首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
This paper deals with the modeling of jointed rock masses reinforced by rock bolts. It is well known that rock bolts are extremely effective in reinforcing jointed rocks. However, if a continuum approach is adopted for modeling jointed rock masses, it is often misleading to evaluate the effectiveness of the rock bolts by numerical analyses such as the finite element method. This may be due to the fact that since no more joints exist in the continuum, the effectiveness of the rock bolts in constraining the relative displacements along the joints cannot be evaluated properly. In order to investigate the reinforcement effect of rock bolts, physical model tests were performed in the laboratory. The test results revealed that jointed rock masses should be modeled as an equivalent continuum after the installation of rock bolts and that the mechanical parameters of the equivalent continuum should be evaluated by considering the reinforcement effect of the rock bolts. Therefore, the values of the mechanical parameters differ from place to place in accordance with the relation between joint orientation and rock bolt direction, even though joint systems are homogeneous. In conclusion, in the continuum approach for modeling jointed rock masses, it should be emphasized that rock bolts and jointed rock masses should not be modeled separately but should be modeled simultaneously by considering the reinforcement effect of the rock bolts in constraining joint movement. The modeling of shotcrete reinforced by steel ribs is also discussed in comparison to the modeling by rock bolts.  相似文献   

2.
节理岩体的剪切特性是主导岩体工程稳定性的关键因素。基于PFC2D离散元颗粒流程序,结合室内试验结果对比分析,选取合理的细观参数进行数值模拟,分别从细观角度研究了节理岩石的裂纹发展、能量转化及声发射现象等特性,从宏观角度研究了节理岩石的强度模型和破坏形态。结果表明:节理岩体主要呈现磨损和剪断两种破坏形态,不同的破坏形态对应不同的强度模型;随着剪切变形增加,岩体沿节理面发生破坏,弹性阶段以法向裂纹为主,而塑性阶段切向裂纹起主导作用,滑移区R、P裂纹贯通形成破碎带,节理面产生较大滑移;在应力达到峰值强度前,边界能主要转化为应变能,法向裂纹生成较多;越过峰值强度后,摩擦能快速增长,并伴随大量切向裂纹产生。与室内试验结果相比,PFC2D较好地模拟了节理岩体剪切力学特性,弥补了室内试验中无法进行细观特性研究的缺陷,对于节理岩体后期研究提供了一些参考。  相似文献   

3.
李超  刘红岩  阎锡东 《岩土力学》2015,36(Z2):655-664
节理岩体是工程中最常见的一类岩体,其在地震、爆炸等动载下的力学响应及破坏过程对相关工程安全性的影响至关重要。采用基于有限元应力分析和统计损伤理论开发的动态版RFPA2D数值模拟软件,对动载下节理岩体的动态破坏过程进行了模拟,重点讨论了节理条数、节理贯通度、节理倾角及应力波峰值对岩体动态破坏过程的影响规律。计算结果表明,断续节理岩体动态破坏过程及破坏强度与节理构造形态、应力波峰值密切相关。相同动载下,随着节理条数的增加,岩体破坏程度以及应力波能量损失增强,但当节理条数数超过一定值后,岩体破坏程度及应力波能量损失逐渐趋于稳定;节理贯通度较小时,岩体破坏程度较低且破坏单元自上而下均匀分布。随着节理贯通度的增加,岩体破坏增强,且破坏主要出现于节理上部岩体;节理倾角较小时,节理上部岩体破坏严重,易形成次生贯通裂纹。随着节理倾角增加,破坏范围逐渐变大,不易形成次生贯通裂纹;倾角为45°~60°时,岩体破坏效果最佳;动载荷的峰值越大,试样的破坏越严重。当峰值达到一定值时,节理附近发育出多条裂隙并向上下方不断发展而导致岩体完全破坏。在不同节理贯通度工况下与岩石霍布金森压杆(SHPB)试验结果进行比较,结论吻合,证明该数值模拟的合可行性和结论的可靠性。  相似文献   

4.
In this paper, an anisotropic strength criterion is established for jointed rock masses. An orientation distribution function (ODF) of joint connectivity, is introduced to characterize the anisotropic strength of jointed rock masses related to directional distributed joint sets. Coulomb failure condition is formulated for each plane of jointed rock masses by joint connectivity, where the friction coefficient and cohesion of the jointed rock mass are related to those of the intact rock and joint and become orientation dependent. When approximating joint connectivity by its second‐order fabric tensor, an anisotropic strength criterion is derived through an approximate analytical solution to the critical plane problem. To demonstrate the effects of joint distribution on the anisotropic strength of jointed rock masses, the failure envelopes are worked out for different relative orientations of material anisotropy and principal stress axes. The anisotropic strength criterion is also applied to wellbore stability analyses. It is shown that a borehole drilled in the direction of the maximum principal in situ stress is not always the safest due to the anisotropic strength of the jointed rock mass. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
本文讨论了节点偶对分析的三维扩展。节点偶对分析是针对摩擦滑动节理单元的约束边界进行的序列矢量判定。在三维节理单元的分析中,几何约束和相应的力学判据极为复杂,采用节点偶对等效结合力方法才能迎刃而解。文中对三维转向节理模型的分析得到合理的结果,它表明本文所提出的方法可成功地应用于节理岩体的有限元分析。  相似文献   

6.
预制节理岩体试件强度及破坏模式的试验研究   总被引:2,自引:0,他引:2  
采用相似材料模型试验对不同节理倾角、节理贯通度、节理组数、载荷应变率、试件长径比、节理充填物厚度及类型等7种工况下的预制节理岩体在单轴压缩下的峰值强度及破坏模式进行了研究。结果表明:节理岩体的破坏模式及峰值强度与节理构造形态密切相关。贯通节理岩体将产生沿节理面的剪切破坏或穿切节理面破坏,且与第1种破坏模式对应的岩体峰值强度更低。非贯通节理岩体的强度介于完整岩体和贯通节理岩体之间。随着平行节理组数的增加,岩体峰值强度逐渐下降。随着载荷应变率的增加,岩体峰值强度逐渐增大,相应地试件的破坏模式也变得更加复杂。试件长径比基本没有改变其破坏模式,完整试件仍主要是以张拉破坏为主,而节理试件仍以剪切破坏为主。随着长径比增加,试件峰值强度逐渐增大。随着节理充填物厚度增加,试件峰值强度降低。不同节理填充物对试件峰值强度也有一定影响。  相似文献   

7.
张翠莲 《岩土力学》2016,37(9):2721-2727
基于连续介质损伤力学框架,通过损伤张量和有效应力来描述节理岩体的力学性能,自主研发了基于损伤力学模型的有限元程序(CD-FEM),用于节理岩体等效力学性能研究。同时,采用Karhunen-Loeve(K-L)展开来分解随机输入场,用混沌多项式来表示随机输出场,采用概率配点法生成配点,再由连续损伤有限元分析系统CD-FEM求解确定性方程组,最终得到输出域的统计数据,从而提出了一种将随机分析与基于连续损伤力学模型的数值分析方法解耦进行节理岩体不确定性力学行为分析的方法。利用该方法,对一典型节理岩体在加载条件下的力学行为进行不确定性分析,并与蒙特卡罗方法进行对比,结果表明,所提方法的计算量大大减少,极大地提高了节理岩体力学性能不确定性分析的效率,可应用于对节理岩体在不同载荷条件下的不确定性进行分析。  相似文献   

8.
The objective of the paper is to derive the strength and modulus properties of rockmass as a function of intact rock strength and joint factor. The joint factor reflects the combined effect of joint frequency, joint inclination and joint strength. A study for the strength and deformation characteristics of jointed rock is done by conducting standard laboratory tests on cylindrical specimens of plaster of Paris after introducing artificial joints. The specimens having one to four joints at different inclinations which vary from 0° to 90° were tested at different confining conditions. The test results were examined to understand the effect of joint frequency and joint inclination on the strength and deformation behaviour of rock mass. Empirical correlations were developed for prediction of the uniaxial compressive strength and elastic modulus of jointed rocks. Results are compared with the earlier work on jointed specimens covering a wide variety of rocks. So, knowing the intact rock properties and the joint factor, the jointed rock properties can be estimated. These relations can be used for developing an equivalent continuum model for rock mass for handling boundary value problems. A failure criterion as proposed by Ramamurthy (1993 Ramamurthy, T. 1993. “Strength and modulus response of anisotropic rocks”. In Comprehensive rock engineering, Edited by: Hudson, J.A. Vol. 1, 313329. Oxford: Pergamon Press.  [Google Scholar]) has been validated from these experimental results.  相似文献   

9.
柱状节理岩体原位变形试验力学浅析与模拟   总被引:1,自引:0,他引:1  
在白鹤滩坝址区柱状节理岩体原位变形试验成果的基础上,针对节理刚度的取值进行讨论,利用柔性中心孔试验值反算得到柱状节理岩体节理面刚度值。岩体变形是由岩块和节理两部分组成,分析含单节理岩体概念模型的单轴加、卸载规律性和其变形特性,发现其滞回特性是节理力学行为造成的;推导得到了岩体变形计算公式,可用于多组相交节理岩体等效弹性模量的计算,能够反映出节理岩体的各向异性特征;建立了柱状节理随机模型,采用离散元方法和反算的刚度值进行了仿真分析,得到等效变形参数在试验结果范围内。  相似文献   

10.
This paper presents a coupled, elastoplastic, finite element and boundary element method for the two-dimensional, non-linear analysis of anisotropic jointed rock. The non-linear and anisotropic behaviour of a jointed rock mass is simulated by representing the mass as an equivalent anisotropic, elastoplastic continuum, so that the influence of the jointing system is ‘smeared’ across the continuum, i.e. the individual joints are not modelled as discrete entities. Numerical examples have been solved to verify the capability, accuracy and efficiency of the present technique. The proposed technique has also been applied to the analysis of tunnel excavation problems in plane strain. The effects of anisotropy and non-linearity of the jointed rock mass during excavation have been investigated in some detail.  相似文献   

11.
工程开挖面附近卸荷扰动区的岩体,受结构面和拉应力共同影响作用,其变形和破坏具有拉剪复合特征。为研究节理岩体的拉剪力学特性,基于颗粒离散元法针对共面断续节理岩体开展了系列数值模拟研究。通过假设粒间接触的力学参数服从Weibull分布表征岩体的非均质性,探讨了非均质性、均质度、法向拉应力和节理连通率对节理岩体拉剪强度和破坏模式的影响。研究表明:拉剪应力条件下非均质性节理岩体主要沿阶梯型破裂面破坏,剪应力-水平位移曲线可以分为线性变形阶段、非线性变形阶段、峰值及峰后阶段;随均质度提高,节理岩体的剪切强度逐渐增加且提升幅度逐渐减弱,趋于均质岩体,岩体中微裂纹由弥散型分布向破裂面集中;节理岩体峰值剪切强度和法向拉应力的大小呈非线性负相关关系;岩体剪切强度随节理连通率增加而显著降低。  相似文献   

12.
Conceived as a potential alternative to the classical design methods employed for analyzing the stability of underground structures driven in jointed rocks, the homogenization approach stems from the heuristic idea that, from a macroscopic point of view, a rock mass cut by a network of joints may be perceived as a homogenized continuum. The strength properties of the latter can be theoretically obtained from the failure conditions of its individual constituents: rock matrix and joint interfaces. At the material level, the limit analysis reasoning is used in the context of homogenization to formulate the homogenized strength criterion of a jointed rock mass in the particular situation of a single set of parallel joints. As it could be expected, the obtained closed‐form expressions show the strength anisotropy induced by joint preferential orientation. The support functions (π functions) associated with the homogenized strength criterion are also determined in both plane strain and three‐dimensional cases. This criterion is then applied to the investigation of stability analysis of a tunnel excavated in a jointed rock mass. Upper bounds estimated of the stability factor are derived from the implementation of the kinematic approach directly on the homogenized underground structure. Finally, the approach is applied to analyze and discuss the collapse of the Pinheiros subway station (São Paulo, Brazil). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Numerical modelling of rock slides is a versatile approach to understand the failure mechanism and the dynamics of rock slopes. Finite element slope stability analysis of three rock slopes in Garhwal Himalaya, India has been carried out using a two dimensional plane strain approach. Two different modelling techniques have been attempted for this study. Firstly, the slope is represented as a continuum in which the effect of discontinuities is considered by reducing the properties and strength of intact rock to those of rock mass. The equivalent Mohr-Coulomb shear strength parameters of generalised Hoek-Brown (GHB) criterion and modified Mohr-Coulomb (MMC) criterion has been used for this continuum approach. Secondly, a combined continuum-interface numerical method has been attempted in which the discontinuities are represented as interface elements in between the rock walls. Two different joint shear strength models such as Barton-Bandis and Patton’s model are used for the interface elements. Shear strength reduction (SSR) analysis has been carried out using a finite element formulation provided in the PHASE2. For blocky or very blocky rock mass structure combined continuum-interface model is found to be the most suitable one, as this model is capable of simulating the actual field scenario.  相似文献   

14.
岩体强度估算方法研究及应用   总被引:5,自引:1,他引:4  
岩体强度问题在实际工程中是工程师关心的问题,由于受时间和经费的限制,难以进行大量现场原位试验,而其复杂性目前尚无破坏准则能较好满足实际要求。对于含有多组节理的岩体,结合收集的大量数据对国外基于节理化岩体强度估算经验公式进行了修正,从实测数据中拟合出弹性波波速与岩体强度的关系表达式,同时收集了国内外基于节理密度、岩体分类、弹性波的岩体强度估算公式,对这3种方法进行了对比研究,并应用于旧堡隧道,发现3种方法估算的强度值接近实际岩体强度,说明了在一定情况下岩体强度是可以粗略估计出来的。  相似文献   

15.
周太全  华渊 《岩土力学》2008,29(Z1):417-420
将非线性有限元分析和极限分析相结合形成强度参数折减有限元法,可以灵活地分析强度不均匀顺层路堑边坡支护结构稳定性问题。将岩体力学理论、非线性有限元分析技术和强度折减系数法相结合,对顺层岩体路堑边坡稳定性进行分析。在对密集假设节理有限元模拟中,假设节理在岩体内连续分布,采用连续介质力学方法建立密集分布节理岩体材料模型。采用强度折减系数法计算岩体结构安全系数,建议采用给定的岩体强度参数计算节理岩质边坡开挖、支护完毕后的内力,再逐渐降低岩体强度参数进行岩体边坡非线性有限元分析,直至岩体边坡达到极限状态,从而求出岩质边坡安全系数。采用该方法对渝怀铁路梅江河右岸DK409+989.4~DK410+020段顺层路堑边坡土钉墙支护结构稳定性进行分析,分析结果表明:采用土钉墙支护后的节理边坡塑安全系数为2.3,支护后的岩质边坡处于稳定状态;土钉墙潜在破裂面为岩体弹性区和塑性区的交界面,与测试得到的各排土钉拉力最大值位置一致。  相似文献   

16.
This paper examines the failure of Kargar cut slope located at the south part of Esfahan subway using analytical and numerical back analysis methods. The excavated trench has 27 m depth with near vertical walls due to the space limitation around it. The geology of the area comprises weathered and heavily jointed shale and sandstone overlaid by alluvium deposits. Despite the slope being supported by shotcrete and fully grouted rock bolts, a catastrophic failure occurred at the east wall. Due to the uncertainty about the causes of failure initiation, back analyses have been performed via both the limit equilibrium and numerical method for considering various probable mechanisms. In the back analysis with limit equilibrium method, the rock mass is assumed as an equivalent continuum and Hoek–Brown failure criterion and geological strength index (GSI) are applied to calculate the shear strength parameters. The results show that GSI value was 33 in the failed mass. In the numerical back analysis, the distinct element method is applied to study the contribution of rock joints to the failure and progressive rock mass strength degradation until failure. The results show that threshold values of joint cohesion and friction were 0.2 MPa and 30°, respectively. Also the modeled slip surface being step-shaped agrees with the observed one.  相似文献   

17.
Strength and dilatancy of jointed rocks with granular fill   总被引:1,自引:1,他引:0  
It is well recognised that the strength of rock masses depends upon the strain history, extent of discontinuities, orientation of plane of weakness, condition of joints, fill material in closely packed joints and extent of confinement. Several solutions are available for strength of jointed rock mass with a set of discontinuities. There is a great multiplicity in the proposed relationships for the strength of jointed rocks. In the present study, the author conceives the effect of increasing stresses to induce permanent strains. This permanent strain appears as micro crack, macro crack and fracture. A fully developed network of permanent deformations forms joint. The joint may contain deposits of hydraulic and hydrothermal origin commonly known as gouge. The joint factor numerically captures varied engineering possibilities of joints in a rock mass. The joints grow as an effect of loading. The growth of the joints is progressive in nature. It increases the joint factor, which modifies the failure stresses. The dilatancy explains the progressive failure of granular media. Hence, a mutual relationship conjoins effectively the strength of jointed rock and a dilatancy-dependent parameter known as relative dilatancy. This study provides a simple and integral solution for strength of jointed rocks, interpreted in relation to the commonly used soil, and rock parameters, used for a realistic design of structure on rock masses. It has scope for prediction of an equivalent strength for tri-axial and plane strain conditions for unconfined and confined rock masses using a simple technique.  相似文献   

18.
王瑞红  李建林  蒋昱州  王宇 《岩土力学》2012,33(11):3257-3262
节理对卸荷条件下岩体的力学性质有重要影响。通过含2条不同间距预制断续节理岩体的三轴卸荷破坏试验,研究了节理岩体在卸荷应力条件下的应力-应变特征、强度、变形特征、破坏规律及节理间距对岩体力学性质的影响。研究表明:相比于完整岩体,节理岩体卸荷破坏时从峰值强度跌落至残余强度过程中轴向应变较大,为完整岩体的3~4倍,岩体破坏时极限强度明显低于完整岩体,脆性特征不如完整岩体明显;节理岩体卸荷破坏时,变形模量有较大幅度的降低,其降低程度是同条件下完整岩体的6~7倍,节理间距越大,变形模量降低程度越大;与含预制节理岩样三轴加载试验结果相比,节理岩体卸荷条件下破坏程度更为强烈,除剪切破裂面外,沿最大主应力方向分布的不同级别的张性裂隙非常发育,预制节理的间距对岩体破坏形态影响不大。  相似文献   

19.
陈松  乔春生  叶青  邓斌 《岩土力学》2018,39(10):3612-3622
针对工程实际中断续节理裂隙岩体的损伤本构模型,假设岩石微元强度服从Weibull随机分布,以摩尔-库仑破坏准则作为描述微元强度的表示方法,推导出细观损伤变量。利用能量和断裂力学理论,综合考虑节理几何特征及力学特性,推导宏观损伤变量计算公式。基于Lemaitre应变等效假设,考虑宏细观缺陷耦合作用,推导出复合损伤变量,建立了基于摩尔-库仑准则的宏细观缺陷耦合作用的断续裂隙岩体损伤本构模型。研究结果表明:(1)采用摩尔-库仑准则作为描述微元强度的统计分布变量建立的损伤模型能够较好地反映岩石内部缺陷分布和变形特征,该模型真实地反映岩石微元强度受应力状态的影响。(2)该模型建立的理论曲线与断续节理岩体的试验曲线吻合较好。(3)节理裂隙岩体宏观损伤变量及峰值强度随节理倾角的变化规律与综合考虑宏细观耦合作用下的损伤变量及裂隙岩体峰值强度随节理倾角的变化规律基本一致。(4)宏细观耦合作用下的等效弹性模量与节理贯通率呈非线性负相关;在节理倾角一定的情况下,损伤变量与节理长度呈非线性正相关;在贯通率较小时,岩体的宏观损伤变量与内摩擦角的关系呈线性负相关变化,贯通率达到一定程度,线性关系变成非线性关系。  相似文献   

20.
A three dimensional constitutive model is formulated for deformation analysis of jointed rock masses containing up to three joint sets with arbitrary spatial configurations. A representative elementary volume (REV) that represents the deformational response of the rock mass is defined and the constitutive relationships are developed based on superposition of deformations of the REV components. By representing the constitutive relationships in a tensorial form, the model is able to implement deformation anisotropy of jointed rock masses. The Mohr-Coulomb failure criterion with tension cut-off is used for the intact rock and the joint sets. The model is implemented in FLAC3D and the deformations and strength values calculated by the model are compared with the results from a 3DEC model and analytical solutions. The model results are in good agreement with those obtained from 3DEC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号