首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Recent developments of 30 m global land characterization datasets(e.g., land cover, vegetation continues field) represent the finest spatial resolution inputs for global scale studies. Here, we present results from further improvement to land cover mapping and impact analysis of spatial resolution on area estimation for different land cover types. We proposed a set of methods to aggregate two existing 30 m resolution circa 2010 global land cover maps, namely FROM-GLC(Finer Resolution Observation and Monitoring-Global Land Cover) and FROM-GLC-seg(Segmentation), with two coarser resolution global maps on development, i.e., Nighttime Light Impervious Surface Area(NL-ISA) and MODIS urban extent(MODIS-urban), to produce an improved 30 m global land cover map—FROM-GLC-agg(Aggregation). It was post-processed using additional coarse resolution datasets(i.e., MCD12Q1, GlobCover2009, MOD44 W etc.) to reduce land cover type confusion. Around 98.9% pixels remain 30 m resolution after some post-processing to this dataset. Based on this map, majority aggregation and proportion aggregation approaches were employed to create a multi-resolution hierarchy(i.e., 250 m, 500 m, 1 km, 5 km, 10 km, 25 km, 50 km, 100 km) of land cover maps to meet requirements for different resolutions from different applications. Through accuracy assessment, we found that the best overall accuracies for the post-processed base map(at 30 m) and the three maps subsequently aggregated at 250 m, 500 m, 1 km resolutions are 69.50%, 76.65%, 74.65%, and 73.47%, respectively. Our analysis of area-estimation biases for different land cover types at different resolutions suggests that maps at coarser than 5 km resolution contain at least 5% area estimation error for most land cover types. Proportion layers, which contain precise information on land cover percentage, are suggested for use when coarser resolution land cover data are required.  相似文献   

3.
ABSTRACT

Evapotranspiration (ET) is an important ecohydrological process especially in arid and semi-arid regions. In this study, a new radiation module based on MODIS data has been coupled with the Surface Energy Balance Algorithms for Land (SEBAL) to better estimate ET. The accuracies of the coupled model for estimating available energy and sensible heat (H) were improved significantly compared with the outputs from the original SEBAL which was based on empirical equations. The coupled SEBAL modelled instantaneous λET agreed much better with observations in the arid land of Central Asia than the original SEBAL, with a bias of ?2.86 W m-2, root mean square error (RMSE) of 9.75 W m-2, and normalized RMSE (NRMSE) of 0.13. The accuracy was blurred when scaling ET to a daily or monthly scale, mainly due to the uncertainties associated with temporal upscaling methods that were applied. Sensitivity analysis, which was conducted using numerical variance-based techniques, indicated that the estimated ET is sensitive to the available energy, suggesting the importance of obtaining accurate estimates of net radiation when applying the coupled SEBAL to estimate ET. This study provides a simple and reliable way to utilize MODIS products and contains sensitivity analysis for helping to correctly interpret the outputs, which are both important for large-scale ET estimation.  相似文献   

4.
Characterization of snow is critical for understanding Earth’s water and energy cycles. Maps of snow from MODIS have seen growing use in investigations of climate, hydrology, and glaciology, but the lack of rigorous validation of different snow mapping methods compromises these studies. We examine three widely used MODIS snow products: the “binary” (i.e., snow yes/no) global snow maps that were among the initial MODIS standard products; a more recent standard MODIS fractional snow product; and another fractional snow product, MODSCAG, based on spectral mixture analysis. We compare them to maps of snow obtained from Landsat ETM+ data, whose 30 m spatial resolution provides nearly 300 samples within a 500 m MODIS nadir pixel. The assessment uses 172 images spanning a range of snow and vegetation conditions, including the Colorado Rocky Mountains, the Upper Rio Grande, California’s Sierra Nevada, and the Nepal Himalaya. MOD10A1 binary and fractional fail to retrieve snow in the transitional periods during accumulation and melt while MODSCAG consistently maintains its retrieval ability during these periods. Averaged over all regions, the RMSE for MOD10A1 fractional is 0.23, whereas the MODSCAG RMSE is 0.10. MODSCAG performs the most consistently through accumulation, mid-winter and melt, with median differences ranging from −0.16 to 0.04 while differences for MOD10A1 fractional range from −0.34 to 0.35. MODSCAG maintains its performance over all land cover classes and throughout a larger range of land surface properties. Characterizing snow cover by spectral mixing is more accurate than empirical methods based on the normalized difference snow index, both for identifying where snow is and is not and for estimating the fractional snow cover within a sensor’s instantaneous field-of-view. Determining the fractional value is particularly important during spring and summer melt in mountainous terrain, where large variations in snow, vegetation and soil occur over small distances and when snow can melt rapidly.  相似文献   

5.
Snowcover areal depletion curves inferred from the moderate resolution imaging spectroradiometer (MODIS) are validated and then applied in NASA's catchment‐based land surface model (CLSM) for numerical simulations of hydrometeorological processes in the Kuparuk River basin (KRB) of Alaska. The results demonstrate that the MODIS snowcover fraction f derived from a simple relationship in terms of the normalized difference snow index compares well with Landsat values over the range 20 ≤ f ≤ 100%. For f < 20%, however, MODIS 500 m subpixel data underestimate the amount of snow by up to 13% compared with Landsat at spatial resolutions of 30 m binned to equivalent 500 m pixels. After a bias correction, MODIS snow areal depletion curves during the spring transition period of 2002 for the KRB exhibit similar features to those derived from surface‐based observations. These results are applied in the CLSM subgrid‐scale snow parameterization that includes a deep and a shallow snowcover fraction. Simulations of the evolution of the snowpack and of freshwater discharge rates for the KRB over a period of 11 years are then analysed with the inclusion of this feature. It is shown that persistent snowdrifts on the arctic landscape, associated with a secondary plateau in the snow areal depletion curves, are hydrologically important. An automated method is developed to generate the shallow and deep snowcover fractions from MODIS snow areal depletion curves. This provides the means to apply the CLSM subgrid‐scale snow parameterization in all watersheds subject to seasonal snowcovers. Improved simulations and predictions of the global surface energy and water budgets are expected with the incorporation of the MODIS snow data into the CLSM. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
Hydrological processes in mountainous settings depend on snow distribution, whose prediction accuracy is a function of model spatial scale. Although model accuracy is expected to improve with finer spatial resolution, an increase in resolution comes with modelling costs related to increased computational time and greater input data and parameter information. This computational and data collection expense is still a limiting factor for many large watersheds. Thus, this work's main objective is to question which physical processes lead to loss in model accuracy with regard to input spatial resolution under different climatic conditions and elevation ranges. To address this objective, a spatially distributed snow model, iSnobal, was run with inputs distributed at 50‐m—our benchmark for comparison—and 100‐m resolutions and with aggregated (averaged from the fine to the large resolution) inputs from the 50‐m model to 100‐, 250‐, 500‐, and 750‐m resolution for wet, average, and dry years over the Upper Boise River Basin (6,963 km2), which spans four elevation bands: rain dominated, rain–snow transition, and snow dominated below treeline and above treeline. Residuals, defined as differences between values quantified with high resolution (>50 m) models minus the benchmark model (50 m), of simulated snow‐covered area (SCA) and snow water equivalent (SWE) were generally slight in the aggregated scenarios. This was due to transferring the effects of topography on meteorological variables from the 50‐m model to the coarser scales through aggregation. Residuals in SCA and SWE in the distributed 100‐m simulation were greater than those of the aggregated 750 m. Topographic features such as slope and aspect were simplified, and their gradient was reduced due to coarsening the topography from the 50‐ to 100‐m resolution. Therefore, solar radiation was overestimated, and snow drifting was modified and caused substantial SCA and SWE underestimation in the distributed 100‐m model relative to the 50‐m model. Large residuals were observed in the wet year and at the highest elevation band when and where snow mass was large. These results support that model accuracy is substantially reduced with model scales coarser than 50 m.  相似文献   

7.
Global cultivated land mapping at 30 m spatial resolution   总被引:2,自引:0,他引:2  
Cultivated land is one of the most important types of land cover in the global mapping of land cover, and its variation influences economic development, food security, and ecological environment protection. Existing products of global cultivated land mapping have a low resolution, and high spatial resolution products are in demand. This study uses global remote sensing image datasets in 2000/2010 with a spatial resolution of 30 m (Landsat TM/ETM+, HJ-1), MODIS 250 m NDVI time-serial data, and many types of reference data. An three-layer extraction method based on pixels, objects, and knowledge (POK) was adopted to ease cultivated land extraction in global-scale 30 m images, i.e., cultivated land classification based on pixel-scale multi-feature optimization, cultivated land automatic identification based on objects, and interactive object processing based on information service and priori knowledge. Global 30 m cultivated land mapping was accomplished for the two reference years (2000 and 2010), and statistical analysis was conducted on the data. Results showed that the total cultivated land area was 1.903 billion ha and 1.960 billion ha, respectively. Accuracy assessments showed that overall accuracy of global cultivated land mapping are higher than 92% for both the two reference years. The global cultivated land products in 2000/2010 developed in this research are superior to their international counterparts in terms of spatial resolution and classification accuracy. They also provide significant basic data on global food security, ecological environment supervision, and global change.  相似文献   

8.
Evapotranspiration (ET) is an important expenditure in water and energy balances, especially on cold and high‐altitude land surfaces. Daily ET of the upper reach of the Shule River Basin was estimated using Landsat 5 TM data and the Surface Energy Balance Algorithm for Land (SEBAL) model. Based on observations made at the Suli station, the algorithms of land surface temperature and soil heat flux in SEBAL were modified. Land surface temperature was retrieved and compared with ground truth via three methods: the radiative transfer equation method, the mono‐window algorithm, and the single‐channel method. We selected the best of these methods, mono‐window algorithm, for estimating ET. The average error of daily ET estimated by the modified SEBAL model and measured by the eddy covariance system was 16.4%, with a root‐mean‐square error of 0.52 mm d?1. The estimated ET means were 3.09, 2.48, and 1.48 mm d?1 on June 9 (DOY 160), June 25 (DOY 176), and July 27 (DOY 208) of the year 2010, respectively. The average estimated ET on the glacier surface of all days was more than 3 mm d?1, a measurement that is difficult to capture in‐situ and has rarely been reported. This study will improve the understanding of water balance in cold, high‐altitude regions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Urban green spaces (UGS), like most managed land covers, are getting progressively affected by water scarcity and drought. Preserving, restoring and expanding UGS require sustainable management of green and blue water resources to fulfil evapotranspiration (ET) demand for green plant cover. The heterogeneity of UGS with high variation in their microclimates and irrigation practices builds up the complexity of ET estimation. In oversized UGS, areas too large to be measured with in situ ET methods, remote sensing (RS) approaches of ET measurement have the potential to estimate the actual ET. Often in situ approaches are not feasible or too expensive. We studied the effects of spatial resolution using different satellite images, with high-, medium- and coarse-spatial resolutions, on the greenness and ET of UGS using Vegetation Indices (VIs) and VI-based ET, over a 780-ha urban park in Adelaide, Australia. We validated ET with the ground-based ET method of Soil Water Balance. Three sets of imagery from WorldView2, Landsat and MODIS, and three VIs including the Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) and Enhanced Vegetation Index 2 (EVI2), were used to assess long-term changes of VIs and ET calculated from the different imagery acquired for this study (2011–2018). We found high correspondence between ET-MODIS and ET-Landsat (R2 > 0.99 for all VIs). Landsat-VIs captured the seasonal changes of greenness better than MODIS-VIs. We used artificial neural network (ANN) to relate the RS-ET and ground data, and ET-MODIS (EVI2) showed the highest correlation (R2 = 0.95 and MSE =0.01 for validation). We found a strong relationship between RS-ET and in situ measurements, even though it was not explicable by simple regressions; black box models helped us to explore their correlation. The methodology used in this research makes a strong case for the value of remote sensing in estimating and managing ET of green spaces in water-limited cities.  相似文献   

10.
Satellite data were the primary source of information for the eruption of Mt. Cleveland, Alaska on 19 February, and 11 and 19 March 2001. Multiple data sets were used pre-, syn- and post-eruption to mitigate the hazard and determine an eruption chronology. The 19 February eruption was the largest of the three, resulting in a volcanic cloud that formed an arc over 1000 km long, moved to the NE across Alaska and was tracked using satellite data over more than a 50-h period. The volcanic cloud was “concurrently” detected on the GOES, AVHRR and MODIS data at various times and their respective signals compared. All three sensors detected a cloud that had a very similar shape and position but there were differences in their areal extent and internal structural detail. GOES data showed the largest volcanic cloud in terms of area, probably due to its oblique geometry. MODIS bands 31 and 32, which are comparable to GOES and AVHRR thermal infrared wavelengths, were the least effective single channels at detecting the volcanic cloud of those investigated (MODIS bands 28, 29, 31 and 32). MODIS bands 28 and 29 detected the largest volcanic clouds that could easily be distinguished from weather clouds. Of the split-window data, MODIS bands 29 minus band 32 detected the largest cloud, but the band 31 minus band 32 data showed the volcanic cloud with the most internal structural detail. The Puff tracking model accurately tracked the movement, and predicted the extent and shape of this complex cloud even into areas beyond satellite detection. Numerous thermal anomalies were also observed during the eruption on the twice-daily AVHRR data and the high spatial-resolution Landsat data. The high-resolution Radarsat data showed that the AVHRR thermal anomalies were due to lava and debris flow features and a newly formed fan along the west coast of the island. Field observations and images from a hand-held Forward Looking Infrared Radiometer (FLIR) showed that the flow features were ′a′a lava, debris flows and a warm debris fan along the west coast. Real-time satellite data were the primary tool used to monitor the eruption, track changes and to mitigate hazards. High-resolution data, even though coverage is infrequent, were critical in helping to identify volcanic processes and to compile an eruption chronology.  相似文献   

11.
Hydrological and bioclimatic processes that lead to drought may stress plants and wildlife, restructure plant community type and architecture, increase monotypic stands and bare soils, facilitate the invasion of non-native plant species and accelerate soil erosion. Our study focuses on the impact of a paucity of Colorado River surface flows from the United States (U.S.) to Mexico. We measured change in riparian plant greenness and water use over the past two decades using remotely sensed measurements of vegetation index (VI), evapotranspiration (ET) and a new annualized phenology assessment metric (PAM) for ET. We measure these long-term (2000–2019) metrics and their short-term (2014–2019) response to an environmental pulse flow in 2014, as prescribed under Minute 319 of the 1944 Water Treaty between the two nations. In subsequent years, small-directed flows were provided to restoration areas under Minute 323. We use 250 m MODIS and 30 m Landsat imagery to evaluate three vegetation indices (NDVI, EVI, EVI2). We select EVI2 to parameterize an optical-based ET algorithm and test the relationship between ET from Landsat and MODIS by regression approaches. Our analyses show significant decreases in VIs and ET for both the 20-year and post-pulse 5-year periods. Over the last 20 years, EVI Landsat declined 34% (30% by EVIMODIS) and ETLandsat-EVI declined 38% (27% by ETMODIS-EVI), overall ca. 1.61 mm/day or 476 mm/year drop in ET; using PAM ETLandsat-EVI the drop was from 1130 to 654 mm/year. Over the 5 years since the 2014 pulse flow, EVILandsat declined 20% (13% by EVIMODIS) and ETLandsat-EVI declined 23% (4% by ETMODIS-EVI) with a 0.77 mm/day or a 209 mm/year 5-year drop in ET; using PAM ETLandsat-EVI the drop was from 863 to 654 mm/year. Data and change maps show the pulse flow contributed enough water to slow the rate of loss, but only for the very short-term (1–2 years). These findings are critically important as they suggest further deterioration of biodiversity, wildlife habitat and key ecosystem services due to anthropogenic diversions of water in the U.S. and Mexico and from land clearing, fires and plant-related drought which affect hydrological processes.  相似文献   

12.
Under optimum circumstances, thermal infrared data recorded from satellites can measure water surface temperatures to accuracies of a few tenths of a degree Celsius. Such techniques are applied here to evaluate volcanic crater lake temperatures. At present, band 6 of the Landsat Thematic Mapper (TM) is the most pertinent sensor in this respect, although its nominal 120 × 120 m “footprint” only permits useful measurements of circular lakes exceeding 340 m in diameter. In addition, the radiative properties of the atmosphere between sensor and target at the instant of observation should be well-characterised in order to make confident measurements of surface temperatures with single-band infrared data.An analysis is presented of three TM band-6 images of the crater lake at Poás volcano, Costa Rica, recorded on February 6, 1986, March 13, 1987, and May 10, 1988. In the February 1986 scene, the band-6-derived water surface temperature is 36°C which is 3°C less than a field measurement made in the same month. Since the satellite measurement was integrated over some 14,400 m2 of the lake surface, while the field measurement was obtained at a single point below the surface, the former may be more representative of surface heat losses. Subsequent TM data reveal an increasing discrepancy between contemporaneous field and satellite observations, probably because the lake diameter had decreased to 250 m by March 1987, and to less than 200 m by mid-1988, greatly reducing the likelihood of obtaining a pure “lake” pixel.The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) which is earmarked for orbit on the first of NASA's Earth Observing System satellite platforms later this decade has five discrete spectral bands in the thermal infrared region and will produce data composed of 90 × 90 m pixels. These specifications could enable the determination of water surface temperatures of > 250 m diameter crater lakes by algorithms that implicitly account for atmospheric effects.  相似文献   

13.
The Basque coastal waters (South Bay of Biscay) are directly influenced by the Adour River freshwater plume. The Adour outflow leads to important variations of suspended matter concentrations and turbidity, which in turn may affect biological productivity and water quality. This study aims at both developing specific algorithms and testing the efficiency of atmospherically corrected MODIS-Aqua 250-m surface reflectance product (MYD09) to map total suspended matter concentrations and turbidity within the Adour coastal region. First, regional empirical algorithms based on in-situ data were tested to retrieve the concentration of total suspended matter and turbidity from the remote sensing reflectance. Then, the respective sensitivity of MODIS surface reflectance bands 1 and 2 for water quality application was investigated as well as the quality of atmospheric corrections. Finally, selected algorithms were applied to the MYD09 product. The resulting 250-m resolution maps were then compared to 1000-m maps produced by IFREMER and comparisons between satellite measurements and in-situ sampling points were performed. Results show that MODIS-Aqua band 1 (620–670 nm) is appropriate for predicting turbidity and total suspended matter concentrations using polynomial regression models, whilst band 2 is unadapted. Comparison between total suspended matter concentration 250-m resolution maps and mineral suspended matter 1000-m maps (generated by IFREMER) produced consistent results. A high correlation was obtained between turbidity measured in-situ and turbidity retrieved from MODIS-Aqua satellite data.  相似文献   

14.
Floodplain red gum forests (Eucalyptus camaldulensis plus associated grasses, reeds and sedges) are sites of high biodiversity in otherwise arid regions of southeastern Australia. They depend on periodic floods from rivers, but dams and diversions have reduced flood frequencies and volumes, leading to deterioration of trees and associated biota. There is a need to determine their water requirements so environmental flows can be administered to maintain or restore the forests. Their water requirements include the frequency and extent of overbank flooding, which recharges the floodplain soils with water, as well as the actual amount of water consumed in evapotranspiration (ET). We estimated the flooding requirements and ET for a 38 134 ha area of red gum forest fed by the Murrumbidgee River in Yanga National Park, New South Wales. ET was estimated by three methods: sap flux sensors placed in individual trees; a remote sensing method based on the Enhanced Vegetation Index from MODIS satellite imagery and a water balance method based on differences between river flows into and out of the forest. The methods gave comparable estimates yet covered different spatial and temporal scales. We estimated flood frequency and volume requirements by comparing Normalized Difference Vegetation Index values from Landsat images with flood history from 1995 to 2014, which included both wet periods and dry periods. ET during wet years is about 50% of potential ET but is much less in dry years because of the trees' ability to control stomatal conductance. Based on our analyses plus other studies, red gum trees at this location require environmental flows of 2000 GL yr?1 every other year, with peak flows of 20 000 ML d?1, to produce flooding sufficient to keep them in good condition. However, only about 120–200 GL yr?1 of river water is consumed in ET, with the remainder flowing out of the forest where it enters the Murray River system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Suspended sediment concentration (SS) is an important indicator of marine environmental changes due to natural causes such as tides, tidal currents, and river discharges, as well as human activities such as construction in coastal regions. In the Saemangeum area on the west coast of Korea, construction of a huge tidal dyke for land reclamation has strongly influenced the coastal environment. This study used remotely sensed data to analyze the SS changes in coastal waters caused by the dyke construction. Landsat and MODIS satellite images were used for the spatial analysis of finer patterns and for the detailed temporal analysis, respectively. Forty Landsat scenes and 105 monthly composite MODIS images observed during 1985-2010 were employed, and four field campaigns (from 2005 to 2006) were performed to verify the image-derived SS. The results of the satellite data analyses showed that the seawater was clear before the dyke construction, with SS values lower than 20 g/m(3). These values increased continuously as the dyke construction progressed. The maximum SS values appeared just before completion of the fourth dyke. Values decreased to below 5 g/m(3) after dyke construction. These changes indicated tidal current modification. Some eddies and plumes were observed in the images generated from Landsat data. Landsat and MODIS can reveal that coastal water turbidity was greatly reduced after completion of the construction.  相似文献   

16.
This work investigates the likelihood of integrating the cheap and readily-available broadband multispectral MODIS data and in-situ measurements in quantifying and monitoring water quality status of an inland lake within Upper Manyame Catchment in Zimbabwe. Specifically we used MODIS images to quantify inland lake chlorophyll_a concentrations, as a proxy for predicting lake pollution levels. The findings of this study show a high chlorophyll_a concentration of 0.101 ± 0.128 μg/L within the Lake. The results further demonstrated that the chlorophyll_a concentration levels did not significantly vary (p = 0.788) between sites, except among depths (p = 0.05). Further, prediction results based on the relationship between observed and predicted chlorophyll_a produced a high R2 value of 0.89 and a root mean square error (RMSE) value of 0.003 μg/L. Moreover, the derived landuse maps of Upper Manyame Catchment indicated a significant variation in the percentage settlement in 1985, 1994 and 2010 change from 1985 to 2010. For instance, 8% increase in settlement in the period between 1994 and 2010 and over 12% increase from 1985 to 2010 and a decline in percent forest coverage (i.e. 9.8% in 1985 to 2.0% in the year 2010) in the catchment was observed. Overall, the findings of this study highlights the importance of free and readily-available satellite datasets (such as the multispectral MODIS and Landsat) in quantifying and monitoring water quality across inland lakes especially in data-scarce areas like Sub-Saharan Africa.  相似文献   

17.
In arid and semi-arid areas, evaporation fluxes are the largest component of the hydrological cycle, with runoff coefficient rarely exceeding 10%. These fluxes are a function of land use and land management and as such an essential component for integrated water resources management. Spatially distributed land use and land cover (LULC) maps distinguishing not only natural land cover but also management practices such as irrigation are therefore essential for comprehensive water management analysis in a river basin. Through remote sensing, LULC can be classified using its unique phenological variability observed over time. For this purpose, sixteen LULC types have been classified in the Upper Pangani River Basin (the headwaters of the Pangani River Basin in Tanzania) using MODIS vegetation satellite data. Ninety-four images based on 8 day temporal and 250 m spatial resolutions were analyzed for the hydrological years 2009 and 2010. Unsupervised and supervised clustering techniques were utilized to identify various LULC types with aid of ground information on crop calendar and the land features of the river basin. Ground truthing data were obtained during two rainfall seasons to assess the classification accuracy. The results showed an overall classification accuracy of 85%, with the producer’s accuracy of 83% and user’s accuracy of 86% for confidence level of 98% in the analysis. The overall Kappa coefficient of 0.85 also showed good agreement between the LULC and the ground data. The land suitability classification based on FAO-SYS framework for the various LULC types were also consistent with the derived classification results. The existing local database on total smallholder irrigation development and sugarcane cultivation (large scale irrigation) showed a 74% and 95% variation respectively to the LULC classification and showed fairly good geographical distribution. The LULC information provides an essential boundary condition for establishing the water use and management of green and blue water resources in the water stress Pangani River Basin.  相似文献   

18.
Salinity in estuaries is highly variable due to river discharge, tidal motion, and winds. Information on the spatial and temporal changes in salinity can provide important ecological indications, but accurate monitoring of the space–time variability for a large estuary is often costly and time-consuming. This study applied remote sensing techniques to develop a salinity prediction model for Lake Pontchartrain, a large estuarine lake located in the Northern Gulf of Mexico, USA. “Ground truth” salinity was measured along two transects across the lake and near the shoreline. Water-leaving reflectance from the measurement locations was extracted from Landsat Thematic Mapper (TM) images pre-processed through “banding” noise reduction and radiometrical correction approaches. Ordinary least square and ridge regression methods were performed to identify model parameters and to determine relationships between salinity and reflectance. Salinity in the lake on eight dates was predicted with the developed model. Difference in salinity level and patterns, and impacts of Hurricanes Katrina and Rita on salinity were assessed with ANOVA and Fuzzy Similarity methods. The results showed that the model achieved a high power in prediction of the lake salinity (R2 = 0.89 and RMSE of validation = 0.27). Reflectance from TM bands 1, 2, and 4 was positively correlated to salinity levels and explained 1.9%, 20.3%, and 10.2% variance in salinity levels. Reflectance from bands 3 and 5 was negatively correlated to salinity and explained 34.1% and 31.2% variance. Under normal circumstances without the impacts of hurricanes, the lake salinity presented two patterns with average salinity level of 5.5 ppt. After Katrina’s landfall, the average was significantly increased by 1.1 ppt and the spatial patterns were altered. The pattern on 30 August 2005 was the most dissimilar one as compared to the two normal patterns, and then followed by the patterns on 9 and 25 October, and 7 September 2005. This study demonstrated that satellite remote sensing techniques can be applied to monitor salinity in coastal environments, and that freshwater discharge not only affects salinity levels and patterns under normal conditions but also is crucial for the return of salinity patterns to normal conditions after hurricane disturbance.  相似文献   

19.
Land surface energy fluxes are required in many environmental studies, including hydrology, agronomy and meteorology. Surface energy balance models simulate microscale energy exchange processes between the ground surface and the atmospheric layer near ground level. Spatial variability of energy fluxes limits point measurements to be used for larger areas. Remote sensing provides the basis for spatial mapping of energy fluxes. Remote‐sensing‐based surface energy flux‐mapping was conducted using seven Landsat images from 1997 to 2002 at four contiguous crop fields located in Polk County, northwestern Minnesota. Spatially distributed surface energy fluxes were estimated and mapped at 30 m pixel level from Landsat Thematic Mapper and Enhanced Thematic Mapper images and weather information. Net radiation was determined using the surface energy balance algorithm for land (SEBAL) procedure. Applying the two‐source energy balance (TSEB) model, the surface temperature and the latent and sensible heat fluxes were partitioned into vegetation and soil components and estimated at the pixel level. Yield data for wheat and soybean from 1997 to 2002 were mapped and compared with latent heat (evapotranspiration) for four of the fields at pixel level. The spatial distribution and the relation of latent heat flux and Bowen ratio (ratio of sensible heat to latent heat) to crop yield were studied. The root‐mean‐square error and the mean absolute percentage of error between the observed and predicted energy fluxes were between 7 and 22 W m−2 and 12 and 24% respectively. Results show that latent heat flux and Bowen ratio were correlated (positive and negative) to the yield data. Wheat and soybean yields were predicted using latent heat flux with mean R2 = 0·67 and 0·70 respectively, average residual means of −4·2 bushels/acre and 0·11 bushels/acre respectively, and average residual standard deviations of 16·2 bushels/acre and 16·6 bushels/acre respectively (1 bushel/acre ≈ 0·087 m3 ha−1). The flux estimation procedure from the SEBAL‐TSEB model was useful and applicable to agricultural fields. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
Many national and regional groundwater studies have correlated land use “near” a well, often using a 500 m radius circle, with water quality. However, the use of a 500 m circle may seem counterintuitive given that contributing areas are expected to extend up-gradient from wells, and not be circular in shape. The objective of this study was to evaluate if a 500 m circle is adequate for assigning land use to a well for the statistical correlation between urban land use and the occurrence of volatile organic compounds (VOCs). Land use and VOC data came from 277 supply wells in four study areas in California. Land use was computed using ten different-sized circles and wedges (250 m to 10 km in radius), and three different-sized “searchlights” (1–2 km in length). We define these shapes as contributing area surrogates (CASs), recognizing that a simple shape is at best a surrogate for the actual contributing area. The presence or absence of correlation between land use and the occurrence of VOCs was evaluated using Kendall’s tau (τ). Values of τ were within 10% of one another for wedges and circles ranging in size from 500 m to 2 km, with correlations remaining statistically significant (p < 0.05) for all CAS sizes and shapes, suggesting that a 500 m circular CAS is adequate for assigning land use to a well. Additional evaluation indicated that urban land use is autocorrelated at distances ranging from 8 to 36 km. Thus, urban land use in a 500 m CAS is likely to be predictive of urban land use in the actual contributing area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号