首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Geotectonically the Fengyang and Zhangbaling regions belong to the North China craton and the Dabie-Sulu oragene, respectively. Neo-Archean gneiss and amphibolite and metamor-phosed sea-facies sodic volcanic rocks axe the main outcrops in the two regions, respectively. The Zhangbaling terrane strike-skipped along the Tancheng-Lujiang fault zone in Mesozoic and Cenozo-ic eras and got close to the Fengyang terrane. Mesozoic Yanshanian intrusions occur broadly in thetwo regions. Gold-beating quartz veins occur in the metamorphic rocks in the Fengyang region and in the granodiorite and metamorphosed sea-facies sodic volcanic rocks in the Zhanghaling region.Generally, the formation of the auriferous quartz veins involved three stages. At the first stage,gold-poor sulfide quartz veins were formed; at the second stage gold-rich quartz sulfide veins wereformed; and at the third stage gold-poor barite and/or carbonate veins were formed. The 40^Ar/29^Ar step-heating plateau ages of the first-stage and the second-stage quartz aggregates from the Zhuding, Maoshan and Shangeheng gold deposits range between 116.1 0.6 Ma and 118.3 0.5 Ma and are pretty close to their least apparent ages and isoehronal ages, respectively. All plat-eau, least apparent and isoehronal ages range between 113.4 0.4 Ma and 118.3 0.5 Ma,which are considered as the formation age range of the quartz. It is reasonable and reliable to takethe 40^Ar/39^Ar age range of the quartz as the formation age range of gold-bearing quartz veins onthe basis of spatial relationship between gold-bearing quartz veins and their country rocks. Thegold deposits in the two regions were formed in Aptian, Cretaceous, when the Tancheng-Lujiangfault zone moved as a normal fault with slightly right-lateral strike-skip, was extensional and expe-rienced very strong magnmtic process. It is shown that the magnmtic hydrothermal fluid is a veryimportant part of the gold ore-forming hydrothermal fluid in the Fengyang and Zhanghaling re-gions. The formation of the gold ore deposits in the Fengyang and Zhanghaling regions had genetic relations with the extensional movement of the Tancheng-Lujiang fault zone and magmatic activities and took place under the extensional dynamic condition in Late Cretaceous. Therefore, the exten-sional movement of the Tancheng-Lujiang fault zone presented the energy and space for magmatic and gold ore-forming processes.  相似文献   

2.
刘江  张进江  郭磊  戚国伟 《岩石学报》2014,30(7):1899-1908
晚中生代,内蒙古大青山依次经历晚侏罗世盘羊山逆冲推覆、早白垩世呼和浩特变质核杂岩伸展、早白垩世大青山逆冲推覆断层及早白垩世以来高角度正断层复杂构造演化。其中,呼和浩特变质核杂岩韧性剪切带的冷却时间和抬升机制的制约尚不明确。本文在野外考察和显微构造分析基础上,采用逐步加热40Ar-39Ar定年法对韧性剪切带内不同单矿物的冷却年龄进行了测定。角闪石、白云母、黑云母和钾长石单矿物40Ar-39Ar冷却年龄处于120~116Ma之间。结合已有年龄数据及单矿物封闭温度,构建了韧性剪切带的冷却曲线。结果表明,韧性剪切带在122~115Ma期间存在一个明显的快速冷却过程。这一阶段快速冷却是与变质核杂岩拆离断层相关核部杂岩拆离折返作为大青山逆冲推覆断层上盘抬升的结果。  相似文献   

3.
《Geodinamica Acta》2013,26(5):267-282
The interaction of distinct geologic processes involved during late orogenic extensional exhumation history of the metamorphic units in the Eastern Rhodope is refined by new and reviewing 40Ar/39Ar geochronological and structural data. Minerals with different closure temperatures from metamorphic rocks investigated in this study are combined with those from magmatic and ore-forming hydrothermal rocks in two late stage metamorphic domes – the Kesebir-Kardamos and the Biala reka-Kehros domes. The 38-37 Ma muscovite and biotite cooling ages below 350°-300°C characterize basement metamorphic rocks that typified core of the Kesebir-Kardamos dome, constraining their exhumation at shallow crustal levels in the footwall of detachment. These ages are interpreted as reflecting last stage of ductile activity on shear zone below detachment, which continued to operate under low-temperature conditions within the semi-ductile to brittle field. They are close to and overlap with existing cooling ages in southern Bulgaria and northern Greece, indicating supportively that the basement rocks regionally cooled between 42-36 Ma below temperatures 350°-300°C. The spatial distribution of ages shows a southward gradual increase up structural section, suggesting an asymmetrical mode of extension, cooling and exhumation from south to the north at latitude of the Kesebir-Kardamos dome. The slightly younger 36.5-35 Ma crystallization ages of adularia in altered rocks from the ore deposits in the immediate hanging-wall of detachments are attributed to brittle deformation on high-angle normal faults, which further contributed to upper crustal extension, and thus constraining the time when alteration took place and deformation continued at brittle crustal levels. Silicic dykes yielded ages between 32-33 Ma, typically coinciding with the main phase of Palaeogene magmatic activity, which started in Eastern Rhodope region in Late Eocene (Priabonian) times. The 40Ar/39Ar plateau ages from the above distinct rock types span time interval lasting approximately ca. 6 Ma. Consequently, our geochronologic results consistently indicate that extensional tectonics and related exhumation and doming, epithermal mineralizations and volcanic activity are closely spaced in time. These new 40Ar/39Ar age results further contribute to temporal constraints on the timing of tectonic, relative to ore-forming and magmatic events, suggesting in addition that all above mentioned processes interfered during the late orogenic extensional collapse in the Eastern Rhodope region.  相似文献   

4.
The amphibolite facies grade North Qinling metamorphic unit forms the centre of the Qinling orogenic belt. Results of LA-ICP-MS U-Pb zircon, 40Ar/39Ar amphibole and biotite dating reveal its Palaeozoic tectonic history. U-Pb zircon dating of migmatitic orthogneiss and granite dykes constrains the age of two possible stages of migmatization at 517 ± 14 Ma and 445 ± 4.6 Ma. A subsequent granite intrusion occurred at 417 ± 1.6 Ma. The 40Ar/39Ar plateau ages of amphibole ranging from 397 ± 33 Ma to 432 ± 3.4 Ma constrain the cooling of the Qinling complex below ca. 540 °C and biotite 40Ar/39Ar ages at about 330–368 Ma below ca. 300 °C. The ages are used to construct a cooling history with slow/non-exhumation during 517– 445 Ma, a time-integrated cooling at a rate < 2.5 °C/Ma during the period of 445–410 Ma, an acceleration of cooling at a rate of 8 °C/Ma from 397 Ma to 368 Ma, and subsequently slow/non-cooling from 368 to 330 Ma. The data show a significant delay in exhumation after peak metamorphic conditions and a long period of tectonic quiescence after the suturing of the North China and South China blocks along the Shangdan suture. These relationships exclude classical exhumation models of formation and exhumation of metamorphic cores in orogens, which all imply rapid cooling after peak conditions of metamorphism.  相似文献   

5.
6.
长乐—南澳断裂带变形火成岩的U-Pb和40Ar/39Ar年龄   总被引:11,自引:1,他引:11  
长乐—南澳断裂带中同构造变形的花岗闪长岩主岩和闪长岩包体的锆石UPb法和角闪石40Ar/39Ar法定年结果分别为~130Ma和~95Ma。锆石UPb年龄代表了变形花岗质岩石的形成年龄,也表明长乐—南澳断裂带至少在此时已经开始活动。角闪石40Ar/39Ar年龄不能代表长乐—南澳断裂带的活动年龄,它记录的是与大规模、未变形的早白垩世晚期(相当于石帽山群)火成活动相关的热变质事件的时间。  相似文献   

7.
西昆仑库地韧性剪切带的40Ar/39Ar年龄   总被引:16,自引:4,他引:12       下载免费PDF全文
西昆仑库地以南有一套变质变形较强的岩系,前人依照区域对比关系将其划为前寒武的古老基底。对西昆仑早期构造演化的论述均基于该观点,但没有提供确凿的同位素年代学证据。笔者通过野外观察、室内研究,确认库地以南的变质变形岩系是大型韧性推覆剪切作用的产物。通过对新生变质矿物角闪石和黑云母单矿物的40Ar/39Ar年龄分析,确定剪切变质年龄为426-451Ma,说明库地的变质变形岩系是形成于早古生代晚期的一条大型韧性剪切带,这对于解释西昆仑的早期构造演化具有重要意义。  相似文献   

8.
D.R. Gray  D.A. Foster   《Tectonophysics》2004,385(1-4):181-210
Structural thickening of the Torlesse accretionary wedge via juxtaposition of arc-derived greywackes (Caples Terrane) and quartzo-feldspathic greywackes (Torlesse Terrane) at 120 Ma formed a belt of schist (Otago Schist) with distinct mica fabrics defining (i) schistosity, (ii) transposition layering and (iii) crenulation cleavage. Thirty-five 40Ar/39Ar step-heating experiments on these micas and whole rock micaceous fabrics from the Otago Schist have shown that the main metamorphism and deformation occurred between 160 and 140 Ma (recorded in the low grade flanks) through 120 Ma (shear zone deformation). This was followed either by very gradual cooling or no cooling until about 110 Ma, with some form of extensional (tectonic) exhumation and cooling of the high-grade metamorphic core between 109 and 100 Ma. Major shear zones separating the low-grade and high-grade parts of the schist define regions of separate and distinct apparent age groupings that underwent different thermo-tectonic histories. Apparent ages on the low-grade north flank (hanging wall to the Hyde-Macraes and Rise and Shine Shear Zones) range from 145 to 159 Ma (n=8), whereas on the low-grade south flank (hanging wall to the Remarkables Shear Zone or Caples Terrane) range from 144 to 156 Ma (n=5). Most of these samples show complex age spectra caused by mixing between radiogenic argon released from neocrystalline metamorphic mica and lesser detrital mica. Several of the hanging wall samples with ages of 144–147 Ma show no evidence for detrital contamination in thin section or in the form of the age spectra. Apparent ages from the high-grade metamorphic core (garnet–biotite–albite zone) range from 131 to 106 Ma (n=13) with a strong grouping 113–109 Ma (n=7) in the immediate footwall to the major Remarkables Shear Zone. Most of the age spectra from within the core of the schist belt yield complex age spectra that we interpret to be the result of prolonged residence within the argon partial retention interval for white mica (430–330 °C). Samples with apparent ages of about 110–109 Ma tend to give concordant plateaux suggesting more rapid cooling. The youngest and most disturbed age spectra come from within the ‘Alpine chlorite overprint’ zone where samples with strong development of crenulation cleavage gave ages 85–107 and 101 Ma, due to partial resetting during retrogression. The bounding Remarkables Shear zone shows resetting effects due to dynamic recrystallization with apparent ages of 127–122 Ma, whereas overprinting shear zones within the core of the schist show apparent ages of 112–109 and 106 Ma. These data when linked with extensional exhumation of high-grade rocks in other parts of New Zealand indicate that the East Gondwana margin underwent significant extension in the 110–90 Ma period.  相似文献   

9.
柴北缘锡铁山榴辉岩退变质成因角闪石40Ar/39Ar年代学研究   总被引:2,自引:2,他引:0  
采用激光阶段加热40Ar/39Ar技术,对柴达木盆地北缘锡铁山榴辉岩退变质作用形成的榴闪岩和斜长角闪岩之角闪石进行了定年分析。09NQ44Amp来自榴闪岩,各阶段表观年龄(以现代空气氩40Ar/36Ar比值295.5扣除非放射性成因40Ar)构成了单调下降的阶梯状年龄谱。在反等时线图解上,2~4阶段数据点和5~18阶段数据点分别构成了两条等时线,等时年龄分别为427.6±10Ma和425.1±2.6Ma,对应的初始40Ar/36Ar比值则分别为435.2±6.1和705.3±13。角闪石09NQ43Amp来自榴辉岩强烈退变质作用形成的斜长角闪岩,40Ar/39Ar阶段加热分析也获得单调下降的年龄谱,在反等时线图解上其数据点3~6阶段和7~16阶段分别构成了两条等时线,等时年龄分别为418.9±2.9Ma和418.1±2.1Ma,对应的初始40Ar/36Ar比值则分别为493.7±2.8和685.8±34.3。等时线截距值高于现代大气40Ar/36Ar比值,表明角闪石中含过剩40Ar。同时,由低温和中-高温阶段加热数据点分别构成两条等时年龄基本一致,截距值却明显不同的等时线,表明在角闪石热力学性质不同的源区,存在两期明显不同且未混合的初始捕获Ar组分。等时年龄425~418Ma代表的是锡铁山榴辉岩角闪岩相退变质作用发生的时间。等时线图解法虽然有效的校正了角闪石中的过剩40Ar,但仅根据表观年龄图谱和等时线图谱还无法清晰判断过剩40Ar在角闪石中的赋存状态,有待进一步探讨。  相似文献   

10.
Structural and thermochronological studies of the Kampa Dome provide constraints on timing and mechanisms of gneiss dome formation in southern Tibet. The core of Kampa Dome contains the Kampa Granite, a Cambrian orthogneiss that was deformed under high temperature (sub-solidus) conditions during Himalayan orogenesis. The Kampa Granite is intruded by syn-tectonic leucogranite dikes and sills of probable Oligocene to Miocene age. Overlying Paleozoic to Mesozoic metasedimentary rocks decrease in peak metamorphic grade from kyanite + staurolite grade at the base of the sequence to unmetamorphosed at the top. The Kampa Shear Zone traverses the Kampa Granite — metasediment contact and contains evidence for high-temperature to low-temperature ductile deformation and brittle faulting. The shear zone is interpreted to represent an exhumed portion of the South Tibetan Detachment System. Biotite and muscovite 40Ar/39Ar thermochronology from the metasedimentary sequence yields disturbed spectra with 14.22 ± 0.18 to 15.54 ± 0.39 Ma cooling ages and concordant spectra with 14.64 ± 0.15 to 14.68 ± 0.07 Ma cooling ages. Petrographic investigations suggest disturbed samples are associated with excess argon, intracrystalline deformation, mineral and fluid inclusions and/or chloritization that led to variations in argon systematics. We conclude that the entire metasedimentary sequence cooled rapidly through mica closure temperatures at  14.6 Ma. The Kampa Granite yields the youngest biotite 40Ar/39Ar ages of  13.7 Ma immediately below the granite–metasediment contact. We suggest that this age variation reflects either varying mica closure temperatures, re-heating of the Kampa Granite biotites above closure temperatures between 14.6 Ma and 13.7 Ma, or juxtaposition of rocks with different thermal histories. Our data do not corroborate the “inverse” mica cooling gradient observed in adjacent North Himalayan gneiss domes. Instead, we infer that mica cooling occurred in response to exhumation and conduction related to top-to-north normal faulting in the overlying sequence, top-to-south thrusting at depth, and coeval surface denudation.  相似文献   

11.
本文对两个北秦岭丹凤群斜长角闪岩样品进行了Sm-Nd、Rb-Sr和40Ar/39Ar测年,发现其中受构造改造轻微的黑河丹凤群斜长角闪岩样品的角闪石40Ar/39Ar年龄与其Rb-Sr、Sm-Nd矿物等时线年龄接近,而遭受强烈构造剪切作用的蒲峪丹凤群斜长角闪(片)岩的角闪石40Ar/39Ar年龄则明显高于其Rb-Sr、Sm-Nd矿物等时线年龄,指示构造剪切作用对变质角闪石中过剩氩的引入有显著影响。在利用40Ar/39Ar进行造山带年代学研究时这一问题应引起注意  相似文献   

12.
Coesite- and microdiamond- bearing ultra-high pressure (UHP) eclogites in the North Qinling terrane have been widely retrogressed to amphibolites. Previous geochronological studies on these UHP rocks mainly focused on the timing of peak eclogite facies metamorphism. The Kanfenggou UHP metamorphic domain is one of the best-preserved coesite-bearing eclogite occurrences in the North Qinling terrane. In this study, mafic amphibolites and host schists from this domain were collected for 40Ar/39Ar dating to constrain their retrograde evolution. Two generations of amphibole are recognized based on their mineral parageneses and 40Ar/39Ar ages. A first generation of amphibole from garnet amphibolites yielded irregularly-shaped age spectra with anomalously old apparent ages. Isochron ages of 484–473 Ma and initial 40Ar/36Ar ratios of 3695–774 are obtained from this generation of amphibole, indicating incorporation of excess argon. Second generation amphibole occurs in epidote amphibolites yielded flat age spectra with plateau ages of 464–462 Ma without evidence for excess argon. These ages suggest that the amphibolite-facies metamorphism has taken place as early as 484 Ma and lasted until 462 Ma for the North Qinling UHP metamorphic rocks. Phengite from the country-rock schists yielded 40Ar/39Ar plateau ages of 426–396 Ma, with higher phengite Si contents associated with the older the plateau ages. Based on our new 40Ar/39Ar ages and previous zircon UPb geochronological data, we construct a new detailed pressure-temperature-time (P-T-t) path illustrating the retrograde metamorphism and exhumation rate of the North Qinling eclogites and host schists. The P-T-t path suggests that these UHP metamorphic rocks experienced initial medium-to-high exhumation rates (ca. 8.7 mm/yr) during the Early Ordovician (489–484 Ma), which was mainly derived from buoyancy forces. Subsequently, the exhumation rate decreased gradually from ~0.8 to 0.3 mm/yr from 484 to 426 Ma, which was probably governed by extension and/or erosion.  相似文献   

13.
Abstract The Sambagawa metamorphic belt exposed in central Shikoku records a high-P–T metamorphic event. It is represented by the Oboke nappe and structurally overlying, internally imbricated, Besshi nappe complex. These major structural units are in ductile thrust contact. A melange is developed along a ductile internal tectonic contact within the Besshi nappe complex. Tectonic emplacement of a high-T enclave (Sebadani eclogite) in the melange zone resulted in the development of a contact metamorphic aureole within the host Sambagawa rocks. 36Ar/40Ar versus 39Ar/40Ar isotope correlation ages recorded by hornblende from the Sambagawa basic schists which surround the Sebadani enclave are 83.4 ± 0.3 Ma (within contact aureole) and 83.6 ± 0.5 Ma (outside aureole). 40Ar/39Ar plateau ages recorded by muscovite from the same samples are 87.9 ± 0.3 and 89.3 ± 0.4 Ma. Amphibole from the amphibolite within the Sebadani enclave records isotope correlation ages of 93.7 ± 1.1 and 96.5 ± 0.7 Ma (massive interior) and 84.6 ± 1.2 Ma (marginal shear zone). Amphibole within the massive amphibolite is significantly higher in XMg than that within the host Sambagawa basic schists. The older ages recorded by amphibole within the Sebadani enclave are interpreted to date cooling through somewhat higher closure temperatures than which characterize the more Fe-rich amphibole in surrounding schists. The younger amphibole age recorded within the marginal shear zone probably indicates that crystallization of amphibole continued until cooling through the relatively lower amphibole closure temperatures. These results, together with the previously published 40Ar/39Ar ages of the Sambagawa schists, suggest: (i) metamorphic culmination occurred in the Besshi nappe complex at c. 100–90 Ma; (ii) at c. 95 Ma the Besshi nappe complex was internally imbricated and tectonic enclaves were emplaced; (iii) at c. 85 Ma, the composite Besshi nappe was rapidly exhumed and tectonically emplaced over the Oboke nappe (which attained peak metamorphic conditions at c. 75 Ma); (iv) the Besshi and Oboke nappe complexes were further exhumed as a coherent tectonic unit and unconformably overlain by the Eocene Kuma Group at c. 50 Ma.  相似文献   

14.
Potassium-Ar and Rb-Sr dating of minerals was fundamental in early efforts to date magmatic and metamorphic processes and paved the way for geochronology to become an important discipline within the earth sciences. Although K-Ar and, in particular, 40Ar/39Ar dating of micas is still widely applied, Rb-Sr dating of micas has declined in use, even though numerous studies demonstrated that tri-octahedral mica yields geologically realistic, and more reliable and reproducible Rb-Sr ages than the K-Ar or 40Ar/39Ar system. Moreover, a reduction of uncertainties typically reported for Rb-Sr ages (ca. 1%) can now be achieved by application of multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) rubidium isotope dilution measurements (<0.3%). Replicate Rb-Sr biotite ages from the Oslo rift, Norway, yield an external reproducibility of ±0.3% (n=4) and an analytical error of ±0.8 Ma for individual ages that vary between 276.9 and 275.5 Ma. Conventional thermal ionisation mass spectrometry (TIMS) Rb analysis on the same mineral separates yields ages between 276.1 and 271.7 Ma, three times the spread compared to Rb MC-ICPMS data. Biotite and phlogopite from the central Nagssugtoqidian orogen, West Greenland, yield 40Ar/39Ar plateau ages (ca. 1700 Ma) with a spread of ±150 Ma, while Rb-Sr ages on either biotite or phlogopite separates have a much narrower range of ±10 Ma. This comparison of Rb-Sr and 40Ar/39Ar ages demonstrates the robustness of the Rb-Sr system in tri-octahedral micas and cautions against the sole use of 40Ar/39Ar tri-octahedral mica ages to date geological events. Analytical errors of 16 Ma for these Rb-Sr mica ages determined by TIMS are reduced to <±5 Ma when the Rb concentration is determined by MC-ICPMS. All the TIMS and MC-ICPMS data from the Nagssugtoqidian orogen agree within assigned analytical uncertainties. However, high precision Rb-Sr dating by MC-ICPMS can resolve geological information obscured by TIMS age determinations. TIMS data for seven phlogopite samples form an isochron age of 1645±6 Ma, and thus, no differentiation in age between the different samples can be made. In contrast, MC-ICPMS Rb measurements on the same samples reveal two distinct populations with ages of 1633±3 or 1652±5 Ma.Combining the mica Rb-Sr geochronological data with the well-constrained thermal history of this ancient orogen, we estimate the closure temperature of the Rb-Sr system in 1-2 mm slowly cooled phlogopite crystals, occurring in a matrix of calcite and plagioclase to be ∼435 °C, and at least 50 °C above that of biotite.  相似文献   

15.
The epithermal El Peñon gold–silver deposit consists of quartz–adularia veins emplaced within a late Upper Paleocene rhyolitic dome complex, located in the Paleocene–Lower Eocene Au–Ag belt of northern Chile. Detailed K–Ar and 40Ar/39Ar geochronology on volcano–plutonic rocks and hydrothermal minerals were carried out to constrain magmatic and hydrothermal events. The Paleocene to Lower Eocene magmatism in the El Peñon area is confined to a rhomb-shaped basin, which was controlled by N–S trending normal faults and both NE- and NW-trending transtensional fault systems. The earliest products of the basin-filling sequences comprise of Middle to Upper Paleocene (~59–55 Ma) welded rhyolitic ignimbrites and andesitic to dacitic lavas, with occasional dacitic dome complexes. Later, rhyolitic and dacitic dome complexes (~55–52 Ma) represent the waning stages of volcanism during the latest Upper Paleocene and the earliest Eocene. Lower Eocene porphyry intrusives (~48–43 Ma) mark the end of the magmatism in the basin and a change to a compressive tectonomagmatic regime. 40Ar/39Ar geochronology of hydrothermal adularia from the El Peñon deposit yields ages between 51.0±0.6 and 53.1±0.5 Ma. These results suggest that mineralization occurred slightly after the emplacement of the El Peñon rhyolitic dome at 54.5±0.6 Ma (40Ar/39Ar age) and was closely tied to later dacitic–rhyodacitic bodies of 52 to 53 Ma (K–Ar ages), probably as short-lived pulses related to single volcanic events.  相似文献   

16.
An integrated geological study of the tectono-metamorphic evolution of the metamorphic complex of Beloretzk (MCB) which is part of the eastern Bashkirian mega-anticlinorium (BMA), SW Urals, Russia shows that the main lithological units are Neoproterozoic (Riphean and Vendian age) siliciclastic to carbonate successions. Granitic, syenitic and mafic intrusions together with subaerial equivalents comprise the Neo- and Mesoproterozoic magmatic rocks. The metamorphic grade ranges from diagenetic and very low grade in the western BMA to high-grade in the MCB. The N–S trending Zuratkul fault marks the change in metamorphic grade and structural evolution between the central and eastern BMA. Structural data, Pb/Pb-single zircon ages, 40Ar/39Ar cooling ages and the provenance signature of Riphean and Vendian siliciclastic rocks in the western BMA give evidence of Mesoproterozoic (Grenvillian) rifting, deformation and eclogite-facies metamorphism in the MCB and a Neoproterozoic (Cadomian) orogenic event in the SW Urals. Three pre-Ordovician deformation phases can be identified in the MCB. The first SSE-vergent, isoclinal folding phase (D1) is younger than the intrusion of mafic dykes (Pb/Pb-single zircon: 1350 Ma) and older than the eclogite-facies metamorphism. High P/low T eclogite-facies metamorphism is bracketed by D1 and the intrusion of the Achmerovo granite (Pb/Pb-single zircon: ≤970 Ma). An extensional, sinistral, top-down-to-NW directed shearing (D2) is correlated with the first exhumation of the MCB. E-vergent folding and thrusting (D3) occurred at retrograde greenschist-facies metamorphic conditions. The tremolite 40Ar/39Ar cooling age (718±5 Ma) of amphibolitic eclogite and muscovite 40Ar/39Ar cooling ages (about 550 Ma) of mica schists indicate that a maximum temperature of 500±50 °C was not reached during the Neoproterozoic orogeny. The style and timing of the Neoproterozoic orogeny show similarities to the Cadomian-aged Timan Range NW of the Polar Urals. Geochronological and thermochronological data together with the abrupt change in structural style and metamorphism east of the Zuratkul fault, suggest that the MCB is exotic with respect to the SE-margin of the East European Platform. Thus, the MCB is named the ‘Beloretzk Terrane’. Recognition of the ‘Beloretzk Terrane’ and the Neoproterozoic orogeny at the eastern margin of Baltica has important implications for Neoproterozoic plate reconstruction and suggests that the eastern margin of Baltica might have lain close to the Avalonian–Cadomian belt.  相似文献   

17.
琼北火山岩激光40Ar/39Ar定年研究   总被引:1,自引:1,他引:0  
洒骁  季建清  周晶 《岩石学报》2013,29(8):2789-2795
新生代以来,雷琼地区多次、大量地喷发了一系列火山岩。前人主要基于K-Ar法对此划分了期次。本文采用激光40Ar/39Ar年代学方法,对琼北火山岩区进行了精细定年研究。低本底激光40Ar/39Ar法能够对低钾含量,极少量样品(毫克级)进行精细测定,非常适合极年轻火山岩的定年工作。结果显示的火山岩激光40Ar/39Ar法高质量数据表明琼北火山喷发活动时限跨越1.3~0.052Ma。在比较了表观年龄与等时线年龄差异之后,本文给出了年龄推荐值。正如测试数据所显示,本地区新生代火山岩普遍存在40Ar和36Ar过剩的问题,此时只有等时线年龄才代表喷发的真实年龄。  相似文献   

18.
The 40Ar/39Ar dating technique is based on the knowledge of the age of neutron fluence monitors (standards). Recent investigations have improved the accuracy and precision of the ages of most of the Phanerozoic-aged standards (e.g. Fish Canyon Tuff sanidine (FCs), Alder Creek sanidine, GA1550 biotite and LP-6 biotite); however, no specific study has been undertaken on the older standards (i.e. Hb3gr hornblende and NL-25 hornblende) generally used to date Precambrian, high Ca/K, and/or meteoritic rocks.In this study, we show that Hb3gr hornblende is relatively homogenous in age, composition (Ca/K) and atmospheric contamination at the single grain level. The mean standard deviation of the 40Ar?/39ArK (F-value) derived from this study is 0.49%, comparable to the most homogeneous standards. The intercalibration factor (which allows direct comparison between standards) between Hb3gr and FCs is RFCsHb3gr = 51.945 ± 0.167. Using an age of 28.02 Ma for FCs, the age of Hb3gr derived from the R-value is 1073.6 ± 5.3 Ma (1σ; internal error only) and ± 8.8 Ma (including all sources of error). This age is indistinguishable within uncertainty from the K/Ar age previously reported at 1072 ± 11 Ma [Turner G., Huneke, J.C., Podosek, F.A., Wasserburg, G.J., 1971. 40Ar-39Ar ages and cosmic ray exposure ages of Apollo 14 samples. Earth Planet. Sci. Lett. 12, 19-35].The R-value determined in this study can also be used to intercalibrate FCs if we consider the K/Ar date of 1072 Ma as a reference age for Hb3gr. We derive an age of 27.95 ± 0.19 Ma (1σ; internal error only) for FCs which is in agreement with the previous determinations. Altogether, this shows that Hb3gr is a suitable standard for 40Ar/39Ar geochronology.  相似文献   

19.
40Ar/39Ar dating and estimates of regional metamorphic PT conditions were carried out on the basement rocks of the Eastern Kunlun Mountains, Western China. Samples from the Jinshuikou, Xiaomiao, Kuhai, Wanbaogou, and Nachitai groups revealed distinct metamorphic events and four age groups. The age group in the range from 363 to 439 Ma is interpreted to represent cooling after Middle Silurian–Late Devonian granulite(?) and amphibolite facies metamorphism, which is dominated by low–middle pressure/high temperature conditions. This tectono-thermal event is related to the closure of an oceanic basin or marginal sea. An age group of 212–242 Ma represents cooling after Triassic metamorphic overprint, which is probably associated with magmatic intrusions. This thermal event, together with the Permo-Triassic ophiolite zone along the South Kunlun Fault, relates to the closure of a major ocean (between India and Eurasia) and the eventual N-ward accretion of the Qiangtang block in Permo-Triassic times. The significance of the age group of 104–172 Ma may be related to the ductile deformation along the Xidatan fault due to the northward-directed accretion of the Lhasa block. Biotites from Nachitai record a partial isotopic resetting at ca. 32 Ma that is interpreted to represent a late-stage exhumation caused by further crustal shortening.  相似文献   

20.
Abstract Recent investigations reveal that the ultrahigh‐pressure metamorphic (UHPM) rocks in the Donghai region of East China underwent ductile and transitional ductile‐brittle structural events during their exhumation. The earlier ductile deformation took place under the condition of amphibolite facies and the later transitional ductile‐brittle deformation under the condition of greenschist facies. The hanging walls moved southeastward during both of these two events. The 40Ar/39Ar dating of muscovites from muscovite‐plagioclase schists in the Haizhou phosphorous mine, which are structurally overlain by UHPM rocks, yields a plateau age of 218.0±2.9 Ma and isochron age of 219.8Ma, indicating that the earlier event of the ampibolite‐facies deformation probably took place about 220 Ma ago. The 40Ar/39Ar dating of oriented amphiboles parallel to the movement direction of the hanging wall on a decollement plane yields a plateau age of 213.1 ± 0.3 Ma and isochron age of 213.4±4.1 Ma, probably representing the age of the later event. The dating of pegmatitic biotites and K‐feldspars near the decollement plane from the eastern Fangshan area yield plateau ages of 203.4±0.3 Ma, 203.6±0.4 Ma and 204.8±2.2 Ma, and isochron ages of 204.0±2.0 Ma, 200.6±3.1 Ma and 204.0±5.0 Ma, respectively, implying that the rocks in the studied area had not been cooled down to closing temperature of the dated biotites and K‐feldspars until the beginning of the Jurassic (about 204 Ma). The integration of these data with previous chronological ages on the ultrahigh‐pressure metamorphism lead to a new inference on the exhumation of the UHPM rocks. The UHPM rocks in the area were exhumed at the rate of 3–4 km/Ma from the mantle (about 80–100 km below the earth's surface at about 240 Ma) to the lower crust (at the depth of about 20‐30km at 220 Ma), and at the rate of 1–2 km/Ma to the middle crust (at the depth of about 15 km at 213 Ma), and then at the rate of less than 1 km/Ma to the upper crust about 10 km deep at about 204 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号