首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present paper demonstrates the assessment of slope stability analysis between Rampur to Jhakri road section along National Highway (NH-22), Himachal Pradesh, India. The different types of slope failures have affected most part of slopes which causes considerable loss of life and property, inconveniences such as disruption of traffic along highways. The poorly designed rock slopes for road widening or construction purposes may weaken the stability of the slopes. A detail field investigation has been carried out to collect the representative rock samples for determination of physico-mechanical properties of rock and joint data for kinematic analysis. The rocks exposed in the area are highly jointed quartzite and quartz-mica schist of Rampur-Larji Group of Palaeoproterozoic age. The continuous slope mass rating (CSMR) technique has been applied for the assessment of slope stability analysis at five vulnerable locations and the results shows slopes are partially stable to unstable. Kinematic analysis mainly shows wedge type of failure along with few toppling and planar failures. The existing slope required immediate treatment to prevent the failure for its long term stability.  相似文献   

2.
Occurrences of landslide are most common and critical issue in North-East India. The various types of slope failures have been affected most part of slopes and road section between Malidor to Sonapur area (approx 30 Km) along NH-44 within Jaintia hills district, Meghalaya, India. These slope failures causes considerable loss of life and property along with many inconveniences such as disruption of traffic along highways. The unscientific excavations of rock slopes for road widening or construction purposes may weaken the stability of the slopes. The rocks exposed in the area are highly jointed sandstone and shale of Barail Group of Oligocene age. The Sonapur landslide is most dangerous and destructive rock fall-cum debris flow. The present study includes the kinematic analysis of the slope to assess the potential failure directions as the rocks are highly jointed in some parts of road cut sections. The continuous slope mass rating (CSMR) technique has been applied for slope stability analysis at five vulnerable locations. Kinematic analysis indicates mainly wedge type of failure along with few toppling and planar failures. These failure required immediate treatment to prevent the slide and long term stability of the slope.  相似文献   

3.
次生倾倒破坏是层状反倾岩质边坡的一种主要破坏模式,极限平衡理论是分析倾倒破坏的常用方法,研究反倾节理岩质边坡次生倾倒破坏机理对边坡工程众多的西南山区基础设施建设具有重要的工程指导意义。在Goodman和Bray块体倾倒破坏极限平衡分析方法的基础上,建立了考虑地下水压力、节理连通率、岩体黏聚力等影响因素的反倾岩质边坡在坡后土体推力作用下的次生倾倒地质力学模型,提出了坡后土体推力作用下的反倾节理岩质边坡次生倾倒破坏的解析分析方法,推导出了边坡各岩层下推力的解析表达式,提出了边坡倾倒破坏的综合安全系数,并编写了对应的matlab计算程序,为该类边坡的设计和加固提供了理论依据。通过算例分析表明,与单纯岩质边坡块体倾倒破坏相比,该类边坡次生倾倒破坏形式的特点是破坏基准面以上岩层自上而下依次分为滑移区、倾倒区和稳定区3个部分;地下水压力、节理连通率、底裂面岩体黏聚力对各岩层的破坏形式、稳定安全系数大小都具有明显影响,尤其是在坡体中下部及坡脚部分最为敏感;而各岩层稳定安全系数最小的区域集中于边坡中上部。  相似文献   

4.
In nature, there exist several forms of anisotropy in rock masses due to the presence of bedding planes, joints, and weak layers. It is well understood that the anisotropic properties of jointed rock masses significantly affect the stability of surface and underground excavations. However, these critical anisotropic characteristics are often ignored in existing uniaxial dynamic failure criteria. This study investigates the effect of a pre-existing persistent joint on the rate-dependent mechanical behaviours of a rock mass using a particle mechanics approach, namely, bonded particle model (BPM), to realistically replicate the mechanical response of the rock mass. Firstly, in order to capture the rate-dependent response of the jointed rock mass, the BPM model is validated using published experimental data. Then, a dynamic strength model is proposed based on the Jaeger criterion and simulation results. To further investigate the dynamic behaviours, the dynamic uniaxial compressive strength (UCS) for anisotropic rock masses with various joint orientations is investigated by subjecting the BPM models to uniaxial compression numerical tests with various strain rate. The proposed dynamic strength model is validated based on numerical simulation results. Finally, the fragmentation characteristics of the jointed rock masses are analysed, which demonstrate that the failure mode affects the dynamic UCS. This is further confirmed by the analysis of the orientations of microscopic cracks generated by the compression loading.  相似文献   

5.
在节理岩质边坡的稳定性分析中,往往很少考虑结构面的随机分布特征。结构面网络模拟能较好地模拟结构面的随机分布,因此,本文将结构面网络模拟应用于节理岩质边坡的稳定性分析中。首先,运用岩体结构面网络模拟技术,建立岩质边坡的结构面网络模型。然后,将模拟的结果与有限元强度折减法相结合求取边坡的安全系数。最后,对边坡进行一定次数的结构面网络模拟并得到对应的安全系数,进而进行节理岩质边坡的可靠性分析。工程实例结果表明:(1)节理岩质边坡的稳定性主要受坡面附近结构面的数量及切割组合关系影响,结构面的数量越多,连通情况越好,则边坡稳定性安全系数越小; (2)该边坡的平均稳定性安全系数为3.06,失效概率为5%,表明该边坡有较高的可靠性,这与实际情况比较一致。本文的分析方法主要考虑了结构面的随机分布特征,能为节理岩质边坡的稳定性分析提供一条新的思路和方法。  相似文献   

6.
Probabilistic analysis has been used as an effective tool to evaluate uncertainty so prevalent in variables governing rock slope stability. In this study a probabilistic analysis procedure and related algorithms were developed by extending the Monte Carlo simulation. The approach was used to analyze rock slope stability for Interstate Highway 40 (I-40), North Carolina, USA. This probabilistic approach consists of two parts: analysis of available geotechnical data to obtain random properties of discontinuity parameters; and probabilistic analysis of slope stability based on parameters with random properties. Random geometric and strength parameters for discontinuities were derived from field measurements and analysis using the statistical inference method or obtained from experience and engineering judgment of parameters. Specifically, this study shows that a certain amount of experience and engineering judgment can be utilized to determine random properties of discontinuity parameters. Probabilistic stability analysis is accomplished using statistical parameters and probability density functions for each discontinuity parameter. Then, the two requisite conditions, kinematic and kinetic instability for evaluating rock slope stability, are determined and evaluated separately, and subsequently the two probabilities are combined to provide an overall stability measure. Following the probabilistic analysis to account for variation in parameters, results of the probabilistic analyses were compared to those of a deterministic analysis, illustrating deficiencies in the latter procedure. Two geometries for the cut slopes on I-40 were evaluated, the original 75° slope and the 50° slope which has developed over the past 40 years of weathering.  相似文献   

7.
Development of a probabilistic approach for rock wedge failure   总被引:5,自引:0,他引:5  
For rock slope engineering, uncertainty and variability are inherent in data collected on orientation and strength of discontinuities, yielding a range of results. Unfortunately, conventional deterministic analysis based on the factor of safety concept, requires a fixed representative value for each parameter without regard to the degree of uncertainty involved. Therefore, the deterministic analysis fails to properly represent uncertainty and variability, so common in engineering geology studies. To overcome this shortcoming, the probabilistic analysis method was proposed and used for more than a decade in rock slope stability analysis. However, most probabilistic analyses included a deterministic model as part of the analysis procedure causing subsequent problems, which went uncorrected. The objectives of this paper are to develop a solution for these difficulties in probabilistic analyses and to propose an appropriate simulation procedure for the probabilistic analysis of rock wedge failures. As part of the solution, probability of kinematic instability and probability of kinetic instability are evaluated separately to provide a proper, combined evaluation for failure probability. To evaluate the feasibility of this new probabilistic approach, the procedure is applied to a practical example, a major, highway rock cut in North Carolina, USA. Results of the probabilistic approach are compared to those of the deterministic analysis; findings are significantly different, indicating that the deterministic analysis does not depict rock slope variations, particularly where significant scatter in parameter data occurs.  相似文献   

8.
In this paper, an anisotropic strength criterion is established for jointed rock masses. An orientation distribution function (ODF) of joint connectivity, is introduced to characterize the anisotropic strength of jointed rock masses related to directional distributed joint sets. Coulomb failure condition is formulated for each plane of jointed rock masses by joint connectivity, where the friction coefficient and cohesion of the jointed rock mass are related to those of the intact rock and joint and become orientation dependent. When approximating joint connectivity by its second‐order fabric tensor, an anisotropic strength criterion is derived through an approximate analytical solution to the critical plane problem. To demonstrate the effects of joint distribution on the anisotropic strength of jointed rock masses, the failure envelopes are worked out for different relative orientations of material anisotropy and principal stress axes. The anisotropic strength criterion is also applied to wellbore stability analyses. It is shown that a borehole drilled in the direction of the maximum principal in situ stress is not always the safest due to the anisotropic strength of the jointed rock mass. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
基于离散元法的节理岩体边坡稳定性分析   总被引:9,自引:0,他引:9  
贺续文  刘忠  廖彪  王翠翠 《岩土力学》2011,32(7):2199-2204
节理岩体边坡的稳定性在很大程度上取决于节理的强度及其分布形式。由于节理岩体边坡的失稳破坏具有大变形和非连续的特点,因此,离散单元法成为研究节理岩体边坡破坏机制的最有效方法之一。通过采用离散元软件PFC2D进行数值模拟,对完整岩石及节理的力学性能进行研究,并建立含密集节理的岩体边坡模型,讨论了节理连通率对边坡破坏形式的影响。结果表明,节理岩体边坡的失稳破坏是一个渐进的过程;在多组节理密集分布的岩体边坡中,连通率越大,其稳定性越差;随着连通率的减小,边坡的破坏形式由大范围的滑坡转变为局部崩塌的形式  相似文献   

10.
Despite the development of cities, risk assessment of rock slope stability in urban areas seems not to be growing at the same time. Mashhad is a developed city in northeast of Iran with a population of over 2.4 million. Given the closeness of the southern part of Mashhad to the Binaloud mountain ridge, the stability of the residential complexes that are being constructed in this area is a critical issue. Based on the fundamental roles of discontinuity properties and geo-mechanical parameters of rock mass, in this study we evaluated the most influential parameters of the rock slope stability and the failure probability of the slope near the Negin residential complex built on this ridge. According to the deterministic and probabilistic analyses, the north trench that was excavated for this residential complex could potentially cause plane failure. Moreover, the relationship between effective parameters on instability and their impact on safety factors were determined by sensitivity analysis. Therefore, slope dip, pore water pressure, and joint set dip were highly influential on the safety factor. There was also a nonlinear relationship between different parameters and safety in the studied area. This study presents an approach for risk assessment of rock slope stability in urban areas.  相似文献   

11.
The key question regarding steep rock slopes along rock quarries is their stability because a rock slope failure can have critical results. In this study, the aim is to investigate the areas with potential risk for jointed karstic limestones in a rock quarry. First, to determine rock mass properties, scan-line surveys were performed, and the major orientations of discontinuities were analyzed using stereographic projection. Then, the physicomechanical properties of the slope-forming rock were determined in the laboratory, and geomechanical properties of the rock mass were determined using an empirical failure criterion. Finally, the quarry slope stability was assessed in accordance with numerical modelling. According to the results obtained, the numerical modelling of steep rock slopes can be efficiently evaluated by using finite element method. Beside this, the presence of joints intersecting the main discontinuity sets, the filling materials of discontinuities resulting from weathering of limestone and surface deposits, surcharge load due to mine waste dumped on the slopes and excavation blasting during construction of quarry area play a key role when modelling the steep rock slopes by using finite element method.  相似文献   

12.
To obtain the compression–shear infiltration characteristics of joint rock, the coupled compression–shear infiltration tests of samples were carried out under different loading and boundary conditions. The shear dilatation, permeability and the change laws of hydraulic opening of jointed rockmass were obtained under different normal stiffness and loading conditions. It is shown that the contact area gradually becomes smaller and smaller with the relative sliding of two jointed surfaces. And the contact ratio is down to a minimum value when the main processes of the jointed surface reach the peak shear strength. The remaining main processes is gradually destroyed, the contact ratio of joint surface becomes larger after the main processes reaches the peak strength. The contact ratio tends to be stable until all processes were all destroyed. Due to the influence of the joint surface protrusion, the normal displacement is smaller and then increases with the increase of shear displacement. The less the stiffness of jointed rock mass is, the greater the over water area of the joint surface is, the greater the permeability is, the greater the final stability value of the hydraulic opening degree is. The theoretical basis is provided for the fractured rock mass formed of permeable channels, initiation and outbreak of permeability disaster evolution process.  相似文献   

13.
基于二维颗粒流软件PFC2D的人工合成岩体技术(SRM),研究了岩桥倾角和节理间距不同组合形式的含顺层断续节理岩质边坡在地震作用下的破坏模式与动力响应规律。研究结果显示:在地震动力作用下,含单潜在滑动面的顺层断续节理岩质边坡呈现出滑移-倾倒的混合破坏特征,含多潜在滑动面的顺层断续节理岩质边坡则主要发生倾倒破坏;由顺层断续节理以及岩桥交替连接所组成的潜在滑动面是控制边坡动力稳定性的关键因素。在地震动力作用下,最靠近坡脚的岩桥段首先萌生翼裂纹,使得拉应力得到释放,随后各节理相继萌生裂纹并扩展、贯通,最终导致坡体发生阶梯状整体失稳。裂纹扩展受顺层断续节理控制,萌生裂纹中以张拉裂纹为主,且裂纹数量与输入地震波的加速度曲线具有同步性。另一方面,节理面的存在对边坡动力响应产生明显影响,沿坡表以及沿水平方向上的峰值速度、峰值位移随着岩桥倾角的增大、节理间距的减小而增大,同时节理间距和岩桥倾角对于峰值加速度(PGA)放大系数的影响范围主要集中在坡表、坡肩;沿竖直方向上,峰值位移随着岩桥倾角、节理间距的增大而减小,PGA放大系数曲线随高程变化总体呈现U型分布特征。  相似文献   

14.
节理岩体边坡稳定性分析新方法   总被引:3,自引:0,他引:3  
冯树荣  赵海斌  蒋中明 《岩土力学》2009,30(6):1639-1642
节理岩体边坡失稳破坏同时受控于节理与岩体抗剪强度。在对具有2组平行节理的岩体坡边失稳破坏机制研究基础上,研究了具有2组平行节理岩体边坡的极限平衡分析方法,并推导了相应的边坡稳定性分析计算公式,编制了基于潜在滑动面自动搜索的边坡稳定性研究程序。通过与文献中算例的对比研究,证明了所提出的节理岩体边坡稳定性分析方法的正确性,为具有2组平行节理岩体边坡的稳定性分析提供一条新的有效途径。  相似文献   

15.
周太全  华渊 《岩土力学》2008,29(Z1):417-420
将非线性有限元分析和极限分析相结合形成强度参数折减有限元法,可以灵活地分析强度不均匀顺层路堑边坡支护结构稳定性问题。将岩体力学理论、非线性有限元分析技术和强度折减系数法相结合,对顺层岩体路堑边坡稳定性进行分析。在对密集假设节理有限元模拟中,假设节理在岩体内连续分布,采用连续介质力学方法建立密集分布节理岩体材料模型。采用强度折减系数法计算岩体结构安全系数,建议采用给定的岩体强度参数计算节理岩质边坡开挖、支护完毕后的内力,再逐渐降低岩体强度参数进行岩体边坡非线性有限元分析,直至岩体边坡达到极限状态,从而求出岩质边坡安全系数。采用该方法对渝怀铁路梅江河右岸DK409+989.4~DK410+020段顺层路堑边坡土钉墙支护结构稳定性进行分析,分析结果表明:采用土钉墙支护后的节理边坡塑安全系数为2.3,支护后的岩质边坡处于稳定状态;土钉墙潜在破裂面为岩体弹性区和塑性区的交界面,与测试得到的各排土钉拉力最大值位置一致。  相似文献   

16.
Summary The critical excavation depth of a jointed rock slope is an important problem in rock engineering. This paper studies the critical excavation depth for two idealized jointed rock slopes by employing a face-to-face discrete element method (DEM). The DEM is based on the discontinuity analysis which can consider anisotropic and discontinuous deformations due to joints and their orientations. It uses four lump-points at each surface of rock blocks to describe their interactions. The relationship between the critical excavation depth D s and the natural slope angle α, the joint inclination angle θ as well as the strength parameters of the joints c r r is analyzed, and the critical excavation depth obtained with this DEM and the limit equilibrium method (LEM) is compared. Furthermore, effects of joints on the failure modes are compared between DEM simulations and experimental observations. It is found that the DEM predicts a lower critical excavation depth than the LEM if the joint structures in the rock mass are not ignored.  相似文献   

17.
锚固节理岩体等效力学参数三维离散元模拟   总被引:4,自引:0,他引:4  
节理岩体是工程边坡的重要研究对象,通过数值模拟(3DEC)的方法研究了加锚节理岩体的力学特性。以龙滩水电站左岸边坡的锚固设计为例,推导了边坡加锚节理岩体的等效力学参数,进行了岩石数值单轴压缩试验、直剪试验以及岩体结构面直剪试验,对数值试验的结果进行了误差分析和修正,确定出加锚节理岩体的等效力学参数为:岩石的变形模量、内摩擦角、内聚力不变,结构面的内摩擦角不变,内聚力由50 kPa提高到122 kPa。所得结论与采用物理试验的试验结果相符,验证了用数值模拟方法进行岩石力学试验的可行性和可靠性。  相似文献   

18.
基于离散元的强度折减法分析岩质边坡稳定性   总被引:26,自引:0,他引:26  
雷远见  王水林 《岩土力学》2006,27(10):1693-1698
将通用离散元UDEC与强度折减法结合,对含多结构面的岩质边坡的稳定性进行了分析。通过对节理岩质边坡的UDEC模型中的可变形块体和节理单元的强度参数进行折减,使模型不能再达到平衡状态,此时的折减系数就是边坡的安全系数,另外,由对应的边坡块体的速度矢量可以确定滑动面和边坡的破坏形态。通过与传统的条分法的结果比较,表明基于UDEC的强度折减法是一种可靠、有效的方法,为复杂节理岩质边坡的滑动面确定与安全系数计算开辟了新的途径。  相似文献   

19.
Conceived as a potential alternative to the classical design methods employed for analyzing the stability of underground structures driven in jointed rocks, the homogenization approach stems from the heuristic idea that, from a macroscopic point of view, a rock mass cut by a network of joints may be perceived as a homogenized continuum. The strength properties of the latter can be theoretically obtained from the failure conditions of its individual constituents: rock matrix and joint interfaces. At the material level, the limit analysis reasoning is used in the context of homogenization to formulate the homogenized strength criterion of a jointed rock mass in the particular situation of a single set of parallel joints. As it could be expected, the obtained closed‐form expressions show the strength anisotropy induced by joint preferential orientation. The support functions (π functions) associated with the homogenized strength criterion are also determined in both plane strain and three‐dimensional cases. This criterion is then applied to the investigation of stability analysis of a tunnel excavated in a jointed rock mass. Upper bounds estimated of the stability factor are derived from the implementation of the kinematic approach directly on the homogenized underground structure. Finally, the approach is applied to analyze and discuss the collapse of the Pinheiros subway station (São Paulo, Brazil). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Slope stability of mine slopes is often associated with safety and economics during excavation. Sandstone is excavated from Rasulpur area of Fatehpur Sikri in Uttar Pradesh for the purpose of crushed, decorative and dimension stones. In the present paper an attempt has been made to characterize the rock slope faces into different stability classes. Characterization is based on geological and geotechnical parameters recorded on the outcrop during field investigation and supplemented by geomechanical properties by the laboratory test for strength of the rock intact. SMR Geomechanics classification is used to identify the stability class and remedial measures are also suggested to reduce any possible hazard. Kinematic analysis of slope was also investigated to determine the probability of any possible structurally controlled failure. On the basis of SMR Geomechanics calculations slope under investigation lies under good stability class i.e. 2a and 2b. Installation of nets during excavation can be done and for better safety spot and systematic rock bolting can be done. Kinematic study reveals that toppling failures may occur, special care must be given to the joint set which can trigger toppling failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号