首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
40Ar/39Ar incremental-release analyses were carried out on whole-rock and constituent white mica (illite)-rich size fractions (0.63–1 to 6.3–20 m) within two very-low grade, penetratively cleaved metatuffs of contrasting anchizonal metamorphic grade (northeastern Rheinisches Schiefergebirge, Federal Republic of Germany). One sample from the upper anchizone displays internally concordant 40Ar/39Ar spectra with plateau ages ranging between ca. 316 and 325 Ma. These are similar to conventional K-Ar ages determined for the whole-rock and size fractions. Together the isotopic results suggest that cleavage formed at ca. 320 Ma during a concomitant very-low grade metamorphism. This is consistent with biostratigraphic controls which suggest that metamorphism and cleavage formation occurred during the Westphalian.A metatuff sample from the middle anchizone records more internally discordant 40Ar/39Ar age spectra with total-gas ages ranging from 366 to 372 Ma. These are ca. 35–45 Ma older than corresponding conventional K-Ar ages, indicating marked recoil-loss of 39Ar occurred during irradiation. Transmission electron microscopy reveals that white mica grains within size fractions from the upper anchizone sample have clearly defined, straight edges whereas those within the middle anchizone samples are embayed and diffuse. This results in an increase in surface/volume ratio and therefore greater susceptibility for recoil-loss of 39Ar in the middle anchizone sample. Grain-edge morphology appears to be a major factor in determining the extent of recoil-loss of 39Ar during 40Ar/39Ar analysis of fine-grained size fractions.  相似文献   

2.
40Ar/39Ar step-heating data were collected from micron to submicron grain-sizes of correlative illite- and muscovite-rich Cambrian pelitic rocks from the western United States that range in metamorphic grade from the shallow diagenetic zone (zeolite facies) to the epizone (greenschist facies). With increasing metamorphic grade, maximum ages from 40Ar/39Ar release spectra decrease, as do total gas ages and retention ages. Previous studies have explained similar results as arising dominantly or entirely from the dissolution of detrital muscovite and precipitation/recrystallization of neo-formed illite. While recognizing the importance of these processes in evaluating our results, we suggest that the inverse correlation between apparent age and metamorphic grade is controlled, primarily, by thermally activated volume diffusion, analogous to the decrease in apparent ages with depth observed for many thermochronometers in borehole experiments. Our results suggest that complete resetting of the illite/muscovite Ar thermochronometer occurs between the high anchizone and epizone, or at roughly 300 °C. This empirical result is in agreement with previous calculations based on muscovite diffusion parameters, which indicate that muscovite grains with radii of 0.05–2 μm should have closure temperatures between 250 and 350 °C. At high anchizone conditions, we observe a reversal in the age/grain-size relationship (the finest grain-size produces the oldest apparent age), which may mark the stage in prograde subgreenschist facies metamorphism of pelitic rocks at which neo-formed illite/muscovite crystallites typically surpass the size of detrital muscovite grains. It is also approximately the stage at which neo-formed illite/muscovite crystallites develop sufficient Ar retentivity to produce geologically meaningful 40Ar/39Ar ages. Results from our sampling transect of Cambrian strata establish a framework for interpreting illite/muscovite 40Ar/39Ar age spectra at different stages of low-grade metamorphism and also illuminate the transformation of illite to muscovite. At Frenchman Mtn., NV, where the Cambrian Bright Angel Formation is at zeolite facies conditions, illite/muscovite 40Ar/39Ar data suggest a detrital muscovite component with an apparent age ≥967 Ma. The correlative Carrara Fm. is at anchizone conditions in the Panamint and Resting Spring Ranges of eastern California, and in these locations, illite/muscovite 40Ar/39Ar data suggest an early Permian episode of subgreenschist facies metamorphism. The same type of data from equivalent strata at epizone conditions (greenschist facies) in the footwall of the Bullfrog/Fluorspar Canyon detachment in southern Nevada reveals a period of slow-to-moderate Late Cretaceous cooling.  相似文献   

3.
Four slate samples from subduction complex rocks exposed on the south coast of New South Wales, south of Batemans Bay, were analysed by K–Ar and 40Ar/39Ar step‐heating methods. One sample contains relatively abundant detrital muscovite flakes that are locally oblique to the regional cleavage in the rock, whereas the remaining samples appear to contain sparse detrital muscovite. Separates of detrital muscovite yielded plateau ages of 505 ± 3 Ma and 513 ± 3 Ma indicating that inheritance has not been eliminated by metamorphism and recrystallisation. Step‐heating analyses of whole‐rock chips from all four slate samples produced discordant apparent age spectra with ‘saddle shapes’ following young apparent ages at the lowest temperature increments. Elevated apparent ages associated with the highest temperature steps are attributed to the presence of variable quantities of detrital muscovite (<1–5%). Two whole‐rock slate samples yielded similar 40Ar/39Ar integrated ages of ca 455 Ma, which are some 15–30 million years older than K–Ar ages for the same samples. These discrepancies suggest that the slates have also been affected by recoil loss/redistribution of 39Ar, leading to anomalously old 40Ar/39Ar ages. Two other samples, from slaty tectonic mélange and intensely cleaved slate, yielded average 40Ar/39Ar integrated ages of ca 424 Ma, which are closer to associated mean K–Ar ages of 423 ± 4 Ma and 409 ± 16 Ma, respectively. Taking into account the potential influences of recoil loss/redistribution of 39Ar and inheritance, the results from the latter samples suggest a maximum age of ca 440 Ma for deformation/metamorphism. The current results indicate that recoil and inheritance problems may also have affected whole‐rock 40Ar/39Ar data reported from other regions of the Lachlan Fold Belt. Therefore, until these effects are adequately quantified, models for the evolution of the Lachlan Fold Belt, that are based on such whole‐rock 40Ar/39Ar data, should be treated with caution.  相似文献   

4.
Five detrital white mica concentrates from very low-grade, metaclastic sequences within pre-Variscan basement and post-Variscan cover units of the Upper Austroalpine Nappe Complex (Eastern Alps) have been dated with 40Ar/39Ar incremental heating techniques to constrain the age of tectonothermal events in their respective source areas. Two samples from early Palaeozoic sandstone exposed within the same Alpine nappe record slightly discordant age spectra. The maximum age recorded in one is 562.2±0.7?Ma, whereas the other yielded a 40Ar/39Ar plateau age of 607.3±0.3?Ma. These results indicate a source area affected by Cadomian tectonothermal activity. Three detrital muscovite concentrates from post-Variscan, Late Carboniferous and Permian cover sequences exposed within three different Alpine nappes yielded 40Ar/39Ar plateau ages of 359.6?±?1.1?Ma, 310.5±1.2?Ma, and 303.3±0.2?Ma. The contrasting detrital white mica ages are interpreted to reflect different source areas. Detrital muscovite from a post-Variscan Carboniferous molasse-type sequence and from a Permian Verrucano-type sequence record ages which indicate “late” Variscan (e.g. 330–300?Ma) metamorphic sources. By contrast, detrital white mica from another Permian Verrucano-type sequence suggests a source area affected by “early” Variscan (e.g. 400–360?Ma) metamorphism. These results help clarify palinspastic relationships and tectonic correlations between pre-Late Carboniferous metamorphic basement sequences and Carboniferous to Permian cover sequences.  相似文献   

5.
We report the ages of cleavage development in a normally intractable lower greenschist facies slate belt, the Central Maine-Aroostook-Matapedia belt in east-central Maine. We have attacked this problem by identifying the minimum ages of muscovite in a regional Acadian cleavage (S1) and in a local ductile fault zone cleavage (S2) using 40Ar/39Ar geochronology and the ages of crosscutting plutons. Our success stems from the regional low-grade metamorphism of the rocks in which each crystallization event preserves a40Ar/39Ar crystallization age and not a cooling age. Evidence for recrystallization via a pressure solution mechanism comes from truncations of detrital, authigenic, and in some rocks S1 muscovite and chlorite grains by new cleavage-forming muscovite and chlorite grains. Low-blank furnace age spectra from meta-arkosic and slaty rocks climb from moderate temperature Devonian age-steps dominated by cleavage-forming muscovite to Ordovician age-steps dominated by a detrital muscovite component. S1- and S2-cleaved rocks were hornfelsed by granitoids of ∼407 and 377 Ma, respectively. The combination of these minimum ages with the maximum metamorphic crystallization ages establishes narrow constraints on the timing of these two cleavage-forming events, ∼410 Ma (S1) and ∼380 Ma (S2). These two events coincide in time with a change in the plate convergence kinematics from the arrival of the Avalon terrane (Acadian orogeny), to a right-lateral transpression arrival of the Meguma terrane in the Neoacadian orogeny.  相似文献   

6.
Thirty-five illite and muscovite concentrates were extracted from Triassic and Permian claystones, shales, slates and phyllites along a cross-section from the diagenetic Alpine foreland (Tabular Jura and borehole samples beneath the Molasse Basin) to the anchi- and epimetamorphic Helvetic Zone of the Central Alps. Concentrates and thin sections were investigated by microscopic, X-ray, infrared, Mössbauer, thermal (DTA and TG), wet chemical, electron microprobe, K-Ar, Rb-Sr, 40Ar/39Ar and stable isotope methods.With increasing metamorphic grade based on illite crystallinity data (XRD and IR) the following continuous changes are observed: (i) the 1Md2M1 polymorph transformation is completed in the higher grade anchizone; (ii) K2O increases from 6–8 wt. % (diagenetic zone) to 8.5–10% (anchizone) to 10–11.5% (epizone), reflecting an increase in the total negative layer charge from 1.2 to 2.0; (iii) a decrease of the chemical variation of the mica population with detrital muscovite surviving up to the anchizone/ epizone boundary; iv) a shift of an endothermic peak in differential thermal curves from 500 to 750° C; (v) K-Ar and Rb-Sr apparent ages of the fraction <2 m decrease from the diagenetic zone to the epizone, K-Ar ages being generally lower than Rb-Sr ages. The critical temperature for total Ar resetting is estimated to be 260±30° C. K-Ar and Rb-Sr ages become concordant when the anchizone/ epizone boundary is approached. The stable isotope data, on the other hand, show no change with metamorphic grade but are dependent on stratigraphic age.These results suggest that the prograde evolution from 1 Md illite to 2M1 muscovite involves a continuous lattice restructuration without rupture of the tetrahedral and octahedral bonds and change of the hydroxyl radicals, however this is not a recrystallization process. This restructuration is completed approximately at the anchizone/epizone boundary. The isotopic data indicate significant diffusive loss of 40Ar and 87Sr prior to any observable lattice reorganization. The restructuration progressively introduces a consistent repartition of Ar and K in the mineral lattices and is outlined by the 40Ar/39Ar age spectra.Concordant K-Ar and Rb-Sr ages of around 35-30 Ma. with concomitant concordant 40Ar/39Ar release spectra are representative for the main phase of Alpine metamorphism (Calanda phase) in the Glarus Alps. A second age group between 25 and 20 Ma. can probably be attributed to movements along the Glarus thrust (Ruchi phase), while values down to 9 Ma., in regions with higher metamorphic conditions, suggest thermal conditions persisting at least until the middle Tortonian.  相似文献   

7.
West of the Main Uralian fault, the main suture in the southern Urals, 40Ar/39Ar apparent ages of amphibole, muscovite and potassium feldspar are interpreted as cooling ages. A fast exhumation of the metamorphic complex of Kurtinsky during Upper Carboniferous time is indicated by the small age difference (15 Ma) between cogenetic amphibole and muscovite. Differentiated movement in the footwall of the Main Uralian fault along strike is indicated by the age difference of 70 Ma between the metamorphic complexes of Kurtinsky (north) and Maksyutov (south). No Upper Paleozoic (Uralian) medium- to high-temperature event is recorded in 40Ar/39Ar data from the metamorphic complex of Beloretzk (MCB). An amphibole age of 718±5 Ma and the occurrence of mafic intrusions might signal the break-up of Rodinia and therefore indicate the rifting period followed by the separate movement of the "Beloretzk terrane". Muscovite ages of approximately 550±5 Ma, the unique pre-Ordovician tectonometamorphic evolution of the MCB and the Late Vendian sedimentary history of the western Bashkirian Megaanticlinorium (BMA) imply the existence of a Neoproterozoic orogeny at the eastern margin of Baltica. This orogeny might have been initiated by the accretion of the "Beloretzk terrane". The metamorphic grade of the overlain Silurian shales and the K/Ar microcline ages from the "Beloretzk terrane" give evidence for a new thermal event at approximately 370 Ma. A microcline age of 530–550 Ma obtained for the Vendian conglomerate in the western BMA suggests that a maximum temperature of approximately 200°C was reached in Cambrian or Vendian times. An orthoclase age (590–630 Ma) of the Vendian Zigan flysch deposits might be inherited from the eastern source area, the Cadomian orogen. An orthoclase age (910–950 Ma) from the Riphean Zilmerdak conglomerate coincides with a documented decrease in the subsidence rate of the Upper Riphean basin.  相似文献   

8.
Timing of folding is usually dated indirectly, with limited isotopic dating studies reported in the literature. The present study investigated the timing of intracontinental, multi-stage folding in Upper Proterozoic sandstone, limestone, and marble near Beijing, North China, and adjacent regions. Detailed field investigations with microstructural, backscattered electron (BSE) images and electron microprobe analyses indicate that authigenic muscovite and sericite crystallized parallel to stretching lineations/striations or along thin flexural-slip surfaces, both developed during the complex deformation history of the study area, involving repeated compressional, extensional and strike-slip episodes. Muscovite/sericite separates from interlayer-slip surfaces along the limbs and from dilatant sites in the hinges of folded sandstones yield muscovite 40Ar/39Ar plateau ages of ∼158–159 Ma, whereas those from folded marble and limestone samples yield ages of 156 ± 1 Ma. Muscovite from thin flexural-slip planes on fold limbs and hinges yields ages within analytical error of ∼155–165 Ma. Further muscovite samples collected from extensionally folded limestone and strike-slip drag folds yield younger ages of 128–125 Ma with well-defined plateaus. To assess the potential influence of the detrital mica component of the host rock on the age data, two additional muscovite samples were investigated, one from a folded upper Proterozoic–Cambrian sandstone outside the Western Hills of Beijing and one from a folded sandstone sampled 20 cm from folding-related slip planes. Muscovite separates from these samples yield significantly older ages of 575 ± 2 Ma and 587 ± 2 Ma, suggesting that the timing of folding can be directly determined using the 40Ar/39Ar method. This approach enables the identification and dating of distinct deformation events that occur during multi-stage regional folding. 40Ar/39Ar dating can be used to constrain the timing of muscovite and sericite growth at moderate to low temperatures (<400 °C) during folding, yielding well-defined plateau ages and thereby the age of deformation in the upper crust.  相似文献   

9.
40Ar/39Ar dating and estimates of regional metamorphic PT conditions were carried out on the basement rocks of the Eastern Kunlun Mountains, Western China. Samples from the Jinshuikou, Xiaomiao, Kuhai, Wanbaogou, and Nachitai groups revealed distinct metamorphic events and four age groups. The age group in the range from 363 to 439 Ma is interpreted to represent cooling after Middle Silurian–Late Devonian granulite(?) and amphibolite facies metamorphism, which is dominated by low–middle pressure/high temperature conditions. This tectono-thermal event is related to the closure of an oceanic basin or marginal sea. An age group of 212–242 Ma represents cooling after Triassic metamorphic overprint, which is probably associated with magmatic intrusions. This thermal event, together with the Permo-Triassic ophiolite zone along the South Kunlun Fault, relates to the closure of a major ocean (between India and Eurasia) and the eventual N-ward accretion of the Qiangtang block in Permo-Triassic times. The significance of the age group of 104–172 Ma may be related to the ductile deformation along the Xidatan fault due to the northward-directed accretion of the Lhasa block. Biotites from Nachitai record a partial isotopic resetting at ca. 32 Ma that is interpreted to represent a late-stage exhumation caused by further crustal shortening.  相似文献   

10.
Six samples of a single carbonate-rich unit of the Swiss Préalpes, progressively metamorphosed from diagenesis to deep anchizone, yield 40Ar/39Ar spectra with variably developed staircase patterns, consistent with mixtures of detrital mica and neocrystallized mixed-layer illite/smectite. The lowest temperature heating steps for different size fractions (2–6?μm and 6–20?μm) converge to ~40?Ma providing an imprecise, maximum age of regional metamorphism. A method is described for distinguishing and quantifying the amount of pre-existing detrital mica versus neoformed illite layer in the illite/smectite formed during Tertiary Alpine metamorphism by comparison of X-ray diffraction patterns with Newmod© simulations. In the least metamorphosed samples the illite/smectite contains ~65% neoformed illite, and this illite accounts for approximately 17% of all dioctahedral phyllosilicate minerals in the rock (e.g., detrital mica and illite/smectite). In contrast, the illite/smectite from the more strongly metamorphosed samples contains >97% neoformed illite, which accounts for ~70% to >90% of all dioctahedral phyllosilicate minerals. Phyllosilicate morphologies viewed by scanning electron microscopy are consistent with these estimates. A process of dissolution/reprecipitation is inferred as a mechanism for the growth of the neoformed phyllosilicates. A plot of neoformed illite content versus 40Ar/39Ar total fusion age yields a near-linear curve with an extrapolated age of 27?Ma for 100% neoformed dioctahedral phyllosilicates. This age is interpreted as the time of incipient metamorphism and is consistent with independent biostratigraphic constraints. Model 40Ar/39Ar age spectra constructed with the XRD simulation results correspond well to the experimental data and illustrate the changes in degassing properties of progressively metamorphosed mixtures of detrital mica and neoformed illite.  相似文献   

11.
D.R. Gray  D.A. Foster   《Tectonophysics》2004,385(1-4):181-210
Structural thickening of the Torlesse accretionary wedge via juxtaposition of arc-derived greywackes (Caples Terrane) and quartzo-feldspathic greywackes (Torlesse Terrane) at 120 Ma formed a belt of schist (Otago Schist) with distinct mica fabrics defining (i) schistosity, (ii) transposition layering and (iii) crenulation cleavage. Thirty-five 40Ar/39Ar step-heating experiments on these micas and whole rock micaceous fabrics from the Otago Schist have shown that the main metamorphism and deformation occurred between 160 and 140 Ma (recorded in the low grade flanks) through 120 Ma (shear zone deformation). This was followed either by very gradual cooling or no cooling until about 110 Ma, with some form of extensional (tectonic) exhumation and cooling of the high-grade metamorphic core between 109 and 100 Ma. Major shear zones separating the low-grade and high-grade parts of the schist define regions of separate and distinct apparent age groupings that underwent different thermo-tectonic histories. Apparent ages on the low-grade north flank (hanging wall to the Hyde-Macraes and Rise and Shine Shear Zones) range from 145 to 159 Ma (n=8), whereas on the low-grade south flank (hanging wall to the Remarkables Shear Zone or Caples Terrane) range from 144 to 156 Ma (n=5). Most of these samples show complex age spectra caused by mixing between radiogenic argon released from neocrystalline metamorphic mica and lesser detrital mica. Several of the hanging wall samples with ages of 144–147 Ma show no evidence for detrital contamination in thin section or in the form of the age spectra. Apparent ages from the high-grade metamorphic core (garnet–biotite–albite zone) range from 131 to 106 Ma (n=13) with a strong grouping 113–109 Ma (n=7) in the immediate footwall to the major Remarkables Shear Zone. Most of the age spectra from within the core of the schist belt yield complex age spectra that we interpret to be the result of prolonged residence within the argon partial retention interval for white mica (430–330 °C). Samples with apparent ages of about 110–109 Ma tend to give concordant plateaux suggesting more rapid cooling. The youngest and most disturbed age spectra come from within the ‘Alpine chlorite overprint’ zone where samples with strong development of crenulation cleavage gave ages 85–107 and 101 Ma, due to partial resetting during retrogression. The bounding Remarkables Shear zone shows resetting effects due to dynamic recrystallization with apparent ages of 127–122 Ma, whereas overprinting shear zones within the core of the schist show apparent ages of 112–109 and 106 Ma. These data when linked with extensional exhumation of high-grade rocks in other parts of New Zealand indicate that the East Gondwana margin underwent significant extension in the 110–90 Ma period.  相似文献   

12.
40Ar/39Ar geochronology of muscovite and biotite grains genetically related to gold and Be–Ta–Li pegmatites from the Seridó Belt (Borborema province, NE Brazil) yield well-defined, reliable plateau ages. This information, combined with data about paragenetic and field relationships, reveals Cambro-Ordovician mineralization ages (520 and 500–506 Ma) for the orogenic gold deposits in the Seridó Belt. Biotite ages of 525±2 Ma, which represent the mean weighted results of the incremental heating analysis of six biotite single crystals, record the time of pegmatite emplacement and reactivation of Brasiliano/Pan-African strike-slip shear zones. These results, along with previous structural evolution studies, suggest that shear zones formed during the Brasiliano/Pan-African event were reactivated in the Upper Cambrian–Lower Ordovician. Mineralization occurs late in the history of the orogen.  相似文献   

13.
The Rodna Mountains afford the most internal structural window into the crystalline units of the Eastern Carpathians in Romania. The Rodna Mountains consist of Variscan metamorphic nappes that were restacked in the Alpine phase of Carpathian development forming the Subbucovinian and Infrabucovinian nappes. In order to evaluate age of deformation, ten samples were taken from the zone of greenschist facies mylonitic schist that marks the Alpine tectonic boundary between the Subbucovinian and Infrabucovinian nappes and 40Ar/39Ar laser single-grain ages determined for schistosity-forming muscovite. Microstructural assessment of quartz and muscovite distinguished two deformation events. Single-grain ages from the microstructurally most strongly reworked samples (four samples) give a tight clustering of ages at ca. 95 Ma. The least reworked schists have a broader clustering of ages spanning ca. 200–280 Ma with a late Permian peak and some samples showing outlier ages in the range 200–100 Ma. The relative development of the outliers, which correlates with evidence for increased microstructural reworking, is interpreted to mark progressive isotopic resetting. The ca. 95 Ma ages for the most reworked schists are estimates for the age of the Alpine nappe stacking. The ca. 200–280 Ma ages are similar to those of magmatism, metamorphism, and sedimentation thought to mark post-Variscan-pre-Alpine rifting and ocean basin formation in parts of the Alps and may be the thermal imprint of a related event in the Eastern Carpathians.  相似文献   

14.
Linking ages to metamorphic stages in rocks that have experienced low‐ to medium‐grade metamorphism can be particularly tricky due to the rarity of index minerals and the preservation of mineral or compositional relicts. The timing of metamorphism and the Mesozoic exhumation of the metasedimentary units and crystalline basement that form the internal part of the Longmen Shan (eastern Tibet, Sichuan, China), are, for these reasons, still largely unconstrained, but crucial for understanding the regional tectonic evolution of eastern Tibet. In situ core‐rim 40Ar/39Ar biotite and U–Th/Pb allanite data show that amphibolite facies conditions (~10–11 kbar, 530°C to 6–7 kbar, 580°C) were reached at 210–180 Ma and that biotite records crystallization, rather than cooling, ages. These conditions are mainly recorded in the metasedimentary cover. The 40Ar/39Ar ages obtained from matrix muscovite that partially re‐equilibrated during the post peak‐P metamorphic history comprise a mixture of ages between that of early prograde muscovite relicts and the timing of late muscovite recrystallization at c. 140–120 Ma. This event marks a previously poorly documented greenschist facies metamorphic overprint. This latest stage is also recorded in the crystalline basement, and defines the timing of the greenschist overprint (7 ± 1 kbar, 370 ± 35°C). Numerical models of Ar diffusion show that the difference between 40Ar/39Ar biotite and muscovite ages cannot be explained by a slow and protracted cooling in an open system. The model and petrological results rather suggest that biotite and muscovite experienced different Ar retention and resetting histories. The Ar record in mica of the studied low‐ to medium‐grade rocks seems to be mainly controlled by dissolution–reprecipitation processes rather than by diffusive loss, and by different microstructural positions in the sample. Together, our data show that the metasedimentary cover was thickened and cooled independently from the basement prior to c. 140 Ma (with a relatively fast cooling at 4.5 ± 0.5°C/Ma between 185 and 140 Ma). Since the Lower Cretaceous, the metasedimentary cover and the crystalline basement experienced a coherent history during which both were partially exhumed. The Mesozoic history of the Eastern border of the Tibetan plateau is therefore complex and polyphase, and the basement was actively involved at least since the Early Cretaceous, changing our perspective on the contribution of the Cenozoic geology.  相似文献   

15.
Sung Won Kim   《Gondwana Research》2005,8(3):385-402
An understanding of the Okcheon Metamorphic Belt (OMB) in South Korea is central to unraveling the tectono-metamorphic evolution of East Asia. Amphibole-bearing rocks in the OMB occur as calcsilicate layers and lenses in psammitic rocks, in the psammitic rocks themselves, and in the mafic volcanic layers and intrusives. Most amphiboles fail to show 40Ar/39Ar plateau ages; those that do have ages ranging from 132 to 975 Ma. The disturbed age pattern and wide variation in 40Ar/39Ar ages can be related to metamorphic grade, retrograde chemical reactions, excess Ar and amphibole composition. The oldest age (975 Ma) can be interpreted either as an old igneous or metamorphic age predating sedimentation or a false age caused by excess Ar. The youngest age of 132 Ma and the disturbed age pattern found in amphiboles from rocks located close to Jurassic granitoids are the result of retrograde thermal metamorphic effects accompanying intrusion of the granitoids. Some medium- or coarse-grained amphiboles in the calcsilicates are aggregates of fine-grained crystals. As a result, they are heterogeneous and prove to be readily affected by excess Ar. A disturbed age pattern in amphiboles from the calcsilicates occurring in the high-grade metamorphic zone may also be the product of excess Ar. On the other hand, the disturbed pattern of amphiboles present in the calcsilicates from the low-grade metamorphic zone could arise from both excess Ar and mixed ages. However, amphiboles from psammitic rocks and some calcsilicates in the high-grade metamorphic zone and in intrusive metabasites display real plateau ages of 237 to 261 Ma. The temperature conditions in the high-grade metamorphic zone were higher than the argon closing temperature for amphibole, and the amphiboles in this zone give plateau ages only when they are homogeneous in composition, lack excess Ar, and have not been thermally affected by intrusion of the granitoids. The unmodified 40Ar/39Ar ages prove rather younger than the age of the Late Paleozoic metamorphic event of 280 to 300 Ma, but they are close to muscovite K-Ar ages of 263 to 277 Ma. These 40Ar/39Ar amphibole ages are interpreted as the time of cooling that followed the main regional, intermediate-P/T metamorphic climax. The results demonstrate that interpretation of 40Ar/39Ar amphibole ages in an area subjected to several metamorphic events can be accomplished only by undertaking a thorough tectono-metamorphic study, accompanied by detailed chemical analysis of the amphiboles.  相似文献   

16.
Muscovites from the Blond granite (West French Massif Central) were dated by the 40Ar/39Ar single-grain method. The 40Ar/39Ar ages obtained vary from 305.5 ± 0.3 Ma to 311.3 ± 0.5 Ma, and most of the age spectra are slightly saddle-shaped. The analyzed muscovites show phengitic recrystallization under optical microscope observations, SEM images, and electron microprobe chemical analyses. It is proposed that the saddle-shaped age spectra result from a partial recrystallization, which produced three different isotopic reservoirs in the analyzed white mica single grains: domains of early muscovite, domains of neocrystallized muscovite formed by phengitic and Al-Fe substitutions, and “low-activation energy sites.”  相似文献   

17.
Controversy over the age of peak metamorphism and therefore the tectonic evolution of the Arabian margin relates to the polydeformed and polymetamorphosed nature of glaucophane-bearing eclogites from the Saih Hatat window beneath the allochthonous Samail ophiolite in NE Oman. These eclogites contain relicts of earlier fabrics, structures and metamorphic assemblages and provide a record of change from subduction to exhumation. The eclogites are part of a mafic layer that was disrupted into boudins up to 0.5 km in length within a lower plate shear zone (As Sifah shear zone). The megaboudins not only preserve the relicts of the highest grade of metamorphism but also an early ENE-trending lineation and sheathlike isoclines enveloped by the flat-lying schistosity. The boudin-bearing layer is isoclinally folded with calc-schist, mafic schist and quartz–mica schist, where the regional folds have axes parallel to the NE-trending stretching lineation (a-type folds). Textural evidence suggests multiple growth events for garnet and clinopyroxene, requiring polymetamorphism of the mafic layers that formed the eclogite megaboudins. The surrounding calc-schist and quartz–mica schist are both intensely deformed with transposition foliation containing an NE-trending lineation in phengite and asymmetric shear indicators such as C′-type shear bands and asymmetric pressure shadows around garnets, that give top-to-the-NE sense of shear. Although consistent ENE-trending lineations in all the boudins suggest that they have largely acted as passive, nonrotating rigid bodies, the presence of NE-vergent asymmetric mesofolds, extensive dynamic recrystallisation, multiple generations of phengites and a range of 40Ar–39Ar apparent ages within the megaboudins suggest, however, that they have not acted entirely passively during the later deformation. Phengites isolated from the high-P/low-T fabrics show groupings in 40Ar–39Ar apparent ages interpreted as distinct metamorphic/cooling intervals at 140–135, 120–98 and 92–80 Ma. Microstructural relations suggest that age groupings younger than 100 Ma reflect phengite growth during exhumation with the top-to-the-NE shearing. The older ages (120–110 Ma) from fabrics that give top-to-the-S shear sense may reflect growth during the subduction phase. The combination of groupings of apparent argon ages older than the crystallisation age of the Samail Ophiolite, the suggestion of different geothermal gradients, and superposed metamorphism suggest that the eclogites and garnet blueschists formed as a result of underthrusting along a break that was not directly related to the metamorphic sole of the ophiolite. The glaucophane–eclogites are interpreted as having formed at different times under varying pressure–temperature conditions during underthrusting with variations in the rate of underthrusting, allowing thermal equilibration and/or rapid cooling at different crustal levels.  相似文献   

18.
Detailed 40Ar/39Ar geochronology on single grains of muscovite was performed in the Variscan Tanneron Massif (SE France) to determine the precise timing of the post-collisional exhumation processes. Thirty-two plateau ages, obtained on metamorphic and magmatic rocks sampled along an east–west transect through the massif, vary from 302 ± 2 to 321 ± 2 Ma, and reveal a heterogeneous exhumation of the lower crust that lasted about 20 Ma during late Carboniferous. In the eastern part of the massif, the closure of the K–Ar isotopic system is at 311–315 Ma, whereas in the middle part of the massif it closes earlier at 317–321 Ma. These cooling paths are likely to be the result of differential exhumation processes of distinct crustal blocks controlled by a major ductile fault, the La Moure fault that separates both domains. In the western part of the massif, the ages decrease from 318 to 303 Ma approaching the Rouet granite, which provides the youngest age at 303.6 ± 1.2 Ma. This age distribution can be explained by the occurrence of a thermal structure spatially associated to the magmatic complex. These ages argue in favour of a cooling of the magmatic body at around 15 Ma after the country rocks in the western Tanneron. The emplacement of the Rouet granite in the core of an antiform is responsible for recrystallization and post-isotopic closure disturbances of the K–Ar chronometer in the muscovite from the host rocks. These new 40Ar/39Ar ages clearly outline that at least two different processes may contribute to the exhumation of the lower crust in the later stage of collision. During the first stage between 320 and 310 Ma, the differential motion of tectonic blocks limited by ductile shear zones controls the post-collisional exhumation. This event could be related to orogen parallel shearing associated with crustal-scale strike-slip faults and regional folding. The final exhumation stages at around 300 Ma take place within the tectonic doming associated to magmatic intrusions in the core of antiformal structures. Local ductile to brittle normal faulting is coeval to Upper Carboniferous intracontinental basins opening.  相似文献   

19.
Structural and thermochronological studies of the Kampa Dome provide constraints on timing and mechanisms of gneiss dome formation in southern Tibet. The core of Kampa Dome contains the Kampa Granite, a Cambrian orthogneiss that was deformed under high temperature (sub-solidus) conditions during Himalayan orogenesis. The Kampa Granite is intruded by syn-tectonic leucogranite dikes and sills of probable Oligocene to Miocene age. Overlying Paleozoic to Mesozoic metasedimentary rocks decrease in peak metamorphic grade from kyanite + staurolite grade at the base of the sequence to unmetamorphosed at the top. The Kampa Shear Zone traverses the Kampa Granite — metasediment contact and contains evidence for high-temperature to low-temperature ductile deformation and brittle faulting. The shear zone is interpreted to represent an exhumed portion of the South Tibetan Detachment System. Biotite and muscovite 40Ar/39Ar thermochronology from the metasedimentary sequence yields disturbed spectra with 14.22 ± 0.18 to 15.54 ± 0.39 Ma cooling ages and concordant spectra with 14.64 ± 0.15 to 14.68 ± 0.07 Ma cooling ages. Petrographic investigations suggest disturbed samples are associated with excess argon, intracrystalline deformation, mineral and fluid inclusions and/or chloritization that led to variations in argon systematics. We conclude that the entire metasedimentary sequence cooled rapidly through mica closure temperatures at  14.6 Ma. The Kampa Granite yields the youngest biotite 40Ar/39Ar ages of  13.7 Ma immediately below the granite–metasediment contact. We suggest that this age variation reflects either varying mica closure temperatures, re-heating of the Kampa Granite biotites above closure temperatures between 14.6 Ma and 13.7 Ma, or juxtaposition of rocks with different thermal histories. Our data do not corroborate the “inverse” mica cooling gradient observed in adjacent North Himalayan gneiss domes. Instead, we infer that mica cooling occurred in response to exhumation and conduction related to top-to-north normal faulting in the overlying sequence, top-to-south thrusting at depth, and coeval surface denudation.  相似文献   

20.
The Permian Cape Fold Belt (CFB) of South Africa forms part of a major orogenic belt that originally extended from Argentina, across southern Africa and into Antarctica. The CFB is dominated by complexly folded and faulted rocks of the siliciclastic Cape Supergroup that were deposited in the Cape Basin. The provenance of the Cape Supergroup, timing of deformation and tectonic setting are poorly constrained. U-Pb detrital zircon provenance studies suggest that the Cape Basin received sedimentary detritus from the African Mesoproterozoic Namaqua-Natal Metamorphic Belt, Neoproterozoic-Cambrian Pan-African Belts and the Brasiliano orogenic belts of South America, Africa and Antarctica. However, as zircon is able to survive multiple orogenic and sedimentary transport cycles, complementary provenance tools are required to confirm Cape Supergroup provenance. Previous studies have suggested both uni-modal and multi-modal models for the timing of CFB orogenesis. In the current study, structurally controlled, muscovite-bearing samples were collected along several north-south traverses across the CFB. Detailed textural and mineral chemistry analyses identified multiple muscovite populations, commonly with complex intergrowth features. High precision 40Ar/39Ar analyses reveal a dominant 490–465 Ma detrital muscovite population, lending support to a largely South American provenance for the Cape Supergroup. Lesser detrital muscovite populations in the range 650–500 Ma and >730 Ma, corroborate previous zircon provenance studies suggesting Pan-African/Brasiliano terranes and the Namaqua-Natal Metamorphic Belt as significant sediment sources, respectively. Detailed 40Ar/39Ar analyses of multiple neo-crystallised muscovite samples are consistent with a single major phase of CFB deformation occurring between 253.4 and 249.6 Ma. This age is interpreted to represent either the peak or final dominant phase of CFB deformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号