 200 ng g-1 for Li. These results were confirmed by analyses carried out on natural amphiboles and compared well in terms of precision and accuracy with those commonly achieved by SIMS.  相似文献   

9.
The paper presents preliminary results of the use of a high resolution double-focussing, magnetic sector inductively coupled plasma-mass spectrometer (HR-ICP-MS) with ultraviolet laser ablation (LA) for the bulk analysis of geological materials fused with Li2B4O7. Detection limits are based on data from precision measurements of a fused SiO2 sample of high purity, and sensitivity data (cps/μg g-1) obtained on the Reference Material (RM) Syenite SY-2. For many trace elements, the detection limits are better than 0.05 μg g-1 using a sample to flux weight ratio of 1:7.
Calibration curves, which are based entirely on RMs, are established for Hf, Ta, Tb, Tm and Lu. They indicate that, even at this early stage in the development of the technique, data accurate to ˜ 25% can be collected. It is concluded that the method may prove to be a valuable supplement to XRF for low level element concentration measurements; it is also very practical, as the same sample discs can be used for both XRF and LA-ICP-MS analyses.  相似文献   

10.
A new technique for the in situ analysis of Re, Au, Pd, Pt and Rh in natural basalt glass by laser ablation (LA)-ICP-MS is described. The method involves external calibration against NIST SRM 612/613 or 614/615 glass certified reference materials, internal standardisation using Ca, and ablation with a 200 μm wide beam spot and a pulsed laser repetition rate of 50 Hz. Under these conditions, sensitivities for Re, Au, Pd, Pt and Rh analyte ions are ˜ 5000 to 100,000 cps/μg g-1. This is sufficient to make measurements precise to ˜ 10% at the 2-10 μg g-1 level, which is well within the range of concentrations expected in many basalts. For LA-ICP-MS calibration and a demonstration of the accuracy of the technique, concentrations of Re, Au, Pd, Pt and Rh in the NIST SRM 610/611 (˜ 1 to 50 μg g-1), 612/613 (˜ 1 to 7 μg g-1), 614/615 (˜ 0.2 to 2 μg g-1) and 616/617 (˜ 0.004 to 2 μg g-1) glasses were determined by solution-nebulisation (SN)-ICP-MS. Using the 612/613 or 614/615 glasses as calibration standards, LA-ICP-MS measurements of these elements in the other NIST glasses fell within ˜ 15% of those determined by SN-ICP-MS. Replicate LA-ICP-MS analyses of the 612/613 and 614/615 glasses indicate that, apart from certain anomalous domains, the glasses are homogeneous for Re, Au, Pd, Pt and Rh to better than 3.5%. Two LA-ICP-MS analyses of natural, island-arc basalt glasses exhibit large fractionations of Re, Au and Pd relative to Pt and Rh, compared to the relative abundances in the primitive mantle.  相似文献   

11.
Six low abundance rock reference materials (basalt BIR-1, dunite DTS-1, dolerite DNC-1, peridotite PCC-1, serpentine UB-N and basalt TAFAHI) have been analysed for high field strength elements (Zr, Nb, Hf, Ta, Th and U), Rb, Sr, Mo, Sb, Cs, Tl and Bi at ng g−1 levels (in rock) by magnetic sector inductively coupled plasma-mass spectrometry after HF/HClO4 high pressure decomposition. The adopted method uses only indium as an internal standard. Detection limits were found to be in the range of 0.08 to 16.2 pg ml−1 in solution (equivalent to 0.08 to 16.2 ng g−1 in rock). Our data for high field strength elements, Rb, Sr, Mo, Sb, Cs, Tl and Bi for the six selected low abundance geological reference materials show general agreement with previously published data. Our Ta values in DTS-1 and PCC-1 (1.3 and 0.5 ng g−1) are lower than in previously published studies, providing smooth primitive mantle distribution patterns. Lower values were also found for Tl in BIR-1, DTS-1 and PCC-1 (2, 0.4 and 0.8 ng g−1). Compared with quadrupole ICP-MS studies, the proposed magnetic sector ICP-MS method can generally provide better detection limits, so that the measurement of high field strength elements, Rb, Sr, Mo, Sb, Cs, Tl and Bi at ng g−1 levels can be achieved without pre-concentration, ion exchange separation or other specialised techniques.  相似文献   

12.
This paper presents a two-stage anion-exchange procedure for tungsten extraction, an improved mass spectrometric procedure for tungsten analysis and a simplified chemical separation and TIMS procedure for the determination of Hf concentrations. The chemical separation of tungsten is based on its complexing properties with HF and H2O2. The blank level for a sample size of 300 mg is about 80 pg for tungsten. The procedure is designed for the high sensitivity of negative thermal ionisation mass spectrometry (NTIMS) provided by the use of Mg oxide as an emitter on Ir filaments. Tungsten can be readily measured with a high precision in various meteoritical material and especially in small W-poor silicate fractions. Samples containing as little as a few ng g-1 tungsten can be analysed reliably with this method.  相似文献   

13.
The concentrations of fifty trace elements, including relatively volatile elements and transition metal elements, in fused glasses of Geological Survey of Japan rock reference materials GSJ JR-2, JA-1, JA-2, JB-1a, JB-3, JGb-1 and JF-1 were determined by particle (proton) induced X-ray emission (PIXE) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The fused glasses were prepared by rapid fusion and subsequent quenching in welded platinum capsules and were found to be homogeneous for major elements and for trace elements with concentrations of more than 1 μg g-1 within the observed precision (± 10% mean) on a 70 μm sampling scale. The values obtained by PIXE and LA-ICP-MS for the transition elements (Cr, Mn, Fe, Ni and Cu), the relatively volatile elements (Zn, Ga, Rb and Pb) and the refractory elements (Y, Zr, Nb and Th) with concentrations greater than a few μg g-1 showed good agreement (within 10 % relative difference). The values for almost all the elements detected at concentrations higher than 1 μg g-1 as determined by LA-ICP-MS also agreed well with the reference values (mean relative difference < ± 10%), except for B and Cu. The good agreement confirmed the appropriateness of the NIST SRM 600 series glass calibration reference material for LA-ICP-MS analysis of glasses with variable major-element compositions for almost all elements. The concentrations of Cu in all the samples were lower than the reference values, which was attributed to adsorption of the transition metals onto the platinum capsule during preparation.  相似文献   

14.
李刚  曹小燕 《岩矿测试》2008,27(3):197-200
采用HF-HClO4-HNO3分解样品,8 mol/L HNO3提取剂,外标法校准,电感耦合等离子体质谱法同时测定地球化学样品中锗和镉。选择103Rh为内标,确定了最佳仪器参数,研究了Zn、Zr、Sn、Ce、Nd、Sm对Ge和Cd的干扰,试验选择质量数74Ge和114Cd作为测定同位素,采用数学公式校正法校正了来自Nd和Sm的二次电离离子对Ge的干扰、Sn对Cd的同质异位素干扰。方法检出限(10s)分别为Ge 30 ng/L、Cd 15 ng/L,精密度(RSD,n=15)为Ge 1.35%、Cd 1.47%。对多种国家一级标准物质进行分析验证,结果与标准值相符。方法适用于地质样品中微量锗和镉的测定。  相似文献   

15.
We present a new method that determines precisely and accurately rare earth elements (REE) at the sub-ng g-1 level in ultramafic rocks based on acid dissolution and quadrupole ICP-MS with systematic interference corrections on each sample. The method is demonstrated by analyses of the international geochemical reference materials, PCC-1 (peridotite), DTS-1 (dunite) and DTS-2 (dunite) provided by the United States Geological Survey (USGS), and JP-1 (peridotite) issued by the Geological Survey of Japan (GSJ). Detection limits, as rock equivalent, were calculated to be 0.01-0.08 ng g-1 for our instrument, which is sufficiently low compared to the REE concentrations of ultramafic rocks. In addition, procedural blanks of the proposed method were 0.2-5 pg, which is negligible even for the ultra-low level REE determinations. Reproducibility obtained from separate dissolutions and measurements of USGS DTS-2 and GSJ JP-1 was 3-6%, which corresponds to the high-precision data obtained by ID-TIMS or magnetic sector field ICP-MS with a desolvating nebuliser. The REE data determined exhibit smooth chondrite-normalised REE patterns for all of the tested geochemical reference materials, and the abundances are in good agreement with recently published data.  相似文献   

16.
New concentrations for Au, Ir and Ag obtained by instrumental neutron activation analysis are presented for seventy geochemical reference materials. Results in agreement with literature values for Au and Ir down to concentrations of a few ng g−1 were obtained. For Au and Ir concentrations above 10 ng g−1, the repeatability of replicate analyses of reference materials was mostly better than 10%. For concentrations between 1 and 10 ng g−1 the RSD for Ir was 10–30%, whereas for Au it was higher and more variable (20–50%). In addition, concentrations for Cd and Hg are presented for some of the same reference materials. The high RSD at relatively high concentrations seen in gold for some RMs (e.g., WMG-1, WMS-1) did not exist for Ir and suggests homogeneity for this platinum-group element at the sub-sample size used in this study. For the following eight RMs, mostly ultramafic rocks (CHR-Pt+, OREAS-13P, OREAS-14P, PCC-1, UMT-1, WMG-1, WMS-1, WPR-1), Ir measurements agreed within ± 10% of mostly certified or recommended concentrations, which ranged from 2 ng g−1 to 6 μg g−1. For the reference material UB-N, iridium concentration compared favourably to published results obtained by isotope dilution ICP-MS methods and a previously unrecognised heterogeneity is inferred for Au, Hg and Sb, but not for the other measured elements.  相似文献   

17.
A simple and accurate method to determine fluorine and chlorine contents in small amounts (∼ 30 mg) in rock has been developed using ion chromatography after extraction by alkaline fusion. Powdered sample was mixed with sodium carbonate and zinc oxide at a mass ratio of 1:3:1, and was fused in an electric furnace at 900 °C for 30-40 minutes. An aqueous solution obtained by dissolving the fused silicate rock was diluted to the appropriate concentration of sodium carbonate (< ∼ 24 mmol l-1) to minimise the tailing effect on F- during ion chromatography caused by the large amount of carbonate species originating from the flux. Fluorine and chlorine contents were then determined by a standard additions method. Based on the relative standard deviation of the backgrounds, detection limits of both fluorine and chlorine were ∼ 4 μg g-1, when 30 mg test portions were fused and diluted by a factor of 1200. We also report new fluorine and chlorine contents in nine GSJ (Geological Survey of Japan) reference materials, including peridotite (JP-1), granite (JG-1a), basalts (JB-1b, 2 and 3), andesites (JA-1 and 2) and rhyolites (JR-1 and 2). Fluorine and chlorine contents in the reference materials in this study were consistent with previously reported values. Reproducibilities were < 10 % for samples with F and Cl concentrations of > 20 μg g-1 and < 20 % with F and Cl < 20 μg g-1.  相似文献   

18.
We present boron isotope and concentration data from magmatic (komatiitic to rhyolitic) and sedimentary geological silicate and artificial glass reference materials that cover a wide spectrum of boron isotope compositions and boron concentrations. Boron isotope compositions were determined by TIMS (Cs2BO2+ -graphite and BO2- method) and boron concentrations by ICP-AES. Boron concentrations ranged from 7 to 159μ g-1 and agree within 14% with published values. Based on replicate analyses of individually prepared sample aliquots an overall external reproducibility of better than 10% was determined. The obtained δ11B values ranged from -12.6 to +13.6% and were reproducible within 1.1 % (2 RSD; excluding NTIMS) on the basis of individually prepared sample aliquots. The δ11B values of JA-1 (+5.3%), JB-3 (+5.9%) and JR-2 (+2.9%) overlap the published data within analytical uncertainty. For the first time δ11B values for the TB (-12.6%) and the MPI-DING glasses GOR-128-G (+13.6%), GOR-132-G (+7.1 %) and StHs6/80-G (-4.5%) are reported. The δ11B values obtained by the Cs2BO2+ -graphite and the BO2- method as well as the majority of δ11B values obtained using different sample preparation methods agree within analytical uncertainty. Therefore, we conclude that none of these analytical methods introduce any systematic error on the obtained δ11B values.  相似文献   

19.
Procedures for sampling, sample preparation and ICP-MS analysis of endemic sponges from Lake Baikal have been developed. Sample decomposition was carried out using an open acid decomposition with ultrasound treatment. The distribution of nineteen elements (Mg, Al, P, Ca, Ti, Mn, Co, Ni, Cu, Rb, Sr, Y, Cd, Ba, La, Ce, Pb, Th and U) in different parts of a sponge's body (outer and inner layers and layers adjacent to the substratum) was studied. Detection limits were determined; these ranged from 0.013 to 4.12 μg g-1 for trace elements and from 23 to 130 μg g-1 for biogenic elements. The degree of elemental uptake by living substances is discussed with regard to the environment.  相似文献   

20.
The direct analysis of nickel sulfide fire assay buttons by UV laser ablation ICP-MS was used to determine the platinum-group elements and gold in the following reference materials: UMT-1, WPR-1, WMG-1, GPt-4, GPt-6 and CHR-Bkg. The instrument was calibrated with buttons prepared using quartz doped with the appropriate standard solutions. Analytical precision (RSD) was generally better than 10%, although occasional higher RSDs may infer local heterogeneities within nickel sulfide buttons. Good or excellent agreement was observed between analysed and reference material values except Rh in UMT-1 and WMG-1, which suffered an interference from copper. Detection limits calculated as 10 s quantitation limits were Au (1.7 ng g−1), Pd (3.3 ng g−1), Pt (8.3 ng g−1), Os (1.3 ng g−1), Rh (1 ng g−1), Ru (5 ng g−1) and Ir (0.7 ng g−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号