首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
53 local earthquakes recorded at 2.5 km depth in the Cajon Pass scientific borehole are analysed for shear-wave splitting. The time delays between the split shear waves can be positively identified for 32 of the events. Modelling these observations of polarizations and time delays using genetic algorithms suggests that the anisotropic structure near Cajon Pass has orthorhombic symmetry. The polarization of the shear waves and the inferred strike of the stress-aligned fluid-filled intergranular microcracks and pores suggests that the maximum horizontal compressional stress direction is approximately N13°W. This is consistent with previous results from earthquake source mechanisms and the right-lateral strike-slip motion on the nearby San Andreas Fault, but not with stresses measured within the uppermost 3 km of the borehole. This study suggests that the San Andreas Fault is driven by deeper tectonic stresses and the present understanding of a weak and frictionless San Andreas Fault may need to be modified. The active secondary faulting and folding close to the fault are probably driven by the relatively shallow stress as measured in the 3.5 km deep borehole.  相似文献   

2.
Summary. The Turkish Dilatancy Projects (TDP1 in 1979 and TDP2 in 1980) recorded small earthquakes near the North Anatolian Fault with closely-spaced networks of three-component seismometers in order to investigate the possibility of diagnosing dilatancy from its effects of shear-wave propagation. This paper examines the polarizations of shear wavetrains recorded in the shear-wave window immediately above the earthquake foci. Abrupt changes in the orientation and/or ellipticity of the shear-wave polarizations are almost always observed during the first few cycles following the initial shear-wave arrival on each seismogram. The horizontal projections of the polarizations of the first shear-wave arrivals at any given station show nearly parallel alignments with approximately the same orientations at each of the recording sites (with one exception). It is difficult to explain this uniform alignment over a wide area in terms of scattering at the irregular surface topography or by earthquake focal mechanisms. We demonstrate that the shear-wave splitting is likely to be the result of anisotropy in the region above the earthquake foci, which could produce polarizations displaying the observed alignments. The temporal change of the azimuth of alignment, observed at one locality between 1979 and 1980, may be due to the release of a local stress anomaly by a very near earthquake.  相似文献   

3.
Summary. Almost all shear-waves from local earthquakes recorded on closely-spaced three-component seismometer networks deployed near the North Anatolian Fault, Turkey, in two experiments in 1979 and 1980, display shear-wave splitting. The observations are consistent with the presence of EDA (extensive-dilatancy anisotropy), distributions of fluid-filled cracks and microcracks aligned by the regional stress field. Temporal changes in the stress-field, which may occur before an earthquake, may modify the geometry and possibly the orientation of the EDA-microcracks, and lead to corresponding changes in the behaviour of the split shear-waves. A third experiment was undertaken in 1984 to investigate EDA further and to search for possible temporal variations of the polarization of the leading split shear-wave and the time delay between split shear-waves. Observations indicate that the polarization alignments, which are parallel to the strike of the parallel vertical EDA-cracks, are unaltered between 1979 and 1984, implying that the direction of the regional stress field has not changed significantly. Temporal changes in the stress field are more likely to cause changes in the crack density and/or aspect ratio, which would result in a corresponding change in time delay between the split shear-waves. We examine observations of time delay in relation to their propagation path with respect to the crack geometry since it is then possible to separate the effects of changes in crack density and changes in aspect ratio. With this procedure, a small temporal variation of time delays is found between 1979 and 1984, consistent with a decrease in crack density, and consequently a relaxation of stress, in this time period. No evidence was found for any observable variation of time delay over a six month observation span in 1984. We suggest that analysis of repeated shear-wave VSPs offers a technique for monitoring stress changes before earthquakes.  相似文献   

4.
Summary. The polarizations of shear waves recorded by networks of digital three-component seismometers immediately above small earthquakes near the North Anatolian Fault in Turkey display shear-wave splitting on almost all shear-wave seismograms recorded within the shear-wave window. This splitting is incompatible with source radiation-patterns propagating through simple isotropic structures but is compatible with effective anisotropy of the internal structure of the rock along the ray paths. This paper interprets the phenomena in terms of widespread crack-induced anisotropy. Distributions of stress-induced cracks model many features of the observations, and synthetic polarization diagrams calculated for propagation through simulated cracked rock are similar to the observed patterns. This evidence for widespread crack-induced anisotropy lends strong support to the hypothesis of extensive-dilatancy anisotropy (EDA) suggested by laboratory experiments in subcritical crack-growth. The crucial evidence confirming some form of EDA would be observations of temporal changes in shear-wave splitting as the stress field alters the crack density and crack geometry. There is some weak evidence for such temporal changes at one site, but further analysis of suitable digital three-component seismometer networks in seismic areas is required to confirm EDA.  相似文献   

5.
Summary. The section of the North Anatolian Fault lying near the city of Izmit, at the east of the Marmara Sea, has been identified as a seismic gap and the possible site of a future major earthquake. Previously published studies of records from an earthquake swarm within the gap (TDP1 and TDP2) provided the first evidence that shear-wave splitting occurs in earthquake source regions, a conclusion since verified by many studies at other locations. A third field study (TDP3) was mounted in the Izmit region during the summer of 1984. Observations were made over an eight-month period and included geomagnetic and geoelectric measurements in addition to a series of observations utilising dense arrays of three-component seismometers. Earthquake activity in the principal study area was monitored over a period of eight months. Records showed features similar to those observed in the earlier studies. In particular: (1) almost all shear waves emerging within the shear-wave window displayed shear-wave splitting; and (2) the polarizations of the first arriving (faster) split shear-waves showed sub-parallel alignments, characteristic of propagation through a distribution of parallel vertical cracks striking perpendicular to the minimum compressional stress.
These and other observations support the conclusion of earlier studies – that the upper crust is pervaded by distributions of micro-cracks aligned by stress, known as extensive-dilatancy anisotropy. A search for time dependence in shear-wave phenomena has revealed temporal variations in the delays between the split shear-waves throughout the course of the TDP3 study, but as yet this has not been correlated with specific earthquake activity.  相似文献   

6.
Shear-wave splitting is analysed on data recorded by the High Resolution Seismic Network (HRSN) at Parkfield on the San Andreas fault, Central California, during the three-year period 1988-1990. Shear-wave polarizations either side of the fault are generally aligned in directions consistent with the regional horizontal maximum compressive stress, at some 70° to the fault strike, whereas at station MM in the immediate fault zone, shear-wave polarizations are aligned approximately parallel to the fault. Normalized time delays at this station are found to be about twice as large as those in the rock mass either side. This suggests that fluid-filled cracks and fractures within the fault zone are elastically or seismically different from those in the surrounding rocks, and that the alignment of fault-parallel shear-wave polarizations are associated with some fault-specific phenomenon.
Temporal variations in time delays between the two split shear-waves before and after a ML = 4 earthquake can be identified at two stations with sufficient data: MM within the fault zone and VC outside the immediate fault zone. Time delays between faster and slower split shear waves increase before the ML = 4 earthquake and decrease near the time of the event. The temporal variations are statistically significant at 68 per cent confidence levels. Earthquake doublets and multiplets also show similar temporal variations, consistent with those predicted by anisotropic poroelasticity theory for stress modifications to the microcrack geometry pervading the rock mass. This study is broadly consistent with the behaviour observed before three other earthquakes, suggesting that the build-up of stress before earthquakes may be monitored and interpreted by the analysis of shear-wave splitting.  相似文献   

7.
The basis for earthquake prediction   总被引:3,自引:0,他引:3  
Summary. Recent advances in understanding the behaviour of shear waves propagating in the crust make the routine prediction of earthquakes seem practicable. Accumulating evidence suggests that most of the Earth's crust is pervaded by distributions of fluid-filled cracks and microcracks that are aligned by the contemporary stress-field so that the cracked rockmass is effectively anisotropic to seismic waves. This causes shear-waves to split, and shear-wave splitting is observed whenever shear-waves propagating along suitable raypaths in the crust are recorded by three-component instruments. These distributions of cracks are known as extensive-dilatancy anisotropy or EDA. Many characteristics of the crack- and stress-geometry can be monitored by analyzing shear-waves propagating through the cracked rockmass. Observations of temporal variations of the behaviour of shear-wave splitting in seismic gaps confirm these hypotheses, and suggest that stress changes before earthquakes may be monitored by analyzing shear-waves. In particular, monitoring earthquake preparation zones with three-component shear-wave vertical-seismic-profiles could lead to techniques for the routine prediction of earthquakes.  相似文献   

8.
We show that seismic shear waves may be used to monitor the in situ stress state of deep inaccessible rocks in the crust. The most widespread manifestation of the stress-related behaviour of seismic waves is the shear-wave splitting (shear-wave birefringence) observed in almost all rocks, where the polarizations of the leading split shear waves are usually subparallel to the direction of the local maximum horizontal stress. It has been recognized that such shear-wave splitting is typically the result of propagation through distributions of stress-aligned fluid-filled microcracks and pores, known as extensive-dilatancy anisotropy or EDA. This paper provides a quantitative basis for the EDA hypothesis. We model the evolution of anisotropic distributions of microcracks in triaxial differential stress, where the driving mechanism is fluid migration along pressure gradients between neighbouring microcracks and pores at different orientations to the stress field. This leads to a non-linear anisotropic poroelasticity (APE) model for the stress-sensitive behaviour of fluid-saturated microcracked rocks. A companion paper shows that APE modelling matches a range of observed phenomena and is a good approximation to the equation of state of a stressed fluid-saturated rock mass.  相似文献   

9.
There have been several claims that seismic shear waves respond to changes in stress before earthquakes. The companion paper develops a stress-sensitive model (APE) for the behaviour of low-porosity low-permeability crystalline rocks containing pervasive distributions of fluid-filled intergranular microcracks, and this paper uses APE to model the behaviour before earthquakes. Modelling with APE shows that the microgeometry and statistics of distributions of such fluid-filled microcracks respond almost immediately to changes in stress, and that the behaviour can be monitored by analysing seismic shear-wave splitting. The physical reasons for the coupling between shear-wave splitting and differential stress are discussed.
In this paper, we extend the model by using percolation theory to show that large crack densities are limited at the grain-scale level by the percolation threshold at which interacting crack clusters lead to pronounced increases in rock-matrix permeability. In the simplest formulation, the modelling is dimensionless and almost entirely constrained without free parameters. Nevertheless, APE modelling of the evolution of fluid-saturated rocks under stress reproduces the observed fracture criticality and the narrow range of shear-wave azimuthal anisotropy in crustal rocks. It also reproduces the behaviour of temporal variations in shear-wave splitting observed before and after the 1986, M = 6, North Palm Springs earthquake, Southern California, and several other smaller earthquakes.
The agreement of APE modelling with a wide range of observations confirms that fluid-saturated crystalline rocks are stress-sensitive and respond to changes in stress by critical fluid-rock interactions at the microscale level. This means that the effects of changes in stress and other parameters can be numerically modelled and monitored by appropriate observations of seismic shear waves.  相似文献   

10.
A group of three earthquakes in 2000 June in SW Iceland included the two largest earthquakes in Iceland in the past 30 yr. Previously, temporal changes in shear-wave splitting had not been recognized before these earthquakes as there were too few small earthquakes to provide adequate shear-wave data, and they were not stress forecast, even with hindsight. These large earthquakes were subject to a special investigation by the European Community funded PREPARED Project during which the seismic catalogue was extended to include smaller magnitude earthquakes. This more detailed data set, together with a semi-automatic programme for measuring the parameters of shear-wave splitting greatly increased the number of time-delay measurements.
The new measurements displayed the typical temporal variations before larger earthquakes as seen elsewhere: a long-term increase in time delays, interpreted as stress accumulation before the earthquake; and a decrease, interpreted as crack coalescence, immediately prior to the earthquake. The logarithms of the durations of both the implied accumulation of stress and the crack coalescence have the same self-similar relationships to earthquake magnitude as found elsewhere in Iceland. This means that, in principle, the time and magnitude of the larger earthquakes could have been stress forecast in real time had the smaller source earthquakes of the extended catalogue and the improved measuring procedures been available at the time.  相似文献   

11.
Earthquake prediction: a new physical basis   总被引:16,自引:0,他引:16  
Summary. Subcritical crack growth in the laboratory occurs slowly but progressively in solids subjected to low stresses at low strain rates. The cracks tend to grow parallel to the maximum compressive stress so that, when this stress is aligned over a large enough region, the cracks will also be aligned and possess effective seismic anisotropy. It is suggested that such subcritical crack growth produces extensive-dilatancy anisotropy (EDA) throughout earth-quake preparation zones. This process is a possible driving mechanism for earthquake precursors observed at substantial distances from impending focal zones, and provides, in the shear-wave splitting which has been observed in several seismic regions, a possible technique for monitoring the build-up of stress before earthquakes.  相似文献   

12.
For seven weeks, a temporary network of 68 seismological stations was operated in Central Greece, in the region of Thessaly and Evia, located at the western termination of the North Anatolian Fault system. We recorded 510 earthquakes and computed 80 focal mechanisms. Seismic activity is associated with the NE–SW dextral North Aegean Fault, or with very young E–W-striking normal faults that are located around the Gulf of Volos and the Gulf of Lamia. The important NW–SE-striking faults bounding the Pilion, or the basins of Larissa and Karditsa, are not seismically active, suggesting that it is easier to break continental crust, creating new faults perpendicular to the principal stresses, than to reactivate faults that strike obliquely to the principal stress axes  相似文献   

13.
Summary. Turkey has been the location of a series of major earthquakes during this century. This study is an attempt to predict these in hindsight using swarms of weak earthquakes as a long-range precursor as proposed by Keilis-Borok. Some modifications of the swarm identification algorithm are made and statistical measures of success to judge the success of the prediction scheme were introduced. The main measures of success are the percentage of large earthquakes predicted and the percentage of swarms that predicted large earthquakes. The method was applied separately to earthquakes in the North Anatolian Fault Zone and in Western Turkey. The North Anatolian Fault was first considered in its entirety and then in segments. Prediction was attempted in each of these regions with a variety of parameters and the measures of success with confidence levels are computed.
The results obtained for prediction in Turkey are promising. The success of predicting large earthquakes ( M ≥ 7) was generally greater than 60 per cent. The difficulties of this method arise from incomplete catalogues of seismicity and the use of many arbitrary parameters.  相似文献   

14.
The Billefjorden Fault Zone represents a major lineament on Spitsbergen with a history of tectonic activity going back into the Devonian and possibly earlier. Recent structural, sedimcntological and stratigraphical investigations indicate that most of the stratigraphic thickness variations within the Mesozoic strata along the Billefjorden Fault Zone south of Isfjordcn are due to Tertiary compressional tectonics related to the transpressive Eocene West-Spitsbergen Orogeny. No convincing evidence of distinct Mesozoic extensional events, as suggested by previous workers, has been recognized. Tertiary compressional tectonics are characterized by a combined thin-skinned/thick-skinned structural style. Decollement zones arc recognized in the Triassic Sassendalen Group (tower Décollement Zone) and in the Jurassic/Cretaceous Janusfjellet Subgroup (Upper Décollement Zone). East-vergent folding and reverse faulting associated with these decollement' zones have resulted in the development of compressional structures, of which the major arc the Skolten and Tronfjellct Anticlines and the Advcntelva Duplex. Movements on one or more high angle east-dipping reverse faults in the pre-Mesozoic basement have resulted in the development of the Juvdalskampcn Monocline, and are responsible for out-of-sequence thrusting and thinning of the Mesozoic sequence across the Billefjorden Fault Zone. Preliminary shortening calculations indicate an eastward displacement of minimum 3-4 km, possibly as much as 10 km for the Lower Cretaceous and younger rocks across the Billefjorden Fault Zone.  相似文献   

15.
Extensional tectonic regimes in the Aegean basins during the Cenozoic   总被引:4,自引:0,他引:4  
Abstract Kinematics of faults in the Northern Aegean show three extensional tectonic regimes the tensional directions of which trend (1) WNW-ESE, (2) NE-SW and (3) N-S. These were active during the Upper Miocene, Pliocene-Lower Pleistocene and Mid Pleistocene-Present day, respectively. The main characteristics of the stress patterns (1) and (2) on the overall Aegean is tentatively explained by variations of the horizontal lithospheric stress value σzz due to the slab push and of the vertical lithospheric stress value σzz due to mass heterogeneities. During the Mid Pleistocene-Present, due to the slab push, tectonics were compressional along the arc boundary: σzz was σ1. In the Aegean basins, tectonics were extensional, c2Z was σ1 as a consequence of the thickness of the continental crust and, possibly of an updoming asthenosphere; thus σzz became σ2, allowing tension σ3 to be orthogonal to the compression along the arc, i.e. to be roughly parallel to the arc trend. During the Pliocene-Lower Pleistocene, the extensional regime was distinctly different. The tensional directions were roughly radial to the arc. It is suggested that σzz was weakly compressional, or eventually tensional, due a seaward migration of the slab so that σzz became σ3. In the Northern Aegean, the stress pattern has been also controlled by the westward push of the Anatolian landmass. During the Mid Pleistocene-Present day, this was typically extensional (al was vertical) and the right lateral strike-slip motion on the North Anatolian Fault transformed into a N-S-stretching, E-W-shortening of the Northern Aegean. Dextral strike-slip motions along the North Aegean Trough fault zone were possible on NE-SW-striking faults. During the Pliocene-Lower Pleistocene, normal fault components were higher; however, because the angle between the NE-SW trend of the tensional axis and the strike of the fault zone was acute, dextral strike-slip components were possible on all the faults striking NE-SW to E-W. A clockwise 15o rotation of Limnos with respect to Samothraki, Thraki and Thassos, suggested by structural data, was probably associated with these dextral motions. The WNW-ESE trending tension during the Upper Miocene indicates that the dextral North Anatolian Fault had not yet merged into the North Aegean Trough fault zone at that time. We propose that the formation of Aegean basins during the Cenozoic was related to the activity of two major Hellenic arcs. The ‘Pelagonian-Pindic Arc’ resulted in the formation of the subsident Aegean basins of Middle Eocene-Lower Miocene age and of the older Northern Aegean orogenic volcanism. The ‘Aegean Arc’ resulted in the formation of the subsident Aegean basins of Middle Miocene to Present day age and of the Southern Aegean orogenic volcanism. Were these arcs associated with a unique subduction zone or with two such zones ? In the first case, the slab is no more than 16 Myr old, in the second it may be as old as 45–50 Myr. The answer depends on the accuracy of the seismic tomography profiles.  相似文献   

16.
ten Veen  & Postma 《Basin Research》1999,11(3):243-266
Crustal thickening north of the Hellenic subduction zone continued in the most external zones (e.g. Crete) probably until the late middle Miocene. The following period of predominant extension has been related by various workers to a number of causes such as: (1) trench retreat (roll back) driven by the pull of the African slab and (2) gravitational body forces associated with the thickened crust, both in combination with NNE motion of the African plate combined with westward extrusion of the Anatolian block along the North Anatolian Fault. To verify these hypotheses an inventory of fault orientations and fault-block kinematics was carried out for central and eastern Crete and adjoining offshore areas by combining satellite imagery, digital terrain models, and structural, seismic, sedimentary and stratigraphical field data, all set up in a GIS. The GIS data set enabled easy visualization and combination of data, which resulted in a relatively objective analysis. The geological results are discussed in the light of a numerical model that investigated the intraplate stresses resulting from the above mentioned forces. Our tectonostratigraphic results for the late Neogene of central and eastern Crete show three episodes of basin extension following a period of approximately N–S compression. In the earliest Tortonian, N130E- to N100E-trending normal faults developed, resulting in a roughly planar, arc-parallel fault system aligning strongly asymmetric half-grabens. The early Tortonian to early Messinian period was characterized by an orthogonal fault system of N100E and N020E faults resulting in rectangular grabens and half-grabens. From the late Tortonian to early Pleistocene, deformation occurred along a pattern of closely spaced, left-lateral oblique N075E faults, orientated parallel to the south Cretan trenches. Deformation phases younger than early Pleistocene are dominated by normal to oblique faulting along WSW–ENE (N050E) faults and dextral, oblique motions along NNW–SSE (N160E) faults. Many faults that were generated during previous deformational episodes appear to be reactivated in later periods. Our tectonostratigraphy points to a three step anticlockwise rotation of active fault systems since the late middle Miocene compressional phase. We suggest here that the rotation is associated with a reorganization of the stress field going from SSW–NNE tension in the early late Miocene to NE–SW left-lateral shear in the Quaternary. The rotation is likely to be a response to arc-normal pull forces combined with a progressive increase of the curvature of the arc. During the Pliocene to Recent period, the SSW-ward retreat of the arc and trench system relative to the African plate was accomplished by transform motions in the eastern (Levantine) segment of the Hellenic Arc, resulting in, respectively, NNW–SSE and NE–SW left-lateral shear on Crete.  相似文献   

17.
Summary. The third occupation (experiment TDP3) of recording sites above a persistent swarm of microearthquakes near the North Anatolian Fault, with a larger seismic network and over a longer period of time, confirms and refines previous observations with greater resolution. The greater resolution in earthquake locations has revealed marked clustering in time and space. Many, perhaps most, of the earthquakes belong to clusters, where successive earthquakes originate in a very small volume and have similar fault mechanisms. Such studies allow the progression of seismic activity of small earthquakes to be followed in some detail, and may reveal features which are hidden in larger and more complex earthquake sequences.  相似文献   

18.
Summary. Polarization anomalies in seismic shear wavetrains, diagnostic of propagation through anisotropic media, have now been observed in dilatancy zones in seismic regions. Stress-induced dilatancy will open cracks with preferred orientations, which will be effectively anisotropic to short-period seismic waves. The polarization anomalies are due to the shear waves splitting, in propagation through anisotropic media, into components with different polarizations and different velocities. This writes characteristic signatures into the shear wavetrains. The paper examines ways in which the differential shear-wave anisotropy (the delay between the split shear-waves) varies with direction by plotting stereograms of the relative delays, and their polarizations, for possible dilatancy symmetry-systems. It seems likely, that if sufficient observations of these anomalies can be obtained at each stage of the dilatancy episode, it will be possible to estimate the symmetry directions of the dilatancy and the geometry of the stress-induced crack-system, as well as monitoring the progress of the dilatancy episode.  相似文献   

19.
The Hazar Basin is a 25 km‐long, 7 km‐wide and 216 m‐deep depression located on the central section of the East Anatolian Fault zone (eastern Turkey) and predominantly overlain by Lake Hazar. This basin has been described previously as a pull‐apart basin because of its rhombic shape and an apparent fault step‐over between the main fault traces situated at the southwestern and northeastern ends of the lake. However, detailed structural investigation beneath Lake Hazar has not been undertaken previously to verify this interpretation. Geophysical and sedimentological data from Lake Hazar were collected during field campaigns in 2006 and 2007. The analysis of this data reveals that the main strand of the East Anatolian Fault (the Master Fault) is continuous across the Hazar Basin, connecting the two segments previously assumed to be the sidewall faults of a pull‐apart structure. In the northeastern part of the lake, an asymmetrical subsiding sub‐basin, bounded by two major faults, is cross‐cut by the Master Fault, which forms a releasing bend within the lake. Comparison of the structure revealed by this study with analogue models produced for transtensional step‐overs suggests that the Hazar Basin structure represents a highly evolved pull‐apart basin, to the extent that the previous asperity has been bypassed by a linking fault. The absence of a step‐over structure at the Hazar Basin means that no significant segmentation boundary is recognised on the East Anatolian Fault between Palu and Sincik. Therefore, this fault segment is capable of causing larger earthquakes than recognised previously.  相似文献   

20.
Summary. The MARNET telemetered seismic network spanning the Marmara Sea supplements the ISK network of conventional seismic stations and increases the resolution for monitoring the seismicity in Western Turkey. Seismicity maps for the period 1976 to 1981 display pronounced swarm-type activity where small earthquakes cluster in the same locality. Three types of seismic activity can be identified and related to present-day tectonic deformation: normal earthquake episodes associated with the main line of the North Anatolian Fault; continuous swarm activity, but with marked fluctuations and bursts of activity in the tensional regime south of a line from Izmir to Adapazari; and continuous activity with only minor fluctuations within the Marmara region as it is sheared by the westward movement of the main Anatolian plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号