首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Seven meso- and bathy-pelagic fish species from the Mid-Atlantic Ridge (MAR) were firstly studied for fish parasites and feeding ecology. With a total of seven parasite species, the 247 meso- and bathy-pelagic deep-sea fish specimens belonging to the families Melamphaidae (3 spp.), Myctophidae (3 spp.) and Stomiidae (1 sp.) revealed low parasite diversity. The genetically identified nematodes Anisakis simplex (s.s.) and Anisakis pegreffii from the body cavity, liver and muscles of Myctophum punctatum were the most abundant parasites, reaching a prevalence of 91.4% and mean intensity of 3.1 (1–14). Anisakis sp. (unidentified) infected Chauliodus sloani and Poromitra crassiceps. Bothriocephalidean and tetraphyllidean cestode larvae infected Benthosema glaciale, the latter also occurring in C. sloani and Scopelogadus beanii, at low prevalences. Adult parasites at low infection rates included the digenean Lethadena sp. (2.9%), and the two copepod species Sarcotretes scopeli (5.7%) and Tautochondria dolichoura (5.3–11.4%). The myctophid Lampanyctus macdonaldi and the melamphaid Scopelogadus mizolepis mizolepis were free of parasites. Analyses of the stomach contents revealed crustaceans, especially copepods and euphausiids for the myctophids and also amphipods for the melamphaids as predominant prey items. While all stomachs showing distinct content comprising often unidentified ‘tissue’ (possibly gelatinous zooplankton), only C. sloani preyed upon fish. Though this feeding habit would enable transfer of a variety of crustacean-transmitted parasites into the fish, the parasite fauna in the meso- and bathy-pelagic fish was species poor. All observed parasites showed low host specificity, demonstrating no distinct pattern of host–parasite co-evolution. The MAR is no barrier for the parasite distribution in the North Atlantic meso- and bathy-pelagial.  相似文献   

2.
The northern Mid-Atlantic Ridge, from Iceland to the Azores (MAR), is the largest topographical feature in the Atlantic Ocean. Despite its size, few studies have described dietary patterns of pelagic fishes along the MAR. MAR-ECO, a Census of Marine Life field project, aimed to describe the food web structure of abundant fish species along the ridge through a series of research expeditions to the MAR. Among the midwater fishes sampled during the MAR-ECO project, Bathylagus euryops (Osmeriformes: Bathylagidae) was the biomass-dominant pelagic species and ranked third in total abundance. In this paper, we describe the dietary composition of B. euryops along the MAR. Overall, copepods represented the dominant prey group consumed by B. euryops. Multivariate analyses, including a cluster analysis and a canonical correspondence analysis, revealed that fish size significantly influenced the diet of B. euryops with ostracods representing the most important prey group at small sizes (<95 mm) and decapod shrimp and calanoid copepods becoming more important with increasing fish size. Due to the high abundance and biomass observed along the MAR combined with its role as a link for energy transfer between zooplankton and higher trophic level predators, B. euryops appears to be an ecologically important species in the oceanic food web of the North Atlantic Ocean.  相似文献   

3.
The ECOMAR project was a multidisciplinary process study conducted in the mid-North Atlantic, coincident hydrodynamically with the Sub-Polar Front (SPF; 48–54°N) and topographically with Charlie-Gibbs Fracture Zone of the Mid-Atlantic Ridge, as part of the Census of Marine Life field project MAR-ECO. Midwater trawling was conducted during the 2007 and 2009 ECOMAR expeditions at 14 stations north and south of the SPF, day and night, in four discrete depth intervals from 0 to 1000 m. A total of 56 species of midwater fishes representing 44 genera and 18 families were collected, several of which are new records for the region and/or were not previously sampled during MAR-ECO sampling. An annotated species list with depth-of-capture data is provided. Three species of the genus Cyclothone (Cyclothone braueri, Cyclothone microdon and Cyclothone pallida) and the myctophid Benthosema glaciale combined to contribute ~88% of all specimens collected. This finding differs from results of previous net-based sampling in the same area, likely due to sampling scheme differences (diel sampling, upper 800 m concentration) and gear selectivity (mesh size, trawl speed). Quantitative data from ECOMAR midwater sampling and the previous 2004 G.O. Sars MAR-ECO expedition are compared. Despite differences in gear between the major MAR-ECO expeditions, abundance estimates of some dominant species were remarkably similar. Data showed that the SPF is an asymmetrical, taxon-specific biogeographic boundary for deep-pelagic fishes in the North Atlantic; the SPF is semi-permeable to some species in one direction, while a strong boundary for species in another direction. Deeper-living fish species did not appear as affected by the SPF as a boundary.  相似文献   

4.
The least known component of the “biological pump” is the active transport of carbon and nutrients by diel vertical migration of zooplankton. We measured CO2 respiration and dissolved organic carbon (DOC) excretion by individual species of common vertically migrating zooplankton at the US JGOFS Bermuda Atlantic Time-series Study (BATS) station. The inclusion of DOC excretion in this study builds on published research on active transport by respiration of inorganic carbon and allows a direct assessment of the role of zooplankton in the production of dissolved organic matter used in midwater microbial processes. On average, excretion of DOC makes up 24% (range=5–42%) of the total C metabolized (excreted+respired) and could represent a significant augmentation to the vertical flux that has already been documented for respiratory CO2 flux by migrant zooplankton. Migratory fluxes were compared to other transport processes at BATS. Estimates of combined active transport of CO2 and DOC by migrators at BATS averaged 7.8% and reached 38.6% of mean sinking POC flux at 150 m, and reached 71.4% of mean sinking POC flux at 300 m. DOC export by migrator excretion averaged 1.9% and reached 13.3% of annual DOC export by physical mixing at this site. During most of the year when deep mixing does not occur, diel migration by zooplankton could provide a supply of DOC to the deeper layers that is available for use by the microbial community. A carbon budget comparing migrant zooplankton transport to the balance of fluxes in the 300–600 m depth strata at BATS shows on average that the total migrant flux supplies 37% of the organic carbon remineralized in this layer, and that migrant DOC flux is more than 3 times the DOC flux gradient by diapycnal mixing. New estimates of active transport of both organic and inorganic carbon by migrants may help resolve observed imbalances in the C budget at BATS, but the magnitude is highly dependent on the biomass of the migrating community.  相似文献   

5.
We compared the genetic diversity of three dominant myctophid fishes in the North Pacific Ocean that have different diel vertical migration patterns on the basis of the nucleotide sequences of the mitochondrial gene for cytochrome b. No genetic structure was detected for each of these three species. The genetic diversity progressively increased for Diaphus theta, a diel migrant species showing clear diel vertical migration; Stenobrachius leucopsarus, a semi-diel migrant, in which only part of the population migrates vertically; S. nannochir, a non-diel migrant. All three species were suggested to have experienced a recent, sudden population expansion. Interspecific differences in genetic diversity might be attributable to differences in the degree of population size reduction during the glacial periods; this degree in turn corresponds to the energy demand of the fishes.  相似文献   

6.
The sensitivity hypothesis seeks to explain the correlation between the wavelength of visual pigment absorption maxima (λmax) and habitat type in fish and other marine animals in terms of the maximisation of photoreceptor photon catch. In recent years its legitimacy has been called into question as studies have either not tested data against the output of a predictive model or are confounded by the wide phylogeny of species used. We have addressed these issues by focussing on the distribution of λmax values in one family of marine teleosts, the lanternfish (Myctophidae). Visual pigment extract spectrophotometry has shown that 54 myctophid species have a single pigment in their retinae with a λmax falling within the range 480–492 nm. A further 4 species contain two visual pigments in their retinae. The spectral distribution of these visual pigments seems relatively confined when compared to other mesopelagic fishes. Mathematical modelling based on the assumptions of the sensitivity hypothesis shows that, contrary to the belief that deep-sea fishes’ visual pigments are shortwave shifted to maximise their sensitivity to downwelling sunlight, the visual pigments of myctophids instead seem better placed for the visualisation of bioluminescence. The predicted maximum visualisation distance of a blue/green bioluminescent point source by a myctophid was up to 30 m under ideal conditions. Two species (Myctophum nitidulum and Bolinichthys longipes) have previously been shown to have longwave-shifted spectral sensitivities and we show that they could theoretically detect stomiid far-red bioluminescence from as far as ca. 7 m.  相似文献   

7.
The diet of hoki was determined from examination of stomach contents of 1992 fish of 26–112 cm total length (TL) sampled at depths of 209–904m on Chatham Rise, New Zealand, from summer research trawl surveys and seasonal commercial fishing trawls, during 2004–2008. Prey was predominantly euphausiids, mesopelagic fishes and natant decapods. Multivariate analyses using distance-based linear models, non-parametric multi-dimensional scaling and similarity percentages indicated that the best predictors of diet variability were the position of the fish in relation to the subtropical front (STF), fish size and longitude. Pasiphaeids were more important to the north of the STF, and sternoptychid fishes and euphausiids more important in the STF convergence area. Euphausiids and sternoptychid fishes were important for smaller hoki (26–55 cm TL), myctophid fishes and natant decapods for larger hoki, and macrourids for the largest hoki (>84 cm TL). The longitudinal effect was characterised by pasiphaeids, euphausiids and sternoptychids to the west, and myctophids in the centre of Chatham Rise. Feeding activity was analysed using generalised additive models, and was found to vary with time of day, sample source (research or commercial), longitude, hoki size and depth. The variability in diet suggested hoki forage opportunistically within their preferred habitat and biological limits.  相似文献   

8.
Plankton samples collected in November 2002, February, May and August 2003 were used to examine seasonal variation in tidal exchange of zooplankton biomass, abundance and species composition between Lough Hyne Marine Nature Reserve and the adjacent Atlantic coast. Micro- to mesozooplankton were collected by pump over 24-h sampling periods during spring and neap tides from the narrow channel connecting the semi-enclosed water body to the Atlantic. Sample biomass (dry weight) and total zooplankton abundance peaked in the summer and were lowest in winter, showing a positive relationship with temperature. Zooplankton biomass, total abundance and numbers of holo- and meroplankton revealed import during some diel cycles and export in others. However, the tidal import of these planktonic components was generally dominant, especially during May. The greatest import of numbers of holoplankters and meroplanktonic larvae occurred during May and August, respectively. There was no significant variation in sample biomass between periods of light and dark, but some variation in zooplankton abundance could be explained by this diel periodicity. Significant differences in sample assemblage composition between flood and ebb tide samples were always observed, except during winter neap tides. There was a net import of the copepods Temora longicornis and Oithona helgolandica and the larval stages of Mytilus edulis during spring and summer. Proceraea cornuta and Capitellid trochophores were imported during winter, and a hydrozoan of the genus Obelia during the spring spring tides. Seasonal export from the lough was shown by Pseudopolydora pulchra larvae (autumn and spring), Serpulid trochophores (autumn) and veligers of the bivalve Anomia ephippium (summer). It is suggested that the direction of tidal exchange of meroplanktonic taxa is related to the distribution of the adult populations. Copepod naupliar stages dominated the assemblages except during May spring tides when the copepod Pseudocalanus elongatus made up over 22% of the abundance. The general import of micro- to mesozooplankton may, in part, explain the higher densities of this size-class of zooplankton within the semi-enclosed system of Lough Hyne.  相似文献   

9.
Zooplankton in the coastal upwelling region off northern Chile may play a significant biogeochemical role by promoting carbon flux into the subsurface OMZ (oxygen minimum zone). This work identifies the dominant zooplankton species inhabiting the area influenced by the OMZ in March 2000 off Iquique (20°S, northern Chile). Abundance and vertical distribution studies revealed 17 copepod and 9 euphausiid species distributed between the surface and 600 m at four stations sampled both by day and by night. Some abundant species remained in the well-oxygenated upper layer (30 m), with no evidence of diel vertical migration, apparently restricted by a shallow (40–60 m) oxycline. Other species, however, were found closely associated with the OMZ. The large-sized copepod Eucalanus inermis was found below the oxycline and performed diel vertical migrations into the OMZ, whereas the very abundant Euphausia mucronata performed extensive diel vertical migrations between the surface waters and the core of the OMZ (200 m), even crossing it. A complete assessment of copepods and euphausiids revealed that the whole sampled water column (0–600 m) is occupied by distinct species having well-defined habitats, some of them within the OMZ. Ontogenetic migrations were evident in Eucalanidae and E. mucronata. Estimates of species biomass showed a substantial (>75% of total zooplankton biomass) daily exchange of C between the photic layer and the OMZ. Both E. inermis and E. mucronata can actively exchange about 37.8 g C m−2 d−1 between the upper well-oxygenated (0–60 m) layer and the deeper (60–600 m) OMZ layer. This migrant biomass may contribute about 7.2 g C m−2 d−1 to the OMZ system through respiration, mortality, and production of fecal pellets within the OMZ. This movement of zooplankton in and out of the OMZ, mainly as a result of the migratory behavior of E. mucronata, suggests a very efficient mechanism for introducing large amounts of freshly produced carbon into the OMZ system and should, therefore, be considered when establishing C budgets for coastal upwelling systems.  相似文献   

10.
11.
12.
Export processes play a major role in regulating global marine primary production by reducing the efficiency of nutrient cycling and turnover in surface waters. Most studies of euphotic zone export focus on passive fluxes, that is, sinking particles. However, active transport, the vertical transfer of material by migrating zooplankton, can also be an important component of carbon (C) and nitrogen (N) removal from the surface ocean. Here we demonstrate that active transport is an especially important mechanism for phosphorus (P) removal from the euphotic zone at Station ALOHA (Hawaii Ocean Time-series program; 22°45′N, 158°W), a P-stressed site in the North Pacific Subtropical Gyre. Migrant excretions in this region are P-rich (C51:N12:P1) relative to sinking particles (C250:N31:P1), and migrant-mediated P fluxes are almost equal in magnitude (82%) to P fluxes from sediment traps. Migrant zooplankton biomass and therefore the importance of this P removal pathway relative to sinking fluxes has increased significantly over the past 12 years, suggesting that active transport may be a major driving force for enhanced P-limitation of biological production in the NPSG. We further assess the C:N:P composition of zooplankton size fractions at Station ALOHA (C88:N18:P1, on average) and discuss migrant-mediated P export in light of the balance between zooplankton and suspended particle stoichiometries. We conclude that, because active transport is such a large component of the total P flux and significantly impacts ecosystem stoichiometry, export processes involving migrant zooplankton must be included in large-scale efforts to understand biogeochemical cycles.  相似文献   

13.
Successive measurements of the size distribution and abundance of marine snow in the upper 100 m of the Santa Barbara Channel, California, with an in situ still camera system following 11 tagged water masses revealed a consistent pattern of nighttime decreases in the abundance of large particles. A net nocturnal reduction in particulate flux from the upper 100 m as calculated from camera profiles occurred in 75% of the day–night comparisons, and nighttime aggregate carbon losses resulted in a 38% average reduction in camera-derived aggregate flux. Intensive investigation of three stations for 24–48 h each indicated that nighttime decreases in aggregate concentrations and derived aggregate flux could be registered throughout the observed water column. Nocturnal decreases in marine snow concentration are unlikely to result from diel variations in the production of marine snow either as feeding webs of zooplankton or through variations in aggregation rates of smaller particles. Moreover, measured diel variations in the intensity of surface mixing and convective overturn during one of the 24 h deployments were not intense enough to produce aggregate fragmentation and reduced aggregate flux. Nighttime increases in large crustacean zooplankton (i.e., euphausiids and the large copepod Calanus pacificus) could explain some or all of the reduction in aggregate abundance at most stations. Fragmentation and consumption of marine snow by migrating macrozooplankton could produce our observed synchronous diel cycles in marine snow concentration. This is the first empirical evidence of a diel pattern in the concentration and calculated particulate flux of large sinking particles in near-surface waters. The data presented here are consistent with the only other existing diel study, which also reported decreases in marine snow abundance at night at 270 m depths in the oceanic north Atlantic. Diel variations in the sizes and concentrations of marine snow may impact water column processes dependent upon particle availability and size, such as grazing and remineralization, and may generate a diel cycle of food availability to the benthos.  相似文献   

14.
On a transect across the Lomonosov Ridge stratified zooplankton tows were made to the bottom at seven stations. A species inventory was established and compared with earlier observations in the Arctic Ocean. Differences between the Amundsen and Makarov basins are relatively small and correspond well with the general circulation patterns for Atlantic, Pacific, and neritic waters, suggesting slow mixing rates for the different basins. There were no remarkable differences in the species composition or their vertical distribution between the two sides of the Lomonosov Ridge. This indicates effective faunistic exchange across the ridge, although several bathy-pelagic species were almost or completely absent on top of the Ridge. Biomass showed a strong gradient along the transect, with a pronounced peak (9.5 g dry weight m−2) in the core of Atlantic water over the ridge, and minima over the deep basins. These differences were related to the effect of bottom topography for deep-living species, and the dynamics of the Atlantic layer for the meso- and epipelagic species. The maximum was formed mainly by the copepods Calanus hyperboreus and Metridia longa together with chaetognaths and ostracods. The presence of young developmental stages in some of the abundant species (C. hyperboreus, M. longa) suggests successful reproduction at all stations but C. finmarchicus was almost exclusively represented as old stages and adults. Comparison with earlier data on abundance and biomass from the Canada Basin (Russian Drift station “North Pole-22”) shows a pronounced difference with respect to both absolute quantities and relative composition. The copepod C. finmarchicus is completely absent in the central Canada Basin, and the portion of non-copepod zooplankton is dramatically decreased. This points to a reduced advection of Atlantic water or more severe food conditions in this basin.  相似文献   

15.
In this study, the energy flux and energy dissipation of deep ocean internal tides are examined. Properties of the internal tide from two distinct generation regions are contrasted: the Mid-Atlantic Ridge (MAR) and the Hawaiian Ridge. Considerable differences are noted for the baroclinic energy flux, up, radiated from each site. Radiation from the MAR is relatively rich in high modes, with an energy flux spectral peak at mode 5 and modes 10 and greater accounting for 40% of the total flux. In contrast, Hawaiian Ridge radiation is dominantly composed of modes 1 and 2, with modes 10 and greater accounting for less than 5% of the total flux. Depth integrated energy flux levels are at the MAR site, and at the Hawaiian Ridge. Despite these differences, observed turbulent dissipation rates at these sites are similar in magnitude and depth dependence. Decay scales, estimated as , range from O(100)km to . The mean decay scale based on the MAR data is 230 km, a factor of 3 smaller than at the Hawaiian Ridge site. We demonstrate that the dissipation level scales with the energy flux available in the high modes, which is comparable at both sites, rather than the total energy flux.  相似文献   

16.
Harrington Sound, Bermuda, is a shallow subtropical lagoon with carbonate sediments. The most important fishes in this lagoon, in terms of biomass, are grunts (Haemulon aurolineatum, H. flavolineatum, H. sciurus) and a sea-bream (Diplodus bermudensis). These undertake diel feeding migrations from the shallow rocky zone towards the deeper sand and mud zones. When feeding on zoobenthos they cannot avoid swallowing carbonate sediment particles. These sediment particles pass through the alimentary canal of the fishes and are deposited again, after digestion of the food, as faeces in the shallow zones. Thus, the fishes transport the sediment in an unusual direction, from the deep to the shallow zones, in effect against the force of gravity. By recording the fish stock densities, digestion rates, and calcium carbonate content of fish stomach and guts, it was possible to estimate the amount of sediment transported by the fishes. In Harrington Sound, this amounts annually to 4530 kg calcium carbonate, 40% of which is deposited in the very shallow areas. The pH-values measured in fish stomachs seem to be acidic enough for the dissolution of carbonate sediment particles when transported by fishes.  相似文献   

17.
The food and feeding habits of hoki (Macruronus novaezelandiae), southern blue whiting (Micromesistius australis), javelin fish (Lepi‐dorhynchus denticulatus), ling (Genypterus blacodes), smooth rattail (Coelorinchus aspercephalus), silverside (Argentina elongata), and small‐scaled notothenid (Notothenia microlepidota) sampled from the Campbell Plateau in 1979 were examined. The importance of prey items in the diet has been assessed by an ‘index of relative importance’, which combines measurements of frequency of occurrence, number, and weight of prey. Hoki, southern blue whiting, and javelin fish are pelagic feeders. Hoki preyed largely on natant decapod crustaceans, amphipods, and myctophid and photichthyid fishes. The main prey of southern blue whiting were amphipods, natant decapods, and euphausiids. Javelin fish fed on natant decapods, amphipods, and small squid. Seasonal and regional differences in feeding, and dietary changes with length of fish were evident. Ling, smooth rattail, silverside, and small‐scaled notothenid are predominantly benthic feeders. Ling preyed on natant decapods, macrourid fishes, and small hoki. The diet of rattail comprised natant decapod crustaceans, opal fishes (Hemerocoetes spp.), and poly‐chaetes. Silverside fed almost solely on salps. Salps, amphipods, brachyuran crustaceans, and opal fishes were the main prey of small‐scaled notothenid.  相似文献   

18.
Temporal variability of acoustically estimated zooplankton biomass at the Bermuda Testbed Mooring (BTM) site in the Sargasso Sea (at 31°43′N, 64°10′W) is described for time scales from less than an hour to the seasonal cycle primarily using data obtained between August 1996 and November 2000, and from May 10 to November 13, 2003. Concurrent high frequency BTM observations of meteorological, physical, and bio-optical variables are used to interpret processes contributing to the zooplankton variability. Zooplankton biomass estimates are derived from regressions of backscatter intensity data measured with an upward looking 153-kHz acoustic Doppler current profiler (ADCP) and zooplankton net tow data collected near the BTM site as part of the Bermuda Atlantic Time-series Study (BATS). Our data show clear event-scale variations. Peaks are associated with annual spring blooms involving mixed layer shoaling and in some cases passages of mesoscale eddy features. Biomass peaks are often coincident with maxima seen in BTM chlorophyll fluorescence measurements (inferred phytoplankton biomass). Some storm events do not appear to manifest in significant perturbations of zooplankton distributions; however, Hurricane Fabian (2003) greatly impacted these distributions. Estimates of zooplankton biomass and relative vertical velocity show the vertical structure of daily migration patterns. Seasonal variations in migration patterns are also evident, with diel changes in zooplankton biomass most pronounced in spring and least pronounced in winter. In summary, our high temporal resolution time series of estimated zooplankton biomass in the open ocean provide information on scales inaccessible through conventional monthly ship-based sampling. These data have implications for upper ocean ecology and the vertical transport of carbon and nitrogen through the diel migration of zooplankton.  相似文献   

19.
Whole animal respiration rates (R) of myctophid fishes which migrate up to the surface at night were estimated using enzyme activities of the electron-transport-system (ETS). The fish, currently unsusceptible to laboratory experimentation, were caught at sea and stored frozen at –20°C for 14–17 days prior to enzyme assay. Supplemental tests on two tropical marine fishes (gobies and poma-centrids) showed no measurable loss of ETS activity during storage for up to 36 d at –20°C. The ETS/R ratio for gobies and pomacentrids was 1.61. Respiration rates of myctophid fishes estimated using this ETS/R ratio ranged from 17.7 to 453µl O2 individual–1 hr–1 for specimens weighing 26–1101 mg wet weight atin situ temperature of 24–27°C. The relationship between the respiration rate standardized to a temperature of 20°C (R:µl O2 individual–1hr–1) and wet weight (WW: mg) of myctophid fishes was expressed asR=0.790 WW0.84 (r=0.964,n=27). This relationship does not differ appreciably from the respiration rates of other marine fishes calculated from Winberg's equation.  相似文献   

20.
Seasonal variations in diversity and biomass of diatoms, tintinnids, and dinoflagellates and the contribution of microplankton and faecal material to the vertical flux of particulates were investigated at one time series station T (station 18) between 2002 and 2005 and at a grid of stations during November 2004 in the coastal and oceanic area off Concepción (36°S), Chile. The variations were analysed in relation to water column temperature, dissolved oxygen, nutrient concentration, offshore Ekman transport, and chlorophyll-a concentration. Abundance was estimated as cell numbers per litre and biomass in terms of biovolume and carbon units.A sharp decrease with depth was observed in the abundance of both phytoplankton and microzooplankton during the whole annual cycle; over 70% of their abundance was concentrated in the upper 10 m of the water column. Also, a clear seasonality in microplankton distribution was observed at station T, with maxima for diatoms, tintinnids, and dinoflagellates every summer (centred on January) from 2002 to 2005.On the grid of stations, the maximum integrated (0-50 m) micro-phytoplankton abundances (>1 × 109 cells m−2) occurred at the coastal stations, an area directly influenced by upwelling. A similar spatial distribution was observed for the integrated (0-200 m) faecal carbon (with values up to 632 mg C m−2). Tintinnids were distributed in all the first 300 miles from the coast and dinoflagellates were more abundant in oceanic waters.At station T, the average POC export production (below 50 m depth) was 16.6% (SD = 17%; range 2-67%; n = 16). The biological-mediated fluxes of carbon between the upper productive layer and the sediments of the continental shelf off Concepción depend upon key groups of phytoplankton (Thalassiosira spp., Chaetoceros spp.) and zooplankton (euphausiids) through the export of either cells or faecal material, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号