首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large cetacean carcasses at the deep-sea floor, known as ‘whale falls’, provide a resource for generalist-scavenging species, chemosynthetic fauna related to those from hydrothermal vents and cold seeps, and remarkable bone-specialist species such as Osedax worms. Here we report the serendipitous discovery of a late-stage natural whale fall at a depth of 1444 m in the South Sandwich Arc. This discovery represents the first natural whale fall to be encountered in the Southern Ocean, where cetaceans are abundant. The skeleton was situated within a seafloor caldera, in close proximity (<250 m) to active hydrothermal vents. We used a DNA barcoding approach to identify the skeleton as that of an Antarctic minke whale (Balaenoptera bonaerensis). The carcass was in an advanced state of decomposition, and its exposed bones were occupied by a diverse assemblage of fauna including nine undescribed species. These bone fauna included an undescribed species of Lepetodrilus limpet that was also present at the nearby hydrothermal vents, suggesting the use of whale-fall habitats as stepping stones between chemosynthetic ecosystems. Using Remotely Operated Vehicle (ROV) videography, we have quantified the composition and abundance of fauna on the whale bones, and tested a hypothesis that varying concentrations of lipids in the bones of whales may influence the microdistribution of sulfophilic whale-fall fauna. Our data supported the hypothesis that more lipid-rich bones support a greater abundance of sulfophilic bacterial mats, which are also correlated with the abundance of grazing limpets (Pyropelta sp.). The abundance of Osedax sp. on bones however, showed a negative correlation with the bacterial-mat percentage cover, and hence greatest abundance on bones predicted to have lowest lipid content.  相似文献   

2.
3.
Video analysis of a whale-fall discovered in the northeast Pacific Ocean, off Vancouver Island at a depth of 1288 m during ROV diving operations has identified 26 taxa of deep-sea benthic organisms inhabiting the seafloor immediately surrounding remnants of the whale skeleton. A photo-mosaic derived from high-definition video provides a quantitative visual record of the present condition of the site, the species richness, and substrate preference. Only the skull and caudal vertebrae remains of this large whale skeleton are estimated to have been approximately 16.5 m in length. Most organisms identified near the whale-fall are common benthic deep-sea fauna, typical of this water depth and seafloor composition. Much of this species richness comes from sessile suspension feeding cnidarians attached to the numerous glacial dropstones found throughout the area rather than the presence of the whale skeleton. Seep and bone specialists are rare (4 taxa) and may be, in part, a remnant population from a sulphophilic stage of whale-fall decomposition. Evidence of past colonization by Osedax sp. is visible on the remaining bones and we conclude that rapid degradation of the missing bones has occurred at this site as has been observed at whale-falls off central California in Monterey Canyon.  相似文献   

4.
The Benthic Boundary Layer (BBL) assemblages from the Cap-Ferret Canyon (Bay of Biscay) were quantitatively sampled at two sites located within its main channel near mooring deployments (Mooring Sites MS 1: ca. 2400 m; MS 2: ca. 3000 m) with a suprabenthic sled equipped with four nets fishing at different heights above the bottom. The macrofaunal abundance above the sea-floor was mainly represented by Isopoda (42.2%), Amphipoda (19.0%), Euphausiacea (17.3%), Cumacea (13.5%), Mysidacea (2.8%) and Tanaidacea (2.6%). At both sampling sites, the highest total densities were generally recorded in the immediate vicinity of the sea floor (10–40 cm water layer), and a drastic decrease occurred higher in the BBL community. The BBL assemblages from the two sampling sites were similar in their faunal composition (major taxa), and their mean density estimates were not statistically different (MS 1 : 525.3 ind. 100 m−2; MS 2 : 283.3 ind. m−2) although the recorded values during each cruise were always lower at the deeper site. The BBL macrofauna abundance showed obvious temporal fluctuations at both sites, probably linked with a seasonal organic input from the euphotic zone (vertical flux) via phytodetritus deposition on the sea bottom.  相似文献   

5.
Foraging macrofauna, such as the sand dollar Encope emarginata, can modify sediment properties and affect spatial distribution patterns of microphytobenthos and meiobenthos at different spatial scales. We adopted a spatial hierarchical approach composed of five spatial levels (km, 100 s m, 10 s m, 1 s m and cm) to describe variation patterns of microphytobenthos, meiobenthos and sediment variables in shallow subtidal regions in the subtropical Paranaguá Bay (Southern Brazil) with live E. emarginata (LE), dead E. emarginata (only skeletons — (DE), and no E. emarginata (WE). The overall structure of microphytobenthos and meiofauna was always less variable at WE and much of variation at the scale of 100 s m was related to variability within LE and DE, due to foraging activities or to the presence of shell hashes. Likewise, increased variability in chlorophyll-a and phaeopigment contents was observed among locations within LE, although textural parameters of sediment varied mainly at smaller scales. Variations within LE were related to changes on the amount and quality of food as a function of sediment heterogeneity induced by the foraging behavior of sand dollars. We provide strong evidence that top-down effects related to the occurrence of E. emarginata act in synergy with bottom-up structuring related to hydrodynamic processes in determining overall benthic spatial variability. Conversely, species richness is mainly influenced by environmental heterogeneity at small spatial scales (centimeters to meters), which creates a mosaic of microhabitats.  相似文献   

6.
Phosphine is a natural gaseous compound in the phosphorus biogeochemical cycle. This paper studies the spatial and temporal distributions of matrix-bound phosphine (MBP) and gaseous phosphine in the offshore area of the Southwest Yellow Sea, East Asia. The results show that MBP concentrations in marine surface sediments range from 0.69 ± 0.06 ng/kg (dry) to 179 ± 29 ng/kg (dry). Higher seasonal MBP concentrations in sediments are found in fall than in spring or winter in most sites. High MBP contents are observed in two fish-breeding areas. MBP concentrations decrease with distance to the coast, except in the southeast of the sampling area. MBP levels in marine sediments are found to be higher than those at several other places: freshwater sediments and soil, except eutrophic lakes. Gaseous phosphine contents in fall range from 0.14 ± 0.00 ng/m3 to 9.83 ± 0.97 ng/m3. No correlation is observed between MBP and gaseous phosphine.  相似文献   

7.
Temperature and depth logging tags were implanted into adult eels released on Atlantic west coasts of France and Ireland to study their oceanic migration behavior. For three of the tags, 25 to 256 days after release there was a dramatic rise in temperature from 10 °C to 36 °C and the dive profile changed from depths of 300–1000 m to repeated ascents to the surface. This indicated that the eels carrying the tags had been eaten by a mammalian predator. Two of the tags had sufficient sampling rate to resolve the dives in detail. They recorded a total of 91 dives to maximum depths of 250–860 m lasting 11–12 min and with surface intervals of 5–7 min. More than two thirds of the dives included a rapid descent from approximately 500 m to 600–700 m. From this we infer that the predator was most likely a deep-diving toothed whale. The dives logged while the tags were inside the predator revealed that the temperature usually decreased during dives, and increased again during surface periods. The temperature drops during dives were probably caused by the ingestion of prey or water. These observations provide insights into the behavior of toothed whales foraging in the mesopelagic zone.  相似文献   

8.
Vertical changes in abundance, biomass and community structure of copepods down to 3000 m depth were studied at a single station of the Aleutian Basin of the Bering Sea (53°28′N, 177°00′W, depth 3779 m) on the 14th June 2006. Both abundance and biomass of copepods were greatest near the surface layer and decreased with increase in depth. Abundance and biomass of copepods integrated over 0–3000 m were 1,390,000 inds. m?2 and 5056 mg C m?2, respectively. Copepod carcasses occurred throughout the layer, and the carcass:living specimen ratio was the greatest in the oxygen minimum layer (750–100 m, the ratio was 2.3). A total of 72 calanoid copepod species belonging to 34 genera and 15 families occurred in the 0–3000 m water column (Cyclopoida, Harpacticoida and Poecilostomatoida were not identified to species level). Cluster analysis separated calanoid copepod communities into 5 groups (A–E). Each group was separated by depth, and the depth range of each group was at 0–75 m (A), 75–500 m (B), 500–750 m (C), 750–1500 m (D) and 1500–3000 m (E). Copepods were divided into four types based on the feeding pattern: suspension feeders, suspension feeders in diapause, detritivores and carnivores. In terms of abundance the most dominant group was suspension feeders (mainly Cyclopoida) in the epipelagic zone, and detritivores (mainly Poecilostomatoida) were dominant in the meso- and bathypelagic zones. In terms of biomass, suspension feeders in diapause (calanoid copepods Neocalanus spp. and Eucalanus bungii) were the major component (ca. 10–45%), especially in the 250–3000 m depth. These results are compared with the previous studies in the same region and that down to greater depths in the worldwide oceans.  相似文献   

9.
Although the organization patterns of fauna in the deep sea have been broadly documented, most studies have focused on the megafauna. Bivalves represent about 10% of the deep-sea macrobenthic fauna, being the third taxon in abundance after polychaetes and peracarid crustaceans. This study, based on a large data set, examined the bathymetric distribution, patterns of zonation and diversity–depth trends of bivalves from the Porcupine Seabight and adjacent Abyssal Plain (NE Atlantic). A total of 131,334 individuals belonging to 76 species were collected between 500 and 4866 m. Most of the species showed broad depth ranges with some ranges extending over more than 3000 m. Furthermore, many species overlapped in their depth distributions. Patterns of zonation were not very strong and faunal change was gradual. Nevertheless, four bathymetric discontinuities, more or less clearly delimited, occurred at about 750, 1900, 2900 and 4100 m. These boundaries indicated five faunistic zones: (1) a zone above ∼750 m marking the change from shelf species to bathyal species; (2) a zone from ∼750 to 1900 m that corresponds to the upper and mid-bathyal zones taken together; (3) a lower bathyal zone from ∼1900 to 2900 m; (4) a transition zone from ∼2900 to 4100 m where the bathyal fauna meets and overlaps with the abyssal fauna and (5) a truly abyssal zone from approximately 4100–4900 m (the lower depth limit of this study), characterized by the presence of abyssal species with restricted depth ranges and a few specimens of some bathyal species with very broad distributions. The ∼4100 m boundary marked the lower limit of distribution of many bathyal species. There was a pattern of increasing diversity downslope from ∼500 to 1600 m, followed by a decrease to minimum values at about 2700 m. This drop in diversity was followed by an increase up to maximum values at ∼4100 m and then again, a fall to ∼4900 m (the lower depth limit in this study).  相似文献   

10.
The spatial and temporal changes of near-bottom macrofauna (suprabenthos and macroplankton) and the trophic relationships of megabenthic decapod crustaceans were analyzed off the Catalonian coasts (western Mediterranean) around Berenguera submarine canyon in four periods (April and December 1991, March and July 1992) and four zones (within Berenguera Canyon at ca. 450 m, and on adjacent slope at ca. 400, 600 m and 1200 m). In March 1992, we found the highest macrofauna abundance and the smallest sizes in the canyon, suggesting a positive effect of river discharges on suprabenthos recruitment. By contrast, macroplankton (decapods, fishes and euphausiids) did not show higher recruitment into canyons. After analyzing the diet of 23 decapod crustaceans, we found a significant segregation between guilds feeding on zooplankton and on benthos. Zooplankton (euphausiids and Pasiphaeidae) and infauna (polychaetes, Calocaris macandreae and ophiuoroids) were consistently the main prey exploited by decapod crustaceans around Berenguera Canyon. We also found some macrophyte (Posidonia oceanica) consumption, which was higher in periods of water column homogeneity (winter–spring and late autumn). Positive correlations between decapods' gut fullness (F) and decapod abundance indicate feeding aggregations, while positive correlations were also found between F and Llobregat River (situated ca. 18 km from Berenguera head) flow 1 to 2 months before sampling. Increases in F were delayed only 1 month when zooplankton feeders were analyzed alone, while benthos feeders did not show significant relationships with any environmental variables. That indicates that the response of megabenthic decapods feeding on benthos to environmental shifts is slower than that of zooplankton feeders. The importance of river flows in enhancing food supply of macro- and megabenthos dwelling close to submarine canyons was apparent, with a delay in the fauna response of 0–2 months after river flow peaks.  相似文献   

11.
12.
The vertical sinking flux of particulate Al, Fe, Pb, and Ba from the upper 250 m of the Labrador Sea has been estimated from measurements of 234Th/238U disequilibrium and the respective metal/234Th ratios in >53 μm size particles. 234Th-derived particulate metal fluxes include in situ scavenged metals, labile lithogenic metals, and metals derived from external input (e.g., atmospheric supply). In contrast to the POC/234Th ratio, particle size-fractionated (0.4–10 μm, 10–53 μm, and >53 μm) Al/234Th, Fe/234Th and Pb/234Th, and Ba/234Th ratios generally increase with depth and exhibit no systematic change with particle diameter. Sinking fluxes of particulate Al (2.47–22.3 μmol m−2 d−1), Fe (2.69–16.3 μmol m−2 d−1), Pb (2.85–70 nmol m−2 d−1), and Ba (0.13–2.1 μmol m−2 d−1) at 50 m (base of the euphotic zone) and 100 m (base of the mixed layer) are largely within the range of previous sediment trap results from other ocean basins. Estimates of the upper ocean residence time of Al (0.07–0.28 yr) and Pb (0.8–2.9 yr) are short compared to previously reported values. The settling rate of >53 μm particles calculated from the 234Th data ranges from 14 to 38 m d−1.  相似文献   

13.
The ∼8.15 ka Storegga submarine slide was a large (∼3000 km3), tsunamigenic slide off the coast of Norway. The resulting tsunami had run-up heights of around 10–20 m on the Norwegian coast, over 12 m in Shetland, 3–6 m on the Scottish mainland coast and reached as far as Greenland. Accurate numerical simulations of Storegga require high spatial resolution near the coasts, particularly near tsunami run-up observations, and also in the slide region. However, as the computational domain must span the whole of the Norwegian-Greenland sea, employing uniformly high spatial resolution is computationally prohibitive. To overcome this problem, we present a multiscale numerical model of the Storegga slide-generated tsunami where spatial resolution varies from 500 m to 50 km across the entire Norwegian-Greenland sea domain to optimally resolve the slide region, important coastlines and bathymetric changes. We compare results from our multiscale model to previous results using constant-resolution models and show that accounting for changes in bathymetry since 8.15 ka, neglected in previous numerical studies of the Storegga slide-tsunami, improves the agreement between the model and inferred run-up heights in specific locations, especially in the Shetlands, where maximum run-up height increased from 8 m (modern bathymetry) to 13 m (palaeobathymetry). By tracking the Storegga tsunami as far south as the southern North sea, we also found that wave heights were high enough to inundate Doggerland, an island in the southern North Sea prior to sea level rise over the last 8 ka.  相似文献   

14.
Sediment traps were deployed for almost 1 yr at two sites near 178°40′E in 1996–1997 on Chatham Rise (New Zealand). These sites were either side of the Subtropical Front (STF), which is a biologically productive zone, characterised by moderate atmospheric CO2 uptake. At each site, PARFLUX sediment traps (Mk 7G–21) were deployed at 300 and 1000 m in 1500 m water depth. At 42°42′S, north of the STF, approximately 80% of the integrated total mass, POC and biogenic silica flux at 300 m occurred in a 7-day pulse in austral mid-spring (1064, 141 and 6 mg m−2 d−1, respectively, in early October). This pulse was recorded a week later in the 1000 m trap, indicating a particle sinking rate of 100 m d−1. In contrast, at 44°37′S, south of the STF, the main flux of total mass and biogenic silica occurred 3 weeks later in late spring (289 and 3 mg m−2 d−1, respectively, in early November). Organic carbon, nitrogen and phosphorus fluxes were persistently high over spring at the southern site, although total POC flux integrated over 3 months was only 60 mg m−2 d−1. Thus, up to 2–3 times more material was exported north of the STF, compared with fluxes measured <200 km away to the south. As an integrated proportion of the annual total mass flux, however, more organic carbon was exported south of the STF (17% cf. 5–14%). Furthermore, organic material exported in spring from southern waters was labile and protein-rich (C : N — 8–16, C : P — 200–450, N : P — 13–36), compared to the more refractory, diatom-dominated material sinking out north of the STF in spring (C : N 9–22, C : P 50–230, N : P 5–19). These observations are consistent with anomalously high benthic biomass and diversity observed on south Chatham Rise. Resuspension and differential particle settling are probable causes for depth increases in particulate flux. Estimated particle source areas may be up to 120 km away due to high levels of mesoscale activity and mean flow in the STF region.  相似文献   

15.
The objective of this study is to elucidate the burrow structure and to clarify the role of burrows in material cycle in the tidal flat. In our work, we focused on the dominant species in muddy tidal flat, crab Macrophthalmus japonicus.Burrow structure of Macrophthalmus japonicus was investigated on a Katsuura river tidal flat in Tokushima prefecture, Japan, using in situ resin casting. Sampling was conducted in August 2006, and a total of 48 burrow casts were obtained. Burrows consisted mainly of J-shaped structures (98%) while the rest belonged to U-shaped structures (2%). The maximum measured burrow volume was 120 cm3 and wall surface area was 224 cm2, while maximum burrow length and depth were 23.2 cm and 16.5 cm, respectively. Burrow volume and surface area were strongly correlated with carapace width of M. japonicus. Investigation of the individual number of M. japonicus in 13 quadrats (50 × 50 × 20 cm) was conducted using 2 mm sieve. The number of M. japonicus was 15–31 ind./m2. Using cohort analysis we estimated that surface area of burrows was 0.07–0.15 m2/m2.CO2 emission rate was measured at the surface sediment during the period from June to December 2008. Results varied from 13.8 ± 2.2 to 49.4 ± 3.2 mg CO2/m2/h, and organic carbon decomposition was 3.8 ± 0.6–13.5 ± 0.9 mg C/m2/h. This leads the increase of organic carbon decomposition by 1.1 times, because of the expansion of the tidal flat surface area by burrowing activity. Organic carbon decomposition in burrow walls therefore contributed to organic matter decomposition in the tidal flat. These results indicated that in situ activities of Macrophthalmus japonicus significantly influence the material cycle and it is important to consider the existence of burrow in order to understand the fluxes of materials and to evaluate the purification function of the tidal flat.  相似文献   

16.
Sedimentation of particulate carbon from the upper 200–300 m in the central Greenland Sea from August 1993 to June 1995 was less than 2 g C m−2 yr−1. Daily rates of sedimentation of particulate organic carbon reached highest values of about 18 mg m−2 d−1 in fall 1994. For total particulate material, maximum rates of sedimentation of about 250 mg m−2 d−1 were recorded in spring and fall 1994. For chlorophyll equivalent, highest rates of sedimentation of about 140 μg m−2 d−1 were recorded in spring 1994. As reported in related investigations, the transient accumulation of DOC in surface waters during summer, as well as respiration and mortality of deep overwintering zooplankton stocks, appeared to dominate the fate of photosynthetically fixed organic carbon. The above processes may account for roughly 43 g C m−2 in the upper 200 m of the central Greenland Sea. For comparison, the seasonal deficit in dissolved inorganic carbon was reported to be about 23 g C m−2 in the upper 20 m of surface water, and estimates for new annual production were reported to be about 57 g C m−2. In our investigation, the biological carbon pump was not unusually effective in transporting carbon out of the productive surface layer.  相似文献   

17.
Iron could play a key role in controlling phytoplankton biomass and productivity in high-nutrient, low-chlorophyll regions. As a part of the iron fertilization experiment carried out in the western subarctic Pacific from July to August 2004 (Subarctic Pacific iron Experiment for Ecosystem Dynamics Study II—SEEDS II), we analysed the concentrations of trace gases in the seawater for 12 d following iron fertilization. The mean concentrations of chlorophyll a in the mixed layer (5–30 m depth) increased from 0.94 to 2.81 μg L–1 for 8 d in the iron patch. The mean concentrations of methyl bromide (CH3Br; 5–30 m depth) increased from 6.4 to 13.4 pmol L–1 for 11 d; the in-patch concentration increased relative to the out-patch concentration. A linear correlation was observed between the concentrations of 19′-hexanoyloxyfucoxanthin, which is a biomarker of several prymnesiophytes, and CH3Br in the seawater. After fertilization, the air–sea flux of CH3Br inside the patch changed from influx to efflux from the ocean. There was no clear evidence for the increase in saturation anomaly of methyl chloride (CH3Cl) due to iron fertilization. Furthermore, CH3Cl fluxes did not show a tendency to increase after fertilization of the patch. In contrast to CH3Br, no change was observed in the concentrations of bromoform (in-patch day 11 and out-patch day 11: 1.7 and 1.7 pmol L–1), dibromomethane (2.1 and 2.2 pmol L–1), and dibromochloromethane (1.0 and 1.2 pmol L–1, respectively). The concentration of isoprene, which is known to have a relationship with chlorophyll a, did not change in this study. The responses of trace gases during SEEDS II differed from the previous findings (in situ iron enrichment experiment—EisenEx, Southern Ocean iron experiment—SOFeX, and Subarctic Ecosystem Response to Iron Enrichment Study—SERIES). Thus, in order to estimate the concomitant effect of iron fertilization on the climate, it is important to assess the induction of biological activity and the distributions/air–sea fluxes of trace gases by iron addition.  相似文献   

18.
Mytilopsis leucophaeata, an invasive bivalve species, causes fouling problems by settling on submerged constructions and in cooling water circuits in brackish water. To predict spat fall we studied the larval occurrence and settlement of this species in the brackish Noordzeekanaal canal in the Netherlands for several years (1989–1992), while measuring water temperature, salinity and chlorophyll a levels. Larvae were collected monthly by means of a plankton net drawn across the whole width of the canal. Settled spat were collected from PVC panels exposed for one month. Larvae first appeared in May or June, and reached maximum numbers in June or July, before disappearing in October, November or even December. The larval period started at a water temperature of 14 °C, reached maximum numbers at 19–23 °C and ended when it fell below 9 °C. No larvae were observed anymore until the temperature rose to 14 °C in the spring of the next year. Spat fall (June–November) was related to the water temperature in April. If the water temperature in April was lower than 12.5 °C, spat fall started in July, while if temperature was already higher in April, it started a month earlier. The spat fall period started at 15 °C, with maximum numbers at 20–24 °C, and ended when the water temperature dropped below 5 °C. Redundancy analysis (RDA) demonstrated a strong relationship between larval and spat densities and water temperature.  相似文献   

19.
This overview compares and contrasts trends in the magnitude of the downward Particulate Organic Carbon (POC) flux with observations on the vertical profiles of biogeochemical parameters in the NE subarctic Pacific. Samples were collected at Ocean Station Papa (OSP, 50°N, 145°W), between 18–22 May 1996, on pelagic stocks/rate processes, biogenic particle fluxes (drifting sediment traps, 100–1000 m), and vertical profiles of biogeochemical parameters from MULVFS (Multiple Unit Large Volume Filtration System) pumps (0–1000 m). Evidence from thorium disequilibria, along with observations on the relative partitioning of particles between the 1–53 μm and >53 μm classes in the 50 m mixed layer, indicate that there was little particle aggregation within the mixed layer, in contrast to the 50–100 m depth stratum where particle aggregation predominated. Vertical profiles of thorium/uranium also provided evidence of particle decomposition occuring at depths ca. 150 m; heterotrophic bacteria and mesozooplankton were likely responsible for most of this POC utilisation. A water column carbon balance indicated that the POC lost from sinking particles was the predominant source of carbon for bacteria, but was insufficient to meet their demands over the upper 1000 m. While, the vertical gradients of most parameters were greatest just below the mixed layer, there was evidence of sub-surface increases in microbial viability/growth rates at depths of 200–600 m. The C:N ratios of particles intercepted by free-drifting and deep-moored traps increased only slightly with depth, suggesting rapid sedimentation even though this region is dominated by small cells/grazers, and the upper water column is characterised by long particle residence times (>15 d), a fast turnover of POC (2 d) and a low but constant downward POC flux.  相似文献   

20.
Iron has been shown to limit phytoplankton growth in high-nutrient low-chlorophyll (HNLC) regions such as the NE subarctic Pacific. We report size-fractionated Fe-uptake rates by the entire plankton community in short (6–8 h) light and dark incubations along an E–W transect from P04 (a coastal ocean station) to OSP (an open-ocean HNLC station) during August–September 1997. Size-fractionated primary productivity and chl a were measured to monitor algal Fe : C uptake ratios and Fe-uptake relative to phytoplankton biomass. The >5.0 μm size-class, which consisted mostly of large diatoms, had the highest Fe-uptake rate at nearshore stations (P04 and P8), but Fe-uptake rates for this size class decreased despite increases in biomass and primary productivity when transecting westwards to HNLC waters. Fe-uptake rates of the small size class (0.2–1.0 μm, including heterotrophic bacteria and autotrophs) were inversely related to the >5.0 μm size-class uptake rates, in that stations with high dissolved Fe (DFe) concentrations had relatively low uptake rates compared to those in the low-Fe offshore region. The 1.0–5.0 μm size-class Fe-uptake rates were low, relatively invariant along the transect, and differed little between light and dark incubations. Dark Fe-uptake rates averaged 10–20% less than those in the light for the >5.0 μm size class. Dark uptake rates however, were higher than light uptake rates for the 0.2–1.0 μm size class at all stations. Fe : C uptake ratios were high for all size classes at P04, but decreased as DFe concentrations decreased offshore. The prokaryote-dominated 0.2–1.0 μm size class had the highest Fe : C uptake ratios at all stations. These data suggest that prokaryotic organisms make an important contribution to biological Fe uptake in this region. Our experiments support the results of previous culture work, suggesting higher Fe : C ratios in coastal phytoplankton compared to open-ocean species, and demonstrate that light can have a large effect on Fe partitioning between size classes in subarctic Pacific HNLC waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号