首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, an anisotropic strength criterion is established for jointed rock masses. An orientation distribution function (ODF) of joint connectivity, is introduced to characterize the anisotropic strength of jointed rock masses related to directional distributed joint sets. Coulomb failure condition is formulated for each plane of jointed rock masses by joint connectivity, where the friction coefficient and cohesion of the jointed rock mass are related to those of the intact rock and joint and become orientation dependent. When approximating joint connectivity by its second‐order fabric tensor, an anisotropic strength criterion is derived through an approximate analytical solution to the critical plane problem. To demonstrate the effects of joint distribution on the anisotropic strength of jointed rock masses, the failure envelopes are worked out for different relative orientations of material anisotropy and principal stress axes. The anisotropic strength criterion is also applied to wellbore stability analyses. It is shown that a borehole drilled in the direction of the maximum principal in situ stress is not always the safest due to the anisotropic strength of the jointed rock mass. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
In nature, there exist several forms of anisotropy in rock masses due to the presence of bedding planes, joints, and weak layers. It is well understood that the anisotropic properties of jointed rock masses significantly affect the stability of surface and underground excavations. However, these critical anisotropic characteristics are often ignored in existing uniaxial dynamic failure criteria. This study investigates the effect of a pre-existing persistent joint on the rate-dependent mechanical behaviours of a rock mass using a particle mechanics approach, namely, bonded particle model (BPM), to realistically replicate the mechanical response of the rock mass. Firstly, in order to capture the rate-dependent response of the jointed rock mass, the BPM model is validated using published experimental data. Then, a dynamic strength model is proposed based on the Jaeger criterion and simulation results. To further investigate the dynamic behaviours, the dynamic uniaxial compressive strength (UCS) for anisotropic rock masses with various joint orientations is investigated by subjecting the BPM models to uniaxial compression numerical tests with various strain rate. The proposed dynamic strength model is validated based on numerical simulation results. Finally, the fragmentation characteristics of the jointed rock masses are analysed, which demonstrate that the failure mode affects the dynamic UCS. This is further confirmed by the analysis of the orientations of microscopic cracks generated by the compression loading.  相似文献   

3.
节理岩体边坡稳定性分析新方法   总被引:3,自引:0,他引:3  
冯树荣  赵海斌  蒋中明 《岩土力学》2009,30(6):1639-1642
节理岩体边坡失稳破坏同时受控于节理与岩体抗剪强度。在对具有2组平行节理的岩体坡边失稳破坏机制研究基础上,研究了具有2组平行节理岩体边坡的极限平衡分析方法,并推导了相应的边坡稳定性分析计算公式,编制了基于潜在滑动面自动搜索的边坡稳定性研究程序。通过与文献中算例的对比研究,证明了所提出的节理岩体边坡稳定性分析方法的正确性,为具有2组平行节理岩体边坡的稳定性分析提供一条新的有效途径。  相似文献   

4.
陈松  乔春生  叶青  邓斌 《岩土力学》2018,39(10):3612-3622
针对工程实际中断续节理裂隙岩体的损伤本构模型,假设岩石微元强度服从Weibull随机分布,以摩尔-库仑破坏准则作为描述微元强度的表示方法,推导出细观损伤变量。利用能量和断裂力学理论,综合考虑节理几何特征及力学特性,推导宏观损伤变量计算公式。基于Lemaitre应变等效假设,考虑宏细观缺陷耦合作用,推导出复合损伤变量,建立了基于摩尔-库仑准则的宏细观缺陷耦合作用的断续裂隙岩体损伤本构模型。研究结果表明:(1)采用摩尔-库仑准则作为描述微元强度的统计分布变量建立的损伤模型能够较好地反映岩石内部缺陷分布和变形特征,该模型真实地反映岩石微元强度受应力状态的影响。(2)该模型建立的理论曲线与断续节理岩体的试验曲线吻合较好。(3)节理裂隙岩体宏观损伤变量及峰值强度随节理倾角的变化规律与综合考虑宏细观耦合作用下的损伤变量及裂隙岩体峰值强度随节理倾角的变化规律基本一致。(4)宏细观耦合作用下的等效弹性模量与节理贯通率呈非线性负相关;在节理倾角一定的情况下,损伤变量与节理长度呈非线性正相关;在贯通率较小时,岩体的宏观损伤变量与内摩擦角的关系呈线性负相关变化,贯通率达到一定程度,线性关系变成非线性关系。  相似文献   

5.
A new rock mass failure criterion for biaxial loading conditions   总被引:1,自引:0,他引:1  
To simulate brittle rocks, a mixture of glastone, sand and water was used as a model material. Thin galvanized sheets of thickness 0.254 mm were used to create joints in blocks made out of the model material. To investigate the failure modes and strength, both the intact material blocks as well as jointed model material blocks of size 35.6 × 17.8 × 2.5 cm having different joint geometry configurations were subjected to uniaxial and biaxial compressive loadings. A new intact rock failure criterion is proposed at the 3-D level. This criterion is validated for biaxial loading through laboratory experimental results obtained on intact model material blocks. Results obtained from both the intact and jointed model material blocks are used to develop a strongly non-linear new rock mass failure criterion for biaxial loading. In this failure criterion, the fracture tensor component is used to incorporate the directional effect of fracture geometry system on jointed block strength. The failure criterion shows the important role, the intermediate principal stress plays on rock mass strength.  相似文献   

6.
Analysis of strength and moduli of jointed rocks   总被引:1,自引:0,他引:1  
This paper deals with two aspects of jointed rock mass behavior, first the finite element modeling of a jointed rock mass as an equivalent continuum, second the comparison of empirical strength criteria of a jointed rock mass. In finite element modeling the jointed rock properties are represented by a set of empirical relationships, which express the properties of the jointed medium as a function of joint factor and the properties of the intact rock. These relationships have been derived from a large set of experimental data of tangent elastic modulus. It is concluded that equivalent continuum analysis gives the best results for both single and multiple jointed rock. The reliability of the analysis depends on the estimation of joint factor, which is a function of the joint orientation, joint frequency and joint strength.Empirical strength criteria for jointed rocks, namely Hoek and Brown, Yudhbir et al., Ramamurthy and Arora, Mohr–Coulomb have been incorporated in a nonlinear finite element analysis of jointed rock using the equivalent continuum approach, to determine the failure stress. The major principal stress at failure, obtained using Ramamurthy's criteria, compares very well with experimental results.  相似文献   

7.
周太全  华渊 《岩土力学》2008,29(Z1):417-420
将非线性有限元分析和极限分析相结合形成强度参数折减有限元法,可以灵活地分析强度不均匀顺层路堑边坡支护结构稳定性问题。将岩体力学理论、非线性有限元分析技术和强度折减系数法相结合,对顺层岩体路堑边坡稳定性进行分析。在对密集假设节理有限元模拟中,假设节理在岩体内连续分布,采用连续介质力学方法建立密集分布节理岩体材料模型。采用强度折减系数法计算岩体结构安全系数,建议采用给定的岩体强度参数计算节理岩质边坡开挖、支护完毕后的内力,再逐渐降低岩体强度参数进行岩体边坡非线性有限元分析,直至岩体边坡达到极限状态,从而求出岩质边坡安全系数。采用该方法对渝怀铁路梅江河右岸DK409+989.4~DK410+020段顺层路堑边坡土钉墙支护结构稳定性进行分析,分析结果表明:采用土钉墙支护后的节理边坡塑安全系数为2.3,支护后的岩质边坡处于稳定状态;土钉墙潜在破裂面为岩体弹性区和塑性区的交界面,与测试得到的各排土钉拉力最大值位置一致。  相似文献   

8.
To predict the behavior of structures in and on jointed rock masses, it is necessary to characterize the geomechanical properties of joints and intact rock. Among geometry properties of joints, trace length has a vital importance, because it affects rock mass strength and controls the stability of the rock structures in jointed rock masses. Since joint length has a range of values, it is useful to have an understanding of the distribution of these values in order to predict how the extreme values may be compared to the values obtained from a small sample. For this purpose, three datasets of joint systems from nine exposures of igneous, metamorphic, and sedimentary rocks are studied. Joint trace length is one of the most difficult properties to measure accurately, but it may be possible to record other geometrical properties of exposed joints accurately; thereby, support vector machine (SVM) model is used to predict the joint trace length. SVM is a novel machine learning method, which is a powerful tool used to solve the problem characterized by small sample and non-linearity with a good generalization performance. Consequently, goodness-of-fit (GOF) tests were applied on these data. According to these GOF tests, the lognormal distribution was found to be the best probability distribution function for representing a joint trace length distribution.  相似文献   

9.
王瑞红  李建林  蒋昱州  王宇 《岩土力学》2012,33(11):3257-3262
节理对卸荷条件下岩体的力学性质有重要影响。通过含2条不同间距预制断续节理岩体的三轴卸荷破坏试验,研究了节理岩体在卸荷应力条件下的应力-应变特征、强度、变形特征、破坏规律及节理间距对岩体力学性质的影响。研究表明:相比于完整岩体,节理岩体卸荷破坏时从峰值强度跌落至残余强度过程中轴向应变较大,为完整岩体的3~4倍,岩体破坏时极限强度明显低于完整岩体,脆性特征不如完整岩体明显;节理岩体卸荷破坏时,变形模量有较大幅度的降低,其降低程度是同条件下完整岩体的6~7倍,节理间距越大,变形模量降低程度越大;与含预制节理岩样三轴加载试验结果相比,节理岩体卸荷条件下破坏程度更为强烈,除剪切破裂面外,沿最大主应力方向分布的不同级别的张性裂隙非常发育,预制节理的间距对岩体破坏形态影响不大。  相似文献   

10.
三峡右岸地下电站厂房围岩稳定性断裂损伤分析   总被引:27,自引:5,他引:22  
三峡右岸地下电站厂房围岩断续节理发育,为了限制岩体的变形破坏,需采用锚杆(索)进行加固。如何正确估价开挖后洞室围岩节理损伤演化扩展和判断其稳定性是十分重要的。采用损伤学方法得到的加锚节理裂隙岩体的本构关系及其损伤演化方程来评价此类岩体稳定性和变形行为。  相似文献   

11.
针对目前节理岩体损伤本构模型中仅考虑节理等宏观缺陷造成的损伤,而没有考虑岩块中微裂纹等微观损伤的不足,提出了综合考虑宏微观损伤的节理岩体本构模型。其中微观损伤模型采用基于应变强度理论和岩石微元强度服从Weibull分布假定的统计损伤模型,把其应用于被节理切割而成的岩块。而宏观损伤模型主要基于连续介质力学原理,把节理对岩体性质的劣化作为损伤来考虑。在考虑节理传压及传剪系数的基础上,提出了综合考虑宏微观复合损伤的节理岩体本构模型。算例表明宏观节理的存在大大削弱了岩体的强度,降低了其刚度,增大了其柔性。所提出的模型能够较好地反映宏微观两类损伤对岩体应力-应变关系及强度的影响,较为合理。   相似文献   

12.
Sun  Bing  Yang  Haowei  Zeng  Sheng  Luo  Yu 《Geotechnical and Geological Engineering》2022,40(11):5577-5591

The effect law of deformation and failure of a jointed rock mass is essential for underground engineering safety and stability evaluation. In order to study the evolution mechanism and precursory characteristics of instability and failure of jointed rock masses, uniaxial compression and acoustic emission (AE) tests are conducted on sandstones with different joint dip angles. To simulate the mechanical behavior of the rock, a jointed rock mass damage constitutive model with AE characteristic parameters is created based on damage mechanics theory and taking into account the effect of rock mass structure and load coupling. To quantify the mechanism of rock instability, a cusp catastrophe model with AE characteristic parameters is created based on catastrophe theory. The results indicate that when the joint dip angle increases from 0° to 90°, the failure mechanism of sandstone shifts from tensile to shear, with 45° being the critical failure mode. Sandstone's compressive strength reduces initially and subsequently increases, resulting in a U-shaped distribution. The developed damage constitutive model's theoretical curve closely matches the test curve, indicating that the model can reasonably describe the damage evolution of sandstone. The cusp catastrophe model has a high forecast accuracy, and when combined with the damage constitutive model, the prediction accuracy can be increased further. The research results can provide theoretical guidance for the safety and stability evaluation of underground engineering.

  相似文献   

13.
某地下电站厂房围岩稳定性及锚固效应研究   总被引:1,自引:0,他引:1  
某地下电站厂房围岩属于一种断续节理裂隙切割的节理岩体,其围岩采用了锚杆、锚索加固。作者采用三维断续节理岩体的弹性损伤本构模型、损伤演化方程及损伤岩锚柱单元支护模型分析围岩加固前后的稳定情况,结果表明,能较好地反应围岩的渐近破坏过程和锚杆(索)的加固效果。这些理论成果对设计有参考价值,并对工程实践有指导意义。  相似文献   

14.
Strength and dilatancy of jointed rocks with granular fill   总被引:1,自引:1,他引:0  
It is well recognised that the strength of rock masses depends upon the strain history, extent of discontinuities, orientation of plane of weakness, condition of joints, fill material in closely packed joints and extent of confinement. Several solutions are available for strength of jointed rock mass with a set of discontinuities. There is a great multiplicity in the proposed relationships for the strength of jointed rocks. In the present study, the author conceives the effect of increasing stresses to induce permanent strains. This permanent strain appears as micro crack, macro crack and fracture. A fully developed network of permanent deformations forms joint. The joint may contain deposits of hydraulic and hydrothermal origin commonly known as gouge. The joint factor numerically captures varied engineering possibilities of joints in a rock mass. The joints grow as an effect of loading. The growth of the joints is progressive in nature. It increases the joint factor, which modifies the failure stresses. The dilatancy explains the progressive failure of granular media. Hence, a mutual relationship conjoins effectively the strength of jointed rock and a dilatancy-dependent parameter known as relative dilatancy. This study provides a simple and integral solution for strength of jointed rocks, interpreted in relation to the commonly used soil, and rock parameters, used for a realistic design of structure on rock masses. It has scope for prediction of an equivalent strength for tri-axial and plane strain conditions for unconfined and confined rock masses using a simple technique.  相似文献   

15.
基于离散元法的节理岩体边坡稳定性分析   总被引:9,自引:0,他引:9  
贺续文  刘忠  廖彪  王翠翠 《岩土力学》2011,32(7):2199-2204
节理岩体边坡的稳定性在很大程度上取决于节理的强度及其分布形式。由于节理岩体边坡的失稳破坏具有大变形和非连续的特点,因此,离散单元法成为研究节理岩体边坡破坏机制的最有效方法之一。通过采用离散元软件PFC2D进行数值模拟,对完整岩石及节理的力学性能进行研究,并建立含密集节理的岩体边坡模型,讨论了节理连通率对边坡破坏形式的影响。结果表明,节理岩体边坡的失稳破坏是一个渐进的过程;在多组节理密集分布的岩体边坡中,连通率越大,其稳定性越差;随着连通率的减小,边坡的破坏形式由大范围的滑坡转变为局部崩塌的形式  相似文献   

16.
17.
The objective of the paper is to derive the strength and modulus properties of rockmass as a function of intact rock strength and joint factor. The joint factor reflects the combined effect of joint frequency, joint inclination and joint strength. A study for the strength and deformation characteristics of jointed rock is done by conducting standard laboratory tests on cylindrical specimens of plaster of Paris after introducing artificial joints. The specimens having one to four joints at different inclinations which vary from 0° to 90° were tested at different confining conditions. The test results were examined to understand the effect of joint frequency and joint inclination on the strength and deformation behaviour of rock mass. Empirical correlations were developed for prediction of the uniaxial compressive strength and elastic modulus of jointed rocks. Results are compared with the earlier work on jointed specimens covering a wide variety of rocks. So, knowing the intact rock properties and the joint factor, the jointed rock properties can be estimated. These relations can be used for developing an equivalent continuum model for rock mass for handling boundary value problems. A failure criterion as proposed by Ramamurthy (1993 Ramamurthy, T. 1993. “Strength and modulus response of anisotropic rocks”. In Comprehensive rock engineering, Edited by: Hudson, J.A. Vol. 1, 313329. Oxford: Pergamon Press.  [Google Scholar]) has been validated from these experimental results.  相似文献   

18.
Discontinuous deformation analysis (DDA) has been widely applied in analyzing various rock engineering problems. As the joint strength play a vital role in the stability of jointed rock mass, this paper makes an attempt to implement the Barton-Bandis rock joint model into the DDA code to replace the original Mohr-Coulomb joint model. The developed Barton-Bandis joint model which is characterized by displacement-dependent shear strength is verified by experimental direct shear tests. An example of a block sliding on an inclined plane is used to demonstrate the capacity of the DDA-BB model in predicting the dynamic motion behavior of sliding blocks.  相似文献   

19.
This paper proposes a numerical model for jointed rock masses within the 3‐D numerical manifold method (NMM) framework equipped with a customized contact algorithm. The strength of rock sample containing a few sets of discontinuities is first investigated. The results of models with simple geometries are compared with the available analytical solutions to verify the developed computer code, whereas models with complex geometries are simulated to better understand the fundamental behavior and failure mechanism of jointed rock mass. Furthermore, the stability of jointed rock mass in an underground excavation is studied, where rock failure process is determined by the 3‐D NMM simulation. The simulation results provide valuable guidance on excavation process design and stabilization design in rock engineering practice. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
A numerical step-by-step procedure, analogous to the ‘Initial Stress Method,’ is presented for the analysis of a single-layer jointed rock beam subjected to gravity loads and in-plane in situ formation pressure. The joints are permitted to open at locations where the flexural stresses exceed flexural strength. The material properties may be different for each rock block and joint. A detailed algorithm is given for the solution of the problem. The results of several analyses indicating the relative effects of initial formation pressure, transverse load, stiffness of the joint material, and joint spacing on the response of a jointed beam are presented. The convergence characteristics of the numerical procedure are included. The joint material is assumed to be ‘no-tension’ type. Both the geometric and material non-linear effects are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号