首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The 40Ar/39Ar dating technique requires the use of neutron fluence monitors (standards). Precise calibrations of these standards are crucial to decrease the uncertainties associated with 40Ar/39Ar dates. Optimal calibration of 40Ar/39Ar standards should be based on K/Ar standards having independent isotope dilution measurements of 40K and 40Ar*, based on independent isotope tracers (spikes) because this offers the possibility to eliminate random interlaboratory errors. In this study, we calibrate the widely used Fish Canyon sanidine (FCs) standard based on four primary K/Ar standards (GA-1550, Hb3gr, NL-25, and GHC-305) on which K and Ar* concentrations have been determined in different labs with independently calibrated tracers. We obtained a mean age of 28.03 ± 0.08 Ma (1σ; neglecting uncertainties of the 40K decay constants) for FCs, based on the decay constant recommended by Steiger and Jäger [Steiger R.H., Jäger. E. 1977. Subcommission on geochronology: convention of the use of decay constants in geo- and cosmochronology. Earth Planet. Sci. Lett.36, 359-362.]. This age corresponds to a mean 40Ar*/40K value of (1.6407 ± 0.0047) × 10−3. We also discuss several criteria that prevent the use of previous calibrations of FCs based on other primary standards (LP-6, SB-3 and MMhb-1). The age of FCs obtained in this study is based on the 40K decay constants of Steiger and Jäger (1977) but we anticipate the imminent need for revision of the value and precision of the 40K decay constants (representing the main source of uncertainties in 40Ar/39Ar dating). The 40Ar*/40K result of FCs obtained in this study allows therefore a rapid calibration of the age of FCs with uncertainties at the 0.29% level but perhaps more importantly this value is independent of any particular value of the 40K decay constants and may be used in the future in conjunction with revised decay constants.  相似文献   

2.
Potassium-Ar and Rb-Sr dating of minerals was fundamental in early efforts to date magmatic and metamorphic processes and paved the way for geochronology to become an important discipline within the earth sciences. Although K-Ar and, in particular, 40Ar/39Ar dating of micas is still widely applied, Rb-Sr dating of micas has declined in use, even though numerous studies demonstrated that tri-octahedral mica yields geologically realistic, and more reliable and reproducible Rb-Sr ages than the K-Ar or 40Ar/39Ar system. Moreover, a reduction of uncertainties typically reported for Rb-Sr ages (ca. 1%) can now be achieved by application of multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) rubidium isotope dilution measurements (<0.3%). Replicate Rb-Sr biotite ages from the Oslo rift, Norway, yield an external reproducibility of ±0.3% (n=4) and an analytical error of ±0.8 Ma for individual ages that vary between 276.9 and 275.5 Ma. Conventional thermal ionisation mass spectrometry (TIMS) Rb analysis on the same mineral separates yields ages between 276.1 and 271.7 Ma, three times the spread compared to Rb MC-ICPMS data. Biotite and phlogopite from the central Nagssugtoqidian orogen, West Greenland, yield 40Ar/39Ar plateau ages (ca. 1700 Ma) with a spread of ±150 Ma, while Rb-Sr ages on either biotite or phlogopite separates have a much narrower range of ±10 Ma. This comparison of Rb-Sr and 40Ar/39Ar ages demonstrates the robustness of the Rb-Sr system in tri-octahedral micas and cautions against the sole use of 40Ar/39Ar tri-octahedral mica ages to date geological events. Analytical errors of 16 Ma for these Rb-Sr mica ages determined by TIMS are reduced to <±5 Ma when the Rb concentration is determined by MC-ICPMS. All the TIMS and MC-ICPMS data from the Nagssugtoqidian orogen agree within assigned analytical uncertainties. However, high precision Rb-Sr dating by MC-ICPMS can resolve geological information obscured by TIMS age determinations. TIMS data for seven phlogopite samples form an isochron age of 1645±6 Ma, and thus, no differentiation in age between the different samples can be made. In contrast, MC-ICPMS Rb measurements on the same samples reveal two distinct populations with ages of 1633±3 or 1652±5 Ma.Combining the mica Rb-Sr geochronological data with the well-constrained thermal history of this ancient orogen, we estimate the closure temperature of the Rb-Sr system in 1-2 mm slowly cooled phlogopite crystals, occurring in a matrix of calcite and plagioclase to be ∼435 °C, and at least 50 °C above that of biotite.  相似文献   

3.
The 40Ar/39Ar dating technique requires the activation of 39Ar via neutron irradiation. The energy produced by the reaction is transferred to the daughter atom as kinetic energy and triggers its displacement, known as the recoil effect. Significant amounts of 39Ar and 37Ar can be lost from minerals leading to spurious ages and biased age spectra. Through two experiments, we present direct measurement of the recoil-induced 39Ar and 37Ar losses on Fish Canyon sanidine and plagioclase. We use multi-grain populations with discrete sizes ranging from 210 to <5 μm. One population consists of a mixture between sanidine and plagioclase, and the other includes pure sanidine.We show that 39Ar loss (depletion factor) for sanidine is ∼3% for the smallest fraction. Age spectra of fractions smaller than ∼50 μm show slight departure from flat plateau-age spectrum usually observed for large sanidine. This departure is roughly proportional to the size of the grain but does not show typical 39Ar loss age spectra. The calculated thickness of the total depletion layer d0(sanidine) is 0.035 ± 0.012 (2σ). This is equivalent to a mean depth of the partial depletion layer (x0) of 0.070 ± 0.024 μm. The latter value is indistinguishable from previous values of ∼0.07-0.09 μm obtained by argon implantation experiments and simulation results.We show that it is possible to adequately correct ages from 39Ar ejection loss provided that the d0-value and the size range of the minerals are sufficiently constrained. As exemplified by similar calculations performed on results obtained in a similar study of GA1550 biotite [Paine J. H., Nomade S., and Renne P. R. (2006) Quantification of 39Ar recoil ejection from GA1550 biotite during neutron irradiation as a function of grain dimensions. Geochim. Cosmochim. Acta70, 1507-1517.], the d0(biotite) is 0.46 ± 0.06 μm. The significant difference between empirical results on biotite and sanidine, along with different simulation results, suggests that for biotite, crystal structures and lattice defects of the stopping medium and possibly subsequent thermal degassing (due to ∼150-200 °C temperature in the reactor or extraction line bake out) must play an important role in 39Ar loss.The second experiment suggests that 37Ar recoil can substantially affect the age via the interference corrections with results that suggest up to ∼98% of 37Ar can be ejected from the ∼5 μm grain dimension.Further investigation of silicates of various compositions and structures are required to better understand (and correct) the recoil and recoil-induced effects on both 39Ar and 37Ar and their influences on 40Ar/39Ar dating.  相似文献   

4.
This study presents a new high-precision 40Ar/39Ar age for the Devonian hot-spring system at Rhynie. Hydrothermal K-feldspar sampled from two veins that represent feeder conduits and a hydrothermally altered andesite wall rock, date the hydrothermal activity, the fossilised biota, and syn - K-feldspar gold mineralization at 403.9 ± 2.1 Ma (2σ). Oxygen isotope data for the parent fluid (−4‰ to 2‰) show that the K-feldspar was precipitated from a dominantly meteoric fluid, which mixed with magmatic fluids from a degassing magma chamber.The 40Ar/39Ar age (403.9 ± 2.1 Ma [2σ]) when recalculated (407.1 ± 2.2 Ma [2σ]) with respect to the astronomically tuned age for Fish Canyon sanidine (28.201 ± 0.023 Ma [1σ]), also provides a robust marker for the polygonalis-emsiensis Spore Assemblage Biozone within the Pragian-?earliest Emsian. Furthermore, the age identifies the Devonian pull-apart volcano-sedimentary basins of the British and Irish Caledonides (and their root zones), as specific targets for future gold exploration.  相似文献   

5.
40Ar/39Ar ages on the Hat Creek Basalt (HCB) and stratigraphically related lava flows show that latest Pleistocene tholeiitic basalt with very low K2O can be dated reliably. The HCB underlies ∼ 15 ka glacial gravel and overlies four andesite and basaltic andesite lava flows that yield 40Ar/39Ar ages of 38 ± 7 ka (Cinder Butte; 1.65% K2O), 46 ± 7 ka (Sugarloaf Peak; 1.85% K2O), 67 ± 4 ka (Little Potato Butte; 1.42% K2O) and 77 ± 11 ka (Potato Butte; 1.62% K2O). Given these firm age brackets, we then dated the HCB directly. One sample (0.19% K2O) clearly failed the criteria for plateau-age interpretation, but the inverse isochron age of 26 ± 6 ka is seductively appealing. A second sample (0.17% K2O) yielded concordant plateau, integrated (total fusion), and inverse isochron ages of 26 ± 18, 30 ± 20 and 24 ± 6 ka, all within the time bracket determined by stratigraphic relations; the inverse isochron age of 24 ± 6 ka is preferred. As with all isotopically determined ages, confidence in the results is significantly enhanced when additional constraints imposed by other isotopic ages within a stratigraphic context are taken into account.  相似文献   

6.
New 40Ar/39Ar thermochronology results and thermal modeling support the hypothesis of Hollister et al. (2004), that reheating of the mid-Cretaceous Ecstall pluton by intrusion of the Coast Mountains Batholith (CMB) was responsible for spatially variable remagnetization of the Ecstall pluton. 40Ar/39Ar ages from hornblende and biotite from 12 locations along the Skeena River across the northern part of the Ecstall pluton decrease with proximity to the Quottoon plutonic complex, the nearest member of the CMB to the Ecstall pluton. The oldest 40Ar/39Ar ages are found farthest from the Quottoon plutonic complex, and are 90 ± 3 Ma for hornblende, and 77.9 ± 1.2 Ma for biotite. The youngest 40Ar/39Ar ages are found closest to the Quottoon plutonic complex, and are 51.6 ± 1.2 Ma for hornblende, and 45.3 ± 1.7 Ma for biotite. No obvious relationship between grain size and age is seen in the Ecstall pluton biotites. Spatial trends in 40Ar/39Ar ages are consistent with model results for reheating by a thermal wall at the location of the Quottoon plutonic complex. Although no unique solution is suggested, our results indicate that the most appropriate thermal history for the Ecstall pluton includes both reheating and northeast side up tilting of the Ecstall pluton associated with intrusion of the Quottoon plutonic complex. Estimates of northward translation from shallow paleomagnetic inclinations in the western part of the Ecstall pluton are reduced to ∼3000 km, consistent with the Baja-BC hypothesis, when northeast side up tilting is accounted for.  相似文献   

7.
Moldavites (Central European tektites) are genetically related to the impact event that produced the ∼24-km diameter Ries crater in Germany, representing one of the youngest large impact structures on Earth. Although several geochronological studies have been completed, there is still no agreement among 40Ar-39Ar ages on both moldavites and glasses from Ries suevites. Even recently published data yielded within-sample mean ages with a nominal spread of more than 0.6 Ma (14.24-14.88 Ma). This age spread, which significantly exceeds current internal errors, must be in part ascribed to geological and/or analytical causes.This study reports the results of a detailed geochronological investigation of moldavites from the Cheb area (Czech Republic), which have never been dated before, and, for comparison, of two samples from type localities, one in southern Bohemia and the other in western Moravia. We used 40Ar-39Ar laser step-heating and total fusion techniques in conjunction with microscale petrographic and chemical characterization. In addition, with the purpose of ascertaining the influence of the dating standards on the age of the Ries impact and making data from this study and literature consistent with the now widely used Fish Canyon sanidine (FCs) standard, we performed a direct calibration of multi-grain splits of the Fish Canyon biotite (FCT-3) with FCs. The intercalibration factors (), determined for eight stack positions in one of the three performed irradiations, were indistinguishable within errors and gave an arithmetic mean and a standard deviation of 1.0086 ± 0.0031 (±2σ), in agreement with previous works suggesting that biotite from the Fish Canyon Tuff is somewhat older (∼0.8%) than the coexisting sanidine.Laser total fusion analysis of milligram to sub-milligram splits of five tektite samples from the Cheb area yielded mostly concordant intrasample 40Ar-39Ar ages, and within-sample weighted mean ages of 14.66 ± 0.08-14.75 ± 0.12 Ma (±2σ internal errors, ages relative to FCs) that overlap within errors. These ages match those obtained for samples from western Moravia (14.66 ± 0.08 Ma) and southern Bohemia (14.68 ± 0.11 Ma), supporting the genetic link between Cheb Basin tektites and moldavites, and, consequently, between Cheb Basin tektites and the Ries impact. In contrast to samples from the Cheb area and Moravia, 40Ar-39Ar ages from total fusion experiments on the Bohemian specimen ranged widely from ∼14.6 to ∼17.0 Ma. Older apparent ages, however, were systematically obtained from fragments characterized by visible surface alteration. Laser step-heating experiments, although displaying slightly disturbed age profiles, were in line with total fusion analyses and yielded well-defined plateau ages of 14.64 ± 0.11-14.71 ± 0.11 Ma (±2σ internal errors, ages relative to FCs).A thorough comparison of our and previous 40Ar-39Ar ages on both moldavites and Ries suevite glasses, recalculated relative to the 40Ar/40K ratio recently determined for FCs using intercalibration factors available in or derivable from the literature, reveals some inconsistencies which may be ascribed to either geological or analytical causes. Based on our data, decay constants in current use in geochronology, and ages calculated relative to FCs, we infer that the age of moldavites is 14.68 ± 0.11 Ma (±2σ, neglecting uncertainties in the 40K decay constants).  相似文献   

8.
40Ar/39Ar and K-Ar geochronology have long suffered from large systematic errors arising from imprecise K and Ar isotopic data for standards and imprecisely determined decay constants for the branched decay of 40K by electron capture and β emission. This study presents a statistical optimization approach allowing constraints from 40K activity data, K-Ar isotopic data, and pairs of 238U-206Pb and 40Ar/39Ar data for rigorously selected rocks to be used as inputs for estimating the partial decay constants (λε and λβ) of 40K and the 40Ar∗/40K ratio (κFCs) of the widely used Fish Canyon sanidine (FCs) standard. This yields values of κFCs = (1.6418 ± 0.0045) × 10−3, λε = (0.5755 ± 0.0016) × 10−10 a−1 and λβ = (4.9737 ± 0.0093) × 10−10 a−1. These results improve uncertainties in the decay constants by a factor of >4 relative to values derived from activity data alone. Uncertainties in these variables determined by our approach are moderately to highly correlated (cov(κFCs, λε) = 7.1889 × 10−19, cov(κFCs, λβ) = −7.1390 × 10−19, cov(λε, λβ) = −3.4497 × 10−26) and one must take account of the covariances in error propagation by either linear or Monte Carlo methods. 40Ar/39Ar age errors estimated from these results are significantly reduced relative to previous calibrations. Also, age errors are smaller for a comparable level of isotopic measurement precision than those produced by the 238U/206Pb system, because the 40Ar/39Ar system is now jointly calibrated by both the 40K and 238U decay constants, and because λε(40K) < λ(238U). Based on this new calibration, the age of the widely used Fish Canyon sanidine standard is 28.305 ± 0.036 Ma. The increased accuracy of 40Ar/39Ar ages is now adequate to provide meaningful validation of high-precision U/Pb or astronomical tuning ages in cases where closed system behavior of K and Ar can be established.  相似文献   

9.
The precision and accuracy of 40Ar/39Ar dates are ultimately linked to co-irradiated reference materials of known age. Here we provide new data from the SK01 sanidine, which was analysed in three different laboratories to evaluate it as a 40Ar/39Ar reference material. Aliquots of 5 mg, incrementally heated in two laboratories, yielded indistinguishable results with a weighted mean age of 27.58 ± 0.06 Ma (95% confidence level). Single-crystal step heating and single-crystal total fusion analyses of SK01 sanidine were undertaken in the third laboratory to further test the intracrystalline homogeneity. For the seven step-heating analyses, six crystals yielded nearly concordant age spectra with 40Ar/39Ar ages ranging from 26.853 ± 0.094 Ma to 26.963 ± 0.067 Ma, whereas one crystal gave an older age of 27.774 ± 0.071 Ma with a slightly discordant age spectrum. Twenty-three single-crystal total fusion analyses yielded 40Ar/39Ar ages ranging from 27.070 ± 0.108 Ma to 27.736 ± 0.062 Ma with a dispersion of ~ 3.8%. The older ages from single-crystal total fusion dates are interpreted to reflect an inherited or excess argon component in some crystals. This is an initial characterisation of the SK01 sanidine, and additional work needs to be conducted to further evaluate the age dispersion so that it can be utilised as a 40Ar/39Ar reference material.  相似文献   

10.
New 40Ar/39Ar age data are determined for Cenozoic basaltic rocks from the Thuringian Rhön and Heldburg Gangschar (area also referred to as Grabfeld), integral parts of the Central European Volcanic Province. Applying the incremental heating technique on groundmass and plagioclase separates provided data which considerably specify our knowledge on the eruption ages in these volcanic fields and narrow down the duration of volcanic activity compared to earlier studies. All data but one outlier range between 20 and 14 Ma, being thus similar to those of the neighbouring Vogelsberg volcanic complex. The spectrum of ages is clearly divided into two distinct subsets: the Rhön ages are between 20 and 18 Ma, those of the Heldburg Gangschar are between 16 and 14 Ma. Thus, the present data clearly indicate a striking regional and temporal division of the Thuringian Miocene volcanism. The composition of the volcanic rocks in the two volcanic fields is remarkably diverse, ranging from tholeiitic basalts over alkali basalts and basanites to nephelinites. However, radiometric ages do not correlate with geochemical or petrological characteristics of the volcanics within each volcanic field, indicating that the different magma types erupted broadly contemporaneously.The outlier in age (29 Ma) is from a volcanic dyke of the NE Rhön area close to the NW end of the Thuringian Forest. However, more data are required to approve the significance of this age value, in particular since the rock showed isotopic age disturbance.  相似文献   

11.
Sung Won Kim   《Gondwana Research》2005,8(3):385-402
An understanding of the Okcheon Metamorphic Belt (OMB) in South Korea is central to unraveling the tectono-metamorphic evolution of East Asia. Amphibole-bearing rocks in the OMB occur as calcsilicate layers and lenses in psammitic rocks, in the psammitic rocks themselves, and in the mafic volcanic layers and intrusives. Most amphiboles fail to show 40Ar/39Ar plateau ages; those that do have ages ranging from 132 to 975 Ma. The disturbed age pattern and wide variation in 40Ar/39Ar ages can be related to metamorphic grade, retrograde chemical reactions, excess Ar and amphibole composition. The oldest age (975 Ma) can be interpreted either as an old igneous or metamorphic age predating sedimentation or a false age caused by excess Ar. The youngest age of 132 Ma and the disturbed age pattern found in amphiboles from rocks located close to Jurassic granitoids are the result of retrograde thermal metamorphic effects accompanying intrusion of the granitoids. Some medium- or coarse-grained amphiboles in the calcsilicates are aggregates of fine-grained crystals. As a result, they are heterogeneous and prove to be readily affected by excess Ar. A disturbed age pattern in amphiboles from the calcsilicates occurring in the high-grade metamorphic zone may also be the product of excess Ar. On the other hand, the disturbed pattern of amphiboles present in the calcsilicates from the low-grade metamorphic zone could arise from both excess Ar and mixed ages. However, amphiboles from psammitic rocks and some calcsilicates in the high-grade metamorphic zone and in intrusive metabasites display real plateau ages of 237 to 261 Ma. The temperature conditions in the high-grade metamorphic zone were higher than the argon closing temperature for amphibole, and the amphiboles in this zone give plateau ages only when they are homogeneous in composition, lack excess Ar, and have not been thermally affected by intrusion of the granitoids. The unmodified 40Ar/39Ar ages prove rather younger than the age of the Late Paleozoic metamorphic event of 280 to 300 Ma, but they are close to muscovite K-Ar ages of 263 to 277 Ma. These 40Ar/39Ar amphibole ages are interpreted as the time of cooling that followed the main regional, intermediate-P/T metamorphic climax. The results demonstrate that interpretation of 40Ar/39Ar amphibole ages in an area subjected to several metamorphic events can be accomplished only by undertaking a thorough tectono-metamorphic study, accompanied by detailed chemical analysis of the amphiboles.  相似文献   

12.
The 40Ar/39Ar stepwise crushing technique is applied for the first time to date garnet from ultra-high-pressure metamorphic (UHPM) eclogites. Three garnet samples from the Bixiling eclogites analyzed by 40Ar/39Ar stepwise crushing yield regular, predictable age spectra, and a clear separation between excess 40Ar and concordant plateau and isochron ages. All three age spectra begin with high apparent ages followed by step by step decreasing ages, and finally age plateaux with apparent ages in the range from 427 ± 20 to 444 ± 10 Ma. The data points constituting the age plateaux yield excellent isochrons with radiogenic intercept ages ranging from 448 ± 34 to 459 ± 58 Ma, corresponding to initial 40Ar/36Ar ratios from 292.1 ± 4.5 to 294.5 ± 6.7, statistically indistinguishable from the modern air. The high initial ages are interpreted to derive from secondary fluid inclusions containing excess 40Ar, whereas the plateau ages are attributed to gas from small primary fluid inclusions without significant excess 40Ar. The plateau ages are interpreted to approximate the time of garnet growth during initial UHPM metamorphism. Phengite analyzed by laser stepwise heating yielded a complicated two-saddle age spectrum with a scattered isochron corresponding to age of 463 ± 116 Ma and initial 40Ar/36Ar ratio of 1843 ± 1740 indicative of the presence of extraneous 40Ar within phengite. These concordant isochron ages measured on minerals diagnostic of eclogite grade metamorphism strongly suggest that Dabie UHPM eclogites were first formed in the early Paleozoic, during the same event that caused the Qinling-Northern Qaidam Basin-Altyn Tagh eclogites.  相似文献   

13.
Structural and thermochronological studies of the Kampa Dome provide constraints on timing and mechanisms of gneiss dome formation in southern Tibet. The core of Kampa Dome contains the Kampa Granite, a Cambrian orthogneiss that was deformed under high temperature (sub-solidus) conditions during Himalayan orogenesis. The Kampa Granite is intruded by syn-tectonic leucogranite dikes and sills of probable Oligocene to Miocene age. Overlying Paleozoic to Mesozoic metasedimentary rocks decrease in peak metamorphic grade from kyanite + staurolite grade at the base of the sequence to unmetamorphosed at the top. The Kampa Shear Zone traverses the Kampa Granite — metasediment contact and contains evidence for high-temperature to low-temperature ductile deformation and brittle faulting. The shear zone is interpreted to represent an exhumed portion of the South Tibetan Detachment System. Biotite and muscovite 40Ar/39Ar thermochronology from the metasedimentary sequence yields disturbed spectra with 14.22 ± 0.18 to 15.54 ± 0.39 Ma cooling ages and concordant spectra with 14.64 ± 0.15 to 14.68 ± 0.07 Ma cooling ages. Petrographic investigations suggest disturbed samples are associated with excess argon, intracrystalline deformation, mineral and fluid inclusions and/or chloritization that led to variations in argon systematics. We conclude that the entire metasedimentary sequence cooled rapidly through mica closure temperatures at  14.6 Ma. The Kampa Granite yields the youngest biotite 40Ar/39Ar ages of  13.7 Ma immediately below the granite–metasediment contact. We suggest that this age variation reflects either varying mica closure temperatures, re-heating of the Kampa Granite biotites above closure temperatures between 14.6 Ma and 13.7 Ma, or juxtaposition of rocks with different thermal histories. Our data do not corroborate the “inverse” mica cooling gradient observed in adjacent North Himalayan gneiss domes. Instead, we infer that mica cooling occurred in response to exhumation and conduction related to top-to-north normal faulting in the overlying sequence, top-to-south thrusting at depth, and coeval surface denudation.  相似文献   

14.
Hornblende incremental heating 40Ar/39Ar data were obtained from augen gneiss and amphibolite of the Sveconorwegian Province of S. Norway. In the Rogaland-Vest Agder and Telemark terranes, four pyroxene-rich samples, located close (≤ 10 km) to the anorthosite-charnockite Rogaland Igneous Complex, define an age group at 916 + 12/ − 14 Ma and six samples distributed in the two terranes yield another group at 871 + 8/ − 10 Ma. The first age group is close to the reported zircon U---Pb intrusion age of the igneous complex (931 ± 2 Ma) and the regional titanite U---Pb age (918 ± 2 Ma), whereas the second group overlaps reported regional mineral Rb---Sr ages (895-853 Ma) as well as biotite K---Ar ages (878-853 Ma). In the first group, the comparatively dry parageneses of low-P thermal metamorphism (M2) associated with the intrusion of the igneous complex are well developed, and hornblende 40Ar/39Ar ages probably record a drop in temperature shortly after this phase. In other hornblende + biotite-rich samples, with presumably a higher fluid content, the hornblende ages are probably a response to hornblende-fluid interaction during a late Sveconorwegian metamorphic or hydrothermal event. A ca 220 m.y. diachronism in hornblende 40Ar/39Ar ages is documented between S. Telemark (ca 870 Ma) and Bamble (ca 1090 Ma). Differential uplift between these terranes was mostly accommodated by shearing along the Kristiansand-Porsgrunn shear zone. The final stage of extension along this zone occurred after intrusion of the Herefoss post-kinematic granite at 926 ± 8 Ma. On the contrary, the southern part of the Rogaland-Vest Agder and Telemark terranes share a common cooling evolution as mineral ages are similar on both sides of the Mandal-Ustaoset Line the tectonic zone between them. The succession within 20 m.y. of a voluminous pulse of post-tectonic magmatism at 0.93 Ga, a phase of high-T-low-P metamorphism at 0.93-0.92 Ga, and fast cooling at a regional scale ca 0.92 Ga, suggests that the southern parts of Rogaland-Vest Agder and Telemark were affected by an event of post-thickening extension collapse at that time. This event is not recorded in Bamble.  相似文献   

15.
Spatially resolved argon isotope measurements have been performed on neutron-irradiated samples of two Martian basalts (Los Angeles and Zagami) and two Martian olivine-phyric basalts (Dar al Gani (DaG) 476 and North West Africa (NWA) 1068). With a ∼50 μm diameter focused infrared laser beam, it has been possible to distinguish between argon isotopic signatures from host rock (matrix) minerals and localized shock melt products (pockets and veins). The concentrations of argon in analyzed phases from all four meteorites have been quantified using the measured J values, 40Ar/39Ar ratios and K2O wt% in each phase. Melt pockets contain, on average, 10 times more gas (7-24 ppb 40Ar) than shock veins and matrix minerals (0.3-3 ppb 40Ar). The 40Ar/36Ar ratio of the Martian atmosphere, estimated from melt pocket argon extractions corrected for cosmogenic 36Ar, is: Los Angeles (∼1852), Zagami (∼1744) and NWA 1068 (∼1403). In addition, Los Angeles shows evidence for variable mixing of two distinct trapped noble gas reservoirs: (1) Martian atmosphere in melt pockets, and (2) a trapped component, possibly Martian interior (40Ar/36Ar: 480-490) in matrix minerals. Average apparent 40Ar/39Ar ages determined for matrix minerals in the four analyzed meteorites are 1290 Ma (Los Angeles), 692 Ma (Zagami), 515 Ma (NWA 1068) and 1427 Ma (DaG 476). These 40Ar/39Ar apparent ages are substantially older than the ∼170-474 Ma radiometric ages given by other isotope dating techniques and reveal the presence of trapped 40Ar. Cosmic ray exposure (CRE) ages were measured using spallogenic 36Ar and 38Ar production. Los Angeles (3.1 ± 0.2 Ma), Zagami (2.9 ± 0.4 Ma) and NWA 1068 (2.0 ± 0.5 Ma) yielded ages within the range of previous determinations. DaG 476, however, yielded a young CRE age (0.7 ± 0.25 Ma), attributed to terrestrial alteration. The high spatial variation of argon indicates that the incorporation of Martian atmospheric argon into near-surface rocks is controlled by localized glass-bearing melts produced by shock processes. In particular, the larger (mm-size) melt pockets contain near end-member Martian atmospheric argon. Based on petrography, composition and argon isotopic data we conclude that the investigated melt pockets formed by localized in situ shock melting associated with ejection. Three processes may have led to atmosphere incorporation: (1) argon implantation due to atmospheric shock front collision with the Martian surface, (2) transformation of an atmosphere-filled cavity into a localized melt zone, and (3) shock implantation of atmosphere trapped in cracks, pores and fissures.  相似文献   

16.
长乐—南澳断裂带变形火成岩的U-Pb和40Ar/39Ar年龄   总被引:11,自引:1,他引:11  
长乐—南澳断裂带中同构造变形的花岗闪长岩主岩和闪长岩包体的锆石UPb法和角闪石40Ar/39Ar法定年结果分别为~130Ma和~95Ma。锆石UPb年龄代表了变形花岗质岩石的形成年龄,也表明长乐—南澳断裂带至少在此时已经开始活动。角闪石40Ar/39Ar年龄不能代表长乐—南澳断裂带的活动年龄,它记录的是与大规模、未变形的早白垩世晚期(相当于石帽山群)火成活动相关的热变质事件的时间。  相似文献   

17.
LA-ICP-MS U-Pb analyses performed on zircon grains from the Lizio granite yielded an emplacement age of 316 ± 6 Ma. Typical S-C structures show that the Lizio granite was emplaced contemporaneously with dextral shearing along the northern branch of the South Armorican Shear Zone and that it was therefore active at that time. 40Ar/39Ar analyses performed on muscovite grains yielded plateau dates ranging between 311.5 and 308.2 Ma. Muscovite chemistry is typical of primary magmatic muscovite, which precludes a late fluids-induced resetting of the K-Ar isotopic system. 40Ar/39Ar dates thus likely correspond to the cooling ages below the argon closure temperature. Considering the uncertainties on the measured ages, we can propose that either the Lizio granite cooled down quickly in less than a million of years or that it remained in a hot environment for several millions of years after its emplacement. This latter scenario could have been sustained by shear heating during dextral shearing along the northern branch of the South Armorican Shear Zone.  相似文献   

18.
The waters of Lake Nyos are impounded by a fragile natural dam composed of pyroclastic rocks ejected during the formation of the lake crater (maar). Lateral erosion of this dam has reduced its width from over 500 m to only 45 m. Published whole-rock K-Ar ages of about 100 ka on juvenile basalt from the dam suggests that erosion has been slow and that the dam poses no imminent threat. New apparent 40Ar/39Ar ages of 1.4 to 232 Ma on xenocrystic K-feldspar contained in the basalt show that the xenocrysts, whose source is the 528-Ma crystalline basement, are carriers of inherited radiogenic 40Ar and would cause the whole-rock K-Ar ages to be too old. The best estimate for the age of the maar is provided by a 14C age of 400 ± 100 yr BP on charcoal from the base of the dam. This young age indicates that the dam is eroding at a relatively rapid rate; its failure, perhaps within a few decades, would result in a major flood and imperil thousands of people living downstream in Cameroon and eastern Nigeria.  相似文献   

19.
The epithermal El Peñon gold–silver deposit consists of quartz–adularia veins emplaced within a late Upper Paleocene rhyolitic dome complex, located in the Paleocene–Lower Eocene Au–Ag belt of northern Chile. Detailed K–Ar and 40Ar/39Ar geochronology on volcano–plutonic rocks and hydrothermal minerals were carried out to constrain magmatic and hydrothermal events. The Paleocene to Lower Eocene magmatism in the El Peñon area is confined to a rhomb-shaped basin, which was controlled by N–S trending normal faults and both NE- and NW-trending transtensional fault systems. The earliest products of the basin-filling sequences comprise of Middle to Upper Paleocene (~59–55 Ma) welded rhyolitic ignimbrites and andesitic to dacitic lavas, with occasional dacitic dome complexes. Later, rhyolitic and dacitic dome complexes (~55–52 Ma) represent the waning stages of volcanism during the latest Upper Paleocene and the earliest Eocene. Lower Eocene porphyry intrusives (~48–43 Ma) mark the end of the magmatism in the basin and a change to a compressive tectonomagmatic regime. 40Ar/39Ar geochronology of hydrothermal adularia from the El Peñon deposit yields ages between 51.0±0.6 and 53.1±0.5 Ma. These results suggest that mineralization occurred slightly after the emplacement of the El Peñon rhyolitic dome at 54.5±0.6 Ma (40Ar/39Ar age) and was closely tied to later dacitic–rhyodacitic bodies of 52 to 53 Ma (K–Ar ages), probably as short-lived pulses related to single volcanic events.  相似文献   

20.
西昆仑库地韧性剪切带的40Ar/39Ar年龄   总被引:16,自引:4,他引:12       下载免费PDF全文
西昆仑库地以南有一套变质变形较强的岩系,前人依照区域对比关系将其划为前寒武的古老基底。对西昆仑早期构造演化的论述均基于该观点,但没有提供确凿的同位素年代学证据。笔者通过野外观察、室内研究,确认库地以南的变质变形岩系是大型韧性推覆剪切作用的产物。通过对新生变质矿物角闪石和黑云母单矿物的40Ar/39Ar年龄分析,确定剪切变质年龄为426-451Ma,说明库地的变质变形岩系是形成于早古生代晚期的一条大型韧性剪切带,这对于解释西昆仑的早期构造演化具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号