首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
我国为菱镁矿资源大国,其储量占世界的30%左右。环山菱镁矿的发现填补了我省的一项空白,它的开发利用对我省的经济发展具有重要意义,但在矿山开发方面始终进展不大。本文环山菱镁矿的矿石特点及烧结的轻烧镁、重烧镁、电熔镁等菱镁矿制品与辽宁大石桥矿石及菱镁矿制品进行对比,进而对环山菱镁矿开发的优势进行了分析,初步确定了环山菱镁矿的开发方向。  相似文献   

2.
中国成菱镁矿区带与关键科学问题   总被引:5,自引:0,他引:5  
赵正  白鸽  王登红  陈毓川  徐志刚 《地质学报》2014,88(12):2326-2338
我国菱镁矿资源丰富,储量巨大,目前位居世界首位.类型上以晶质菱镁矿为主,便于开发利用.晶质菱镁矿又以沉积变质型为主,集中分布在辽东地区,形成了世界级的大型—超大型菱镁矿集中区和生产基地,其次为成因上与超镁铁质杂岩密切相关的热液交代型和风化残积型,青藏班公湖成矿带可作为我国湖相沉积型菱镁矿找矿的重要靶区.本次在对全国62处菱镁矿矿产地资料系统梳理的基础上,深入总结了全国菱镁矿的成矿规律,进一步划分了菱镁矿的矿床类型,并划分出13个成菱镁矿带,编制了“中国菱镁矿成矿规律图”、“中国菱镁矿成矿体系图”和“中国成菱镁矿带分布图”等图件,为我国菱镁矿资源潜力评价的预测工作提供了理论依据.同时,本文对我国辽东超大型菱镁矿的成因机制问题和菱镁矿中镁的物质来源等关键科学问题展开了探讨.  相似文献   

3.
薛建平 《地质与勘探》2017,53(3):464-471
产于内蒙古索伦山缝合带蛇绿岩中的菱镁矿,其深入研究对于菱镁矿的勘查、增加战略矿产资源以及国民经济的发展有重大意义。本文对内蒙古索伦山地区菱镁矿进行了系统的调查和研究,通过归纳索伦山地区菱镁矿矿床地质特征,探讨了索伦山地区菱镁矿矿床的成矿地质条件,在此基础上,分析和评价了索伦山地区菱镁矿的找矿潜力。索伦山地区菱镁矿产于索伦山蛇绿岩的地幔橄榄岩内,受岩体内部微小构造控制,矿体贫富受风化程度的制约,受超基性岩风化淋滤形成。菱镁矿与超基性岩硅质风化壳在成因上具有耦合关系,上部为风化淋滤残留物—超基性岩硅质风化壳,下部为风化淋滤的产物—菱镁矿。索伦山地区含菱镁矿的地幔橄榄岩岩体巨大,深部矿体众多,与国内西藏巴夏式菱镁矿在成矿条件和成矿模式方面相一致。所以,索伦山地区具有较大的菱镁矿找矿潜力。  相似文献   

4.
中国菱镁矿成矿规律及资源潜力分析   总被引:5,自引:1,他引:4       下载免费PDF全文
提要:菱镁矿是中国的优势矿种之一,具有资源量丰富、分布比较集中、成矿类型较单一、品质优良等特点。文章在全国矿产资源潜力评价成果的基础上,总结了中国菱镁矿的成矿规律,建立了全国菱镁矿的预测类型谱系,分析总结了沉积变质型菱镁矿、与超基性岩有关的风化淋滤型菱镁矿以及湖相沉积型菱镁矿的典型矿床特征,并分别建立了成矿模式。文章划分了7个菱镁矿的成矿区带,分别对各带的资源潜力进行了探讨。  相似文献   

5.
印度南部和乌拉尔南部都有隐晶质菱镁矿产出,这两处矿床的产出地质环境相似,在矿物学和地球化学上具有广泛的相似性。印度南部的菱镁矿矿化主要与超镁铁质侵入杂岩体有关,并形成了部分已受变质的火山沉积地层。超镁铁质侵入杂岩体由纯橄岩,橄榄岩,辉石岩,辉长岩及它们的变质产物组成。在乌拉尔地区,菱镁矿床位于一个蛇绿岩带上的超镁铁岩地体中。隐晶质菱镁矿就以网脉状产出于超镁铁质岩地体上部的风化带中。印度和乌拉尔两个地区的矿床中的矿物组合都有菱镁矿,石英,方解石和白云石,但在印度南部的矿区中还含有滑石和菱铁矿。两个地区的菱镁矿矿石的质量都很好,所有的样品的主要成分都为菱镁矿(73~96%),而方解石(1~3%),白云石(0~7%),菱铁矿(0~2%),石英(0~5%)和滑石(O~2%)都只是次要矿物。次生的白云石和菱铁矿使一些矿石含有较高的CaO(最高达2.6%)和FeO(最高达1.6%),石英和滑石等矿物则使矿石中的SiO2较高(5—8%)。滑石指示了低温成因,它的出现说明两个矿区的菱镁矿可能都是内生或外生的成矿流体在上升或下降的过程中在开放裂隙中沉淀而成的。本文研究表明,全球性的超镁铁岩中菱镁矿成矿事件与蛇绿岩带有关,这对菱镁矿的勘探有指导意义。  相似文献   

6.
<正>世界上菱镁矿矿床可大体分为三类:与超基性岩有关的菱镁矿、大型层状菱镁矿以及现代蒸发沉积条件下形成的菱镁矿。一般来说,蒸发环境下的富镁海水可能会促进菱镁矿的形成,例如在现代盐湖、萨布哈等环境下菱镁矿能够直接从海水中沉淀,但仅为薄层。与此形成鲜明对比的是,世界上大型层状菱镁矿主要发育在前寒武的碳酸盐岩地层中。此外,热液交代或埋藏成岩过程也可形成菱镁矿。此过程主要为富镁流体(淋滤周围白云岩或其他富镁岩石)交代沉积的白云石形成菱镁矿。总体而言,大型层状菱镁矿的  相似文献   

7.
蓝海洋 《化工矿产地质》2020,42(1):37-41,65
辽东南地区是我国主要盛产菱镁矿产品基地之一,菱镁矿主要分布在辽宁省海城至大石桥一带。通过地质背景分析,研究菱镁矿的矿区、矿体地质特征和矿石质量特征,认为辽东南地区菱镁矿应属浅海相化学沉积碳酸盐岩建造,菱镁矿层的形成受特定古沉积环境控制,经区域变质重结晶作用或热力变质作用再次重结晶形成菱镁矿层。菱镁矿的形成是原生沉积与变质和变形作用的综合产物,矿床成因类型应属于沉积变质矿床。  相似文献   

8.
<正>菱镁矿广泛用于耐火材料、胶凝材料、提取金属镁及化学工业等,是国民经济不可缺少的一种矿物原料。镁质碳酸盐中的晶质菱镁矿床是最重要的一种菱镁矿床类型,多产在前震旦纪古老的变质白云石大理岩中。我国主要的菱镁矿属于这一类型,以辽宁省的菱镁矿为最丰富,辽宁省大石桥的的菱镁矿是在1913年发现的(成田亮一,  相似文献   

9.
用Y/Ho比值指示俄罗斯乌拉尔南部晶质菱镁矿矿床的成因   总被引:1,自引:1,他引:1  
乌拉尔省南部赋存有两种类型的晶质菱镁矿:1)白云岩地层中的层状矿体;2)白云质灰岩中的透镜状矿体。晶质菱镁矿矿体位于Riphean系列中下层的白云岩中,而在上层的白云岩单元中缺失。这两种类型的菱镁矿可通过矿体形态、晶体大小、石英和白云石含量不同来进行区分。第一种类型的菱镁矿储量巨大,菱镁矿呈粗粒结构,晶体粒径>10mm(最大达150mm);一般来说,矿体与白云岩围岩界限清楚,这种类型矿床以产在Riphean序列下部为特征。第二种类型的菱镁矿由于菱镁矿矿体穿插进入到白云岩围岩中,矿体很不规则,菱镁矿晶体也相对较小(1-5mm),这种类型的矿体主要产在Riphean中部层位中。这两种矿体都显示了交代成因的特征。但这两种菱镁矿矿石在一些主量元素和稀土元素的分布上具有不同的特征:与第二种类型相比,第一种菱镁矿具有较低的FeO,CaO和SiO2含量,与白云岩围岩(La/Lu>1)相比,具La/Lu<1的轻稀土亏损特征。第二种菱镁矿稀土分馏度较低,在稀土分配方面与白云岩围岩有差别。本文还特别讨论了Y/Ho值的重要性,因为该比值在菱镁矿和围岩中的类似性使得划分菱镁矿形成中的热液和成岩交代过程成为可能。因此我们认为,第一种类型菱镁矿,如具有高Y/Ho比值的Satka和Bakal矿床的形成属于沉积盆地发育过程中的早期成岩阶段;第  相似文献   

10.
辽东地区早元古代大石桥组赋存有富镁质的碳酸盐岩建造,其中产有大型或超大型菱镁矿、滑石矿床。文章在前人工作的基础上,结合近年来的野外调查和研究工作,从大地构造背景、含矿建造、岩相古地理、成矿构造、成矿流体等几方面讨论了辽东菱镁矿和滑石矿床的成矿条件。研究结果表明,该地区菱镁矿矿床是元古代海相蒸发沉积条件下形成的,而滑石矿床则是由埋藏海水演化而来的富硅质高盐度的变质流体对镁质碳酸盐岩交代的产物。  相似文献   

11.
China has abundant reserves of magnesite, making it the world’s leading source of this strategic mineral. Sparry magnesite is the main type of magnesite deposit, and is easy to exploit. It occurs mainly as the sedimentary-metamorphic type. Production is centred on eastern Liaoning Province, where a world-class large to super large magnesite ore processing and production facility has been developed. Hydrothermal metasomatic deposits, associated with ultramafic complexes and eluvial deposits produced by weathering, are two other important types found in China. The Western section of the Bangonghu-Nujiang metallogenic belt is an important target region for prospecting lake-sedimentary magnesite deposits. Based on a systematic analysis of material from 62 magnesite production areas, this study investigated the metallogeny of magnesite and delineated 13 magnesite metallogenic belts. Maps were produced showing metallogenic regularities in magnesite deposits, the metallogenic system of the magnesite deposits, and the distribution of the metallogenic belts of Chinese magnesite deposits. It provides a theoretical basis for forecasting the location of potential magnesite resources in China. Finally, it explores some key scientific issues, including the formation processes of ultra magnesite ore-concentrated areas, and their sources of magnesium.  相似文献   

12.
Nodular, cryptocrystalline, weathering-derived magnesite deposits in the New England Orogen, Australia, provide a significant source of high-purity magnesite. Common textural features and related isotopic fingerprints indicate a close genetic relationship between weathering-derived magnesite deposits hosted by ultramafic rocks at Attunga and by sediments at Kunwarara while silica-carbonate rock alteration and rare hydrothermal magnesite vein deposits reflect contrasting conditions of formation. Localised weathering of carbonates in a soil environment shifts stable isotopic composition towards low δ 13C and high δ 18O typical for weathering-derived magnesites while intrusion-related fluids do not significantly change the isotopic composition of affected carbonates. At Attunga, magnesite consists of irregular, nodular veins and masses filling faults and cracks in the weathered serpentinite host rock as well as soft powdery magnesite in pervasive serpentinite alteration zones. The high-grade magnesite at Attunga can be contaminated by amorphous silica and serpentine relicts but does not contain dolomite or ferroan magnesite as observed for its hydrothermal equivalent, the Piedmont magnesite deposit, or other widespread deposits of silica-carbonate rock in the Great Serpentinite Belt. Heavy δ 18O values are compatible with a supergene formation from meteoric waters while low δ 13C suggests C3-photosynthetic plants as the predominant source of carbon for the Attunga magnesites. We infer that weathering-derived, nodular magnesite deposits hosted in ultramafic rocks like the Attunga magnesite deposit have formed in a two-step process involving the hypogene formation of a pre-cursor magnesite deposit and complete supergene overprinting by meteoric waters that acquired carbon from percolation through soil.  相似文献   

13.
Vein-stockwork magnesite in the Madenli area, sedimentary huntite-magnesite in the A?a??t?rtar area, and lacustrine hydromagnesite in the Salda Lake area are located in the Bey?ehir-Hoyran and Lycian nappe rocks around Isparta and Burdur, Southwest Anatolia. The aim of this study is to understand trace element contents and carbon-oxygen isotope ratios in different originated magnesite, magnesite bearing huntite, and hydromagnesite deposits. Also, the element contents and isotope ratios of the magnesite occurrences are to compare with each other and similar magnesite occurrences in Turkey and world. It is found that the Madenli magnesite occurrences in the ?arkikaraa?aç ophiolites, A?a??t?rtar magnesite bearing huntite deposits in the lacustrine rocks of the Miocene-Pliocene, and the Salda hydromagnesite deposits in lacustrine basin on the Ye?ilova ophiolites. The paragenesis contains a common carbonate mineral magnesite, less calcite, serpentine, smectite, dolomite, and talc in the Madenli magnesite occurrences, mostly huntite and locally magnesite, dolomite, calcite, illite, quartz, and smectite in the A?a??t?rtar huntite-magnesite occurrences, and only hydromagnesite mineral in the Salda Lake hydromagnesite occurrences. Vein and stockwork Madenli magnesite deposits were recognized by higher total iron oxide concentrations (mean 1.10 wt%) than sedimentary A?a??t?rtar magnesite bearing huntite (mean 0.13 wt%) and lacustrine Salda hydromagnesite (mean 0.22 wt%) deposits. It is suggested that high Fe content (up to 5%) in the magnesite associated with ultramafic rocks than those from sedimentary environments (≤1% Fe). Based on average Ni, Co, Ba, Sr, As and Zr contents in the magnesite deposits, average Ni (134.63 ppm) and Co (15.19 ppm) contents in the Madenli magnesite and Salda hydromagnesite (36.85 ppm for Ni, 3.15 ppm for Co) have higher values than A?a??t?rtar huntite + magnesite (7.67 ppm for Ni and 0.89 ppm for Co). Average Ni-Co contents of these deposits can have close values depending on ophiolite host rock. Average Ba values of the Madenli (108.09 ppm) and A?a??t?rtar (115.88 ppm) areas are higher than those of Salda hydromagnesite (13.15 ppm). Sediment-hosted A?a??t?rtar magnesite-huntite deposits have the highest Sr contents (mean 505.81 ppm) as reasonably different from ultrabasic rock-related Madenli magnesite (mean 38.76 ppm) and Salda hydromagnesite (mean 36.70 ppm). The highest Sr content of sedimentary A?a??t?rtar deposits reveals that Sr is related to carbonate rocks. As and Zr contents have the highest average values (As 52.76 ppm and Zr 9.67 ppm) in the A?a??t?rtar deposits different from Madenli magnesite (As 0.54 ppm and Zr 1.67 ppm) and Salda hydromagnesite (As 0.5 ppm and Zr 2.58 ppm) deposits. High As and Zr concentrations in the A?a??t?rtar magnesite-huntite deposits may come from volcanic rocks in near country rocks. The δ 13C (PDB) isotope values vary between ?10.1 and ?11.4‰ in the Madenli magnesite, 7.8 to 8.8‰ for huntite, 1.7 to 8.3‰ for huntite + magnesite and 4.0‰ for limestone + magnesite in the A?a??t?rtar huntite-magnesite deposits, and 4.4 to 4.9‰ for Salda Lake hydromagnesite. The sources of the CO2 are hydrothermal solutions, meteoric waters, groundwater dissolved carbon released from fresh water carbonates and marine limestone, soil CO2, and plant C3 in the Madenli magnesite, and may be deep seated metamorphic reactions in limestone and shales of rich in terms of organic matter. The sources of CO2 in A?a??t?rtar huntite and Salda hydromagnesite were meteoric water, groundwater dissolved inorganic carbon, fresh water carbonates, and marine limestone. The δ 18O (SMOW) isotope composition ranges from 26.8 to 28.1‰ in the Madenli magnesite, 30.4 to 32.4‰ for huntite and 29.8 to 35.5‰ for huntite + magnesite and 26.9‰ for limestone + magnesite in the A?a??t?rtar area, and 36.4 to 38.2‰ in the Salda Lake hydromagnesite. The Salda Lake hydromagnesite has heavier oxygen isotopic values than others. The sources of oxygen in the Madenli magnesite deposits are hydrothermal solutions, meteoric water, freshwater carbonates, and marine limestone, but the sources of oxygen of the A?a??t?rtar magnesite-huntite are meteoric water, fresh water carbonates, and marine limestone. The Salda Lake hydromagnesite has very high δ18O isotope values indicating a strong evaporitic environment. Magnesium (Mg+2) and silica are released by disintegration of very weathered-serpentinized ultrabasic rocks of all magnesite deposits and from partly dolomite and dolomitic limestone in the A?a??t?rtar magnesite bearing huntite deposits. In the A?a??t?rtar area, calcium (Ca+2) for huntite mineralization is provided by surrounding carbonate rocks. Based on isotopic data, host rocks, petrographic properties of the Madenli magnesite can be described as an ultramafic-associated hydrothermal vein mineralization corresponding to “Kraubath type” deposits, but A?a??t?rtar ve Salda Lake deposits are sedimentary mineralization (lacustrine/evaporitic) corresponding to “Bela Stena type” deposits. The estimated temperature using average δ18O isotope values is about 33.51 °C for Madenli magnesite, 48.33 °C for A?a??t?rtar huntite-magnesite, and 25 °C for Salda hydromagnesite. Based on isotope data, we can be say that the Madenli magnesite, A?a??t?rtar magnesite-huntite, and Salda hydromagnesite occur at low to moderate-low temperature water and alkaline (pH 8.5–10.5) under surface or near-surface conditions.  相似文献   

14.
Three stratificated levels of magnesite-bearing dolomites—Lower Riphean (Bakal-Satka-Suran), Middle Riphean (Avzyan), and Upper Riphean (Min’yar)—are recognized in the Riphean section of the Bashkir Anticlinorium of the southern Urals. Dolomites contain submicroscopic (~1 μm) magnesite dissemination (MgO/CaO > 0.714). The Lower and Middle Riphean magnesite-bearing dolomites host metasomatic magnesite stocks, lenses, pockets, and large stratiform lodes formed as products of hydrothermal activity. No metasomatic magnesite bodies are known in areas without indications of the hydrothermal reworking of magnesite-bearing dolomites. Magnesite deposits of the southern Urals are typical elisional-hydrothermal products related to sedimentation and lithogenesis of carbonate rocks in isochemical system of sedimentary basin. Juvenile components did not participate in the formation of magnesite deposits in the southern Urals.  相似文献   

15.
The metasomatic nature of magnesite formation, sequence and timing of geological processes, and solution sources have been established by comprehensive geological and geochemical study of the typical Satka and Ismakaevo deposits of sparry magnesite in the South Ural province. The hydrothermal metasomatic formation of magnesite is related to injection of high-Mg evaporite brine into heated carbonate rocks within permeable rift zones. The numerical physicochemical simulation of solution–rock interaction allowed us to determine the necessary prerequisites for sparry magnesite formation: the occurrence of marine salt solutions with a high Mg/Ca ratio and heating of solutions before or during their interaction with host carbonate rocks. The contribution of compositionally various solution sources, the temperature variation regime, proportions of CO2 and H2S concentrations in solution created specific features of particular deposits.  相似文献   

16.
中国海城-大石桥菱镁矿矿床举世闻名,矿床分布于辽东元古宙裂谷海槽北缘的次一级盒地中。含镁建造属元古宙上辽河群大石桥岩组的上部.按含矿建造组成岩石的各种成因标志,确定建造的沉积岩相为闭塞台地相,因此.推测它形成于裂谷边缘的泻湖环境。由于长期潮汐作用,泻湖内有充分的富镁海水周期性地供给,在当时炎热干旱的气候条件下,泻湖中的卤水不断浓缩,并通过化学与生物化学成矿作用,在泻湖盆地内形成了大型-超大型的菱镁矿矿床。元古宙末期矿床遭受了绿片岩-角闪岩相区域动力热流变质作用的改造。  相似文献   

17.
Talc deposits of Rema area in the Kumaun Inner Lesser Himalaya are hosted within high magnesium carbonates of the Proterozoic Deoban Formation. These deposits occur as irregular patches or pockets mainly within magnesite bodies, along with impurities of magnesite, dolomite and clinochlore. Textures represent different phases of reactions between magnesite and silica to produce talc. Petrography, XRD and geochemistry reveal that the talc has primarily developed at the expense of magnesite and silica, leaving dolomite largely un-reacted. Early fluid inclusions in magnesite and dolomite associated with talc are filled with H2O+NaCl+KCl ± MgCl2 ± CaCl2 fluids, which represent basin fluid system during diagenesis of carbonates. Their varied degree of re-equilibration was although not pervasive but points to increased burial, and hence requires careful interpretation. H2O-CO2 fluid with XCO2 between 0.06 and 0.12 was equilibrated with talc formation. The reaction dolomite+quartz → talc was not extensive because T-XCO2 was not favourable, and talc was developed principally after magnesite+quartz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号