首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
运用压汞法和等温吸附法对开滦矿区东欢坨矿8煤储层特征进行研究,结合矿井实测瓦斯涌出量数据,分析了控制东欢坨矿8煤瓦斯异常涌出的地质因素。结果表明:瓦斯异常主控地质因素为地质构造及水文地质特征,东欢坨矿"水大瓦斯小,水小瓦斯大"的赋存规律明显。矿井瓦斯赋存形式主要为游离态,表现出在压性断层带时,瓦斯涌出量较小;在未导通煤系含水层情况下,张性断层带往往煤体破碎、孔裂隙相对发育,瓦斯涌出量显著增大,而在断层导通煤系含水层的水文异常区,瓦斯涌出量有明显减小的趋势。东欢坨矿瓦斯涌出量受多种因素的控制,筛选出煤层埋深、煤层厚度、煤层顶板含泥率和断层数作为主要控制因素,建立了具有较好相关性的瓦斯涌出量多变量数学预测模型;并通过灰色系统理论建模软件对瓦斯涌出量和各影响因子之间的关联度进行分析,得到断层数是瓦斯涌出量的最主要影响因素。   相似文献   

2.
采煤工作面内小断层严重影响瓦斯抽采及煤层回采工作,准确识别位置、落差、产状等参数对保障煤矿安全生产意义重大。为有效降低瓦斯涌出量、防止瓦斯爆炸、开发利用瓦斯资源,煤矿施工了大量的瓦斯抽采孔,这为识别煤层内小断层提供了良好的工程条件。相较于传统依赖地质人员专业基础的断层识别方法,基于数学统计和空间拟合的识别模型具有自动化程度高的特点。为此,依据断层两盘高程相异特性和煤层错断前埋深相似性特征,提出了基于瓦斯抽采孔数据,采用聚类分析方法,识别采煤工作面内小断层的思路。对比分析了不同聚类算法的原理和结构,建立了基于K-Means聚类算法的煤层小断层识别模型;设计了小断层识别的关键技术流程:采用手肘法求解最佳聚类簇数,以戴维森堡丁指数和相关系数作为识别精度评价标准,通过异常点识别、断层参数(走向、倾角、落差)计算、断层面拟合、三维可视化等技术手段,实现煤层小断层识别;利用现场采煤工作面底抽巷的部分瓦斯抽采孔数据,识别出落差为3 m和1 m的断层,结合断层实际揭露情况和工作面可视化结果分析。结果表明,现场揭露情况与模型计算结果基本一致,识别方法可用于煤层工作面内断层的识别。  相似文献   

3.
基于云驾岭煤矿瓦斯涌出量异常变化的现象,收集地质勘查及煤矿生产期间揭露的地质构造及瓦斯信息,运用瓦斯地质理论,从煤层瓦斯生成、运移、储存的角度,研究岩浆岩侵入、煤层埋深和断层等地质因素对2号煤层煤质、生烃能力、煤层渗透性、瓦斯含量等参数以及煤层瓦斯赋存的影响。研究结果表明岩浆侵入提高了2号煤层的变质程度、瓦斯储集能力和渗透性,促进了煤层二次生烃,同时岩浆热液产生的高温高压作用使煤层瓦斯大量逸散;岩浆侵入对煤层瓦斯的生成、运移和储存均产生了影响,是煤层瓦斯赋存的主要控制因素,断层特征及分布影响了瓦斯的储存和运移,煤层埋深影响了瓦斯的储存,断层和煤层埋深是煤层瓦斯赋存的一般影响因素。  相似文献   

4.
鄂尔多斯盆地西南缘的彬长矿区开采侏罗系4号煤层,大地构造位置处于华北板块鄂尔多斯盆地渭北隆起带西部的彬长坳褶带内,矿区内瓦斯含量总体偏低,但褶皱地带及断层附近存在高瓦斯区域。研究结果显示,该区瓦斯含量主要受断层和褶曲构造的控制,瓦斯涌出量基本与煤层底板标高为负相关,与煤层厚度为正相关,与煤层埋藏深度和上覆基岩厚度呈正相关,总体上彬长矿区瓦斯涌出量从矿区周边向中部有明显增大的趋势,瓦斯绝对涌出量将随着煤矿生产能力的增大而增大。矿区瓦斯资源总量约44.91亿m3,可开发量约12.94亿m3,具有较好的开发前景,应尽早开展总体规划,统筹考虑,科学开发利用。  相似文献   

5.
基于滇东上二叠统赋煤区煤层的煤岩学特征、瓦斯含量、瓦斯涌出量及煤矿瓦斯事故统计分析,对研究区煤层的煤岩组成、煤体结构、煤炭筛分试验成果、煤层瓦斯含量和煤矿瓦斯涌出量进行了比对研究。研究表明:煤变质程度、显微煤岩组分、筛分粒级煤及煤的孔隙率等煤岩学特征控制了瓦斯的分布特征,并造成煤矿瓦斯涌出呈现区域性的差异;滇东上二叠统赋煤区瓦斯涌出类型可分为低煤阶均匀涌出型、中煤阶均匀涌出型、中煤阶非均匀突出型、高煤阶均匀涌出型和高煤阶非均匀突出型,且以中煤阶均匀涌出型为主。   相似文献   

6.
通过分析建新煤矿瓦斯地质特征,结合灰色关联分析结果,选取底板标高为影响工作面瓦斯涌出量变化的主控因素,运用图切剖面法,分析4-2煤层工作面绝对瓦斯涌出量变化与煤层顶板岩性及上覆4-1煤层分布的关系。将井田内4-1煤层尖灭区分为顶板砂岩分布区、顶板泥岩分布区,4-1煤层分布区作为一个单独区域,引入置信上限概念,采用一元线性回归分析法,分别对三个区域进行瓦斯涌出量预测;采用类比原则,将全井田4-2煤层分为回采工作面瓦斯浓度正常区(低瓦斯区)、超限警戒区(富瓦斯区)和超限危险区(高瓦斯区)。  相似文献   

7.
工作面瓦斯涌出量是采面通风设计及制定采面瓦斯防治措施的主要依据。在收集陈家山煤矿大量瓦斯地质资料基础上,分析了矿井主采4-2号煤层采面瓦斯涌出规律及其影响因素,研究认为,采面瓦斯涌出量为矿井主要瓦斯来源,其涌出量与煤层埋藏深度、煤层瓦斯含量、顶板含油气小街砂岩厚度及工作面日产量等主要控制因素呈正相关关系;采用数学建模方法建立了采面瓦斯涌出量预测模型,编制了采面瓦斯涌出量预测图,结果显示4-2号煤层采面绝对瓦斯涌出量总体呈现出由井田浅部向中部迅速增大,再由中部到深部逐渐减少的变化趋势。  相似文献   

8.
低瓦斯矿井瓦斯异常带地质特征识别   总被引:1,自引:0,他引:1  
低瓦斯矿井的瓦斯异常带是发生煤矿事故的隐患。通过井田地质构造、煤层厚度及其结构、煤体结构、水文地质条件等瓦斯异常带地质特征分析表明,瓦斯异常带与地质异常带关系密切。对潘西矿后五块段瓦斯异常带进行了分析,发现F7-1下盘断块的煤层,除煤层瓦斯保存条件较好外,其上部受阻于F7-1断层,下部又有深部本煤层瓦斯补给,异常涌出的次数也最多。  相似文献   

9.
在高瓦斯煤层间掘进的岩巷,有时会揭示局部瓦斯异常区,导致岩巷内瓦斯含量突然升高甚至出现瓦斯超限现象。瓦斯异常区通常为相对无水裂隙区,与周围岩层相比存在电阻率、波阻抗等物性差异,适合采用地球物理勘探手段探查其赋存范围;同时瓦斯气源主要产自煤的形成和变质过程,因此不同煤层的瓦斯具有不同的地球化学特征,特别是碳同位素比值差异明显,适合采用地球化学手段确定瓦斯气源。淮南矿业集团谢桥矿1252(3)工作面底抽巷位于两个高瓦斯煤层中间,在巷道掘进过程中,迎头段锚杆孔涌出大量瓦斯,导致巷道瓦斯超限。依据瓦斯异常区在三维电阻率剖面上表现为较高视电阻率值,在地震反射波时间剖面上表现为相位错动及长尾状波形等特征,确定了气源裂隙带的发育方向为底抽巷顶板至13-1煤层,并圈定了异常范围。通过对岩巷瓦斯异常区、13-1煤、11-2煤层的瓦斯气样进行地球化学分析,发现瓦斯异常区中碳同位素δ13C与13-1煤层具有很高的相似度,即认为该瓦斯异常主要来源于13-1煤层;另外地球化学分析结果表明利用气体组份不易区分来源煤层。  相似文献   

10.
渭北煤田多变形运动期和多组构造叠加孕育出的煤系断层带对煤层瓦斯赋存产生重要影响。采用地质分析、COMSOL Multiphysics多物理场数值模拟和现场数据监测相结合的方法,分析煤系正断层带的应力分布特征及断层之间相互作用关系,研究煤系正断层带影响下的煤层渗透率变化特征,模拟正断层带形成后的瓦斯运移状态和浓度分布情况,基于瓦斯含量和瓦斯涌出量监测结果进一步分析得到煤层瓦斯赋存规律。研究结果表明:煤系断层带的应力集中主要分布在煤层断层面上,应力降产生在岩层、煤层及各断层面交汇点处;煤系断层带影响区域的煤层渗透率由大到小依次为:断层面、区域平均值、断层上盘、断层下盘;随模拟时间增加,煤层瓦斯浓度逐渐减小,煤系正断层带内部地堑、地垒、阶梯状断层瓦斯浓度降低速率略大于两侧边界断块,瓦斯在断层断块内部及正断层带外侧边界表现出明显的积聚特性;煤系正断层带内部瓦斯含量和回采期间回风流瓦斯体积分数平均值分别为2.592 1 m3/t、0.224 0%,断层带外部边界两侧平均值分别为4.480 2 m3/t、0.454 9%,表明煤系正断层带两侧形成新的瓦斯富集区域。   相似文献   

11.
Yong—gangLI 《地学前缘》2003,10(4):479-505
美国加利福尼亚州兰德斯和海克特曼恩地区于1992年和1999年先后发生7.4级和7.1级地震,分别在地面产生80km和40km长的断裂带。震后在断裂带布置的密集地震站台记录到明显的断层导波(fault-zone guided waves)。这些导波由断层带内的余震和人工震源激发产生,走时在S波之后,但具有比体波更强的振幅和更长的波列,并具有频散特征。通过对2~7 Hz断层导波的定量分析和三维有限差分数字模拟,获得了震深区断裂带的高分辨内部构造图像以及岩石的物理特性。数字模拟结果表明这些断裂带上存在被严重破碎了的核心层,形成低速、低Q值地震波导。核心破碎带宽约100~200 m,其内地震波波速降为周围岩石的40%~50%,Q值约为10~50。根据岩石断裂力学观点,这一低速、低Q值带可被解释为地震过程中处于断层动态断裂前端的非弹性区(或称之为破碎区,相干过程区)。在兰德斯和海克特曼恩断裂带测得的破碎区宽度与断裂带长度之比约为0.005,基本上符合岩石断裂力学预期的结果。观察到的断层导波还显示兰德斯和海克特曼恩地震中多条断层发生滑移和破碎。兰德斯地震时多条阶梯形断层相继断裂;而在海克特曼恩地震中,断裂带南北两端均出现分枝断裂,深处的分枝断裂较地表出现的破裂状况更为复杂。由三维有限元模拟的动态断裂过程表明,?  相似文献   

12.
根据地震资料和断层的位移-距离曲线,对辽东湾坳陷中部金县构造变换带的发育特征进行了分析。金县构造是一个发育在走滑断层叠置段内的大型含油气构造,属于郯庐走滑断裂带组成部分的辽中1号断裂带的两条分段断裂在金县地区发生相互作用和叠置,形成了在平面上呈菱形展布的走滑双重构造。菱形断块体同时也传递了分段断层的位移量,使其在空间上保持守恒,从而形成了金县斜向背斜型构造变换带。金县构造变换带的形成演化主要经历了孤立断层发育、变换带初始形成、变换带复杂化和变换带破裂4个阶段。针对渤海地区不同类型构造变换带进行深入分析,对指导油气勘探具有重要意义。  相似文献   

13.
中国强震发生带地震构造的几点思考   总被引:8,自引:0,他引:8  
强震发生带是指全新世(约1.2万年)以来发生过和将来还会发生M≥6级地震的地带。中国强震发生带的动力源主要来自印度板块向NNE的顶撞作用,而太平洋板块向西俯冲则次之。板块、断块及锒嵌其间的缝合线、深大断裂带,组成了窗棂结构,受力时“窗棂”(缝合线、深大断裂)发生错动,而“窗”(板块、断块)的内部则相对稳定。第四纪以来,以我国西南鲜水河-小江断裂带为例,在Q1、Q2时期因断裂带作左旋扭动,在拉张区形成许多断陷盆地;到Q3由于地应力方向改变,运动加剧,使不同方向断裂互相贯通,活动延续至今,称之为活动断裂带。强震多发生在活动断裂的特殊部位,震中区地面强烈变形,表现为毗邻地段猛烈升降、地堑地垒系断头河等。由古地震研究得知Q4以来强震常在原地多次重复,且震级相近。由台湾1999年集集地震和云南1955年鱼Zha地震的加速度等值线和等烈度线图形对比,建筑物破坏程度和昔格达层变形对照,得出强震构造变形机理乃系“夹心饼干”似的三层结构所致,三层即是断层的二盘和其所夹持的断层破碎带,后者是地应国聚集和释放的场所,是地震波的良好通道。  相似文献   

14.
The paper analyses the geometry of thin-skinned thrust zones, where the thrusts shallow out at depth and of thicker-skinned fault zones where much of the crust is involved and where the thrusts are frequently observed to become steeper downwards. In the interiors of many orogenic belts the steep dip of faults is not original but due to the folding above lower decoupling zones. The energy involved in the internal deformation of hanging-wall rocks may prohibit many faults becoming more shallow upwards. Such shallowing-upwards faults may occur in more ductile rocks to maintain compatibility between zones which have experienced different deformation intensities, but displacements on the faults are unlikely to be large.Another mechanism for producing faults which steepen downwards is proposed for the major thrusts which form the southern margin to the Himalayas. These carry large thicknesses (30 to 100 km) of crustal and upper mantle rocks to the south, causing flexuring and isostatic depression of the Indian plate. The steeply dipping thrusts are not footwall ramps; these may be some distance behind the steepened zone. This thrust-induced isostatic bending of the crust has important implications when considering regional seismic interpretations as well as thrust mechanics and kinematics.  相似文献   

15.
《地学前缘(英文版)》2019,10(6):2093-2100
In quartzo-feldspathic continental crust with moderate-to-high heat flow,seismic activity extends to depths of 10-20 km,bounded by isotherms in the 350-450 C range.Fluid overpressuring above hydrostatic in seismogenic crust,is heterogeneous but tends to develop in the lower seismogenic zone(basal seismogenic zone reservoir=b.s.z.reservoir) where the transition between hydrostatically pressured and overpressured crust is likely an irregular,time-dependent.3-D interface with overpressuring concentrated around active faults and their ductile shear zone roots.The term Arterial Fault is applied to fault structures that root in portions of the crust where pore fluids are overpressured(i.e.at hydrostatic pressure) and serve as feeders for such fluids and their contained solutes into overlying parts of the crust.While arterial flow may occur on any type of fault,it is most likely to be associated with reverse faults in areas of horizontal compression where fluid overpressuring is most easily sustained.Frictional stability and flow permeability of faults are both affected by the state of stress on the fault(shear stress,τ;normal stress,σ_n),the level of pore-fluid pressure,P_f,and episodes of fault slip,allowing for a complex interplay between fault movement and fluid flow.For seismically active faults the time dependence of permeability is critical,leading to fault-valve behaviour whereby overpressures accumulate at depth during interseismic intervals with fluid discharged along enhanced fault-fracture permeability following each rupture event.Patterns of mineralization also suggest that flow along faults is non-uniform,concentrating along tortuous pathways within the fault surface.Equivalent hydrostatic head above ground level for near-lithostatic overpressures at depth(1.65×depth of zone) provides a measure of arterial potential.Settings for arterial faults include fault systems developed in compacting sedimentary basins,faults penetrating zones of active plutonic intrusion that encounter overpressured fluids exsolved from magma,together with those derived from contact metamorphism of fluid-rich wallrocks,and/or from regional devolatilisation accompanying prograde metamorphism.Specially significant are active faults within accretionary prisms rooted into overpressured subduction interfaces,and steep reverse faults activated by high overpressures from b.s.z.reservoirs during compressional inversion.  相似文献   

16.
长白山地区主要断裂带与地表温度场关系研究   总被引:1,自引:0,他引:1  
基于Landsat 5 TM和Landsat 7 ETM+影像,采用辐射传输方程法反演长白山地区地表温度,以已知断裂带为中心线,向两侧相同范围做等间距划分,统计各等分带内的平均地表温度和平均距离,运用图形的形式展现温度场和断裂构造之间的关系,并用等分带平均温度和平均距离绘制相关性曲线来进一步描述温度场与主要断裂构造之间的关系。结果表明:9月份时区域内的6条断裂带与地表温度场相关性显著,区域特征稳定,等分带内距离断裂带越远,地表温度越低;4月份时地表温度场随断裂构造的变化趋势和11月份时地表温度场随断裂构造的变化趋势呈现出很大程度的吻合。区域内的北东向和近东西向断裂带,其地表温度场与断裂构造之间表现出一定的相关性,北西向的北岗断裂带、红旗村—天池断裂带以及漫江断裂带与地表温度场的相关性并不显著,红旗村—天池温度场与漫江温度场可能属于一个更大尺度的温度场的两侧。  相似文献   

17.
Field investigations reveal spatial variations in fault zone width along strike-slip active faults of the Arima–Takatsuki Tectonic Line (ATTL) and the Rokko–Awaji Fault Zone (RAFZ) of southwest Japan, which together form a left-stepping geometric pattern. The fault zones are composed of damage zones dominated by fractured host rocks, non-foliated and foliated cataclasites, and a fault core zone that consists of cataclastic rocks including fault gouge and fault breccia. The fault damage zones of the ATTL are characterized by subsidiary faults and fractures that are asymmetrically developed on each side of the main fault. The width of the damage zone varies along faults developed within granitic rocks of the ATTL and RAFZ, from ∼50 to ∼1000 m. In contrast, the width of the damage zone within rhyolitic tuff on the northwestern side of the ATTL varies from ∼30 to ∼100 m. The fault core zone is generally concentrated in a narrow zone of ∼0.5–∼5 m in width, consisting mainly of pulverized cataclastic rocks that lack the primary cohesion of the host rocks, including a narrow zone of fault gouge (<0.5 m) and fault-breccia zones either side of the fault. The present results indicate that spatial variations in the width of damage zone and the asymmetric distribution of damage zones across the studied strike-slip faults are mainly caused by local concentrations in compressive stress within an overstep area between left-stepping strike-slip faults of the ATTL and RAFZ. The findings demonstrate that fault zone structures and the spatial distribution in the width of damage zone are strongly affected by the geometric patterns of strike-slip faults.  相似文献   

18.
1 IntroductionOn November 14, 2001, a large earthquake of M-8.1(magnitude of 8.1) occurred to the west of the KunlunMountain Pass which bounds Xinjiang Uygur AutonomousRegion and Qinghai Province. The Chinese seismicnetwork measured the epicenter of this event to be locatedat 36.2°N, 90.9°E, 350 km away from Golmud City ofQinghai and 400 km from Ruoqiang County of Xinjiang.This is the largest earthquake in the Chinese mainland sincethe M-8.0 earthquake occurring in Damxung of Tibet…  相似文献   

19.
龙山门断裂带活动特征与工程区域地壳稳定性评价理论   总被引:3,自引:0,他引:3  
2008年5月12日发生的里氏8.0级汶川地震处于龙门山造山带与四川盆地的构造边界上。350km长的地表破裂带呈右行左阶雁行排列在具有逆冲和右行走滑性质的汶川茂县青川、映秀北川和江油都江堰3条断层带上。下地壳的韧性流动伴随中地壳韧-脆性剪切带应力和应变的积累,产生上地壳脆性发震断层,并控制地表破裂带和滑坡的分布。震源出现在上地壳脆性断层与中地壳脆-韧性剪切带的交汇部位。〖KG2〗以汶川地震为例,结合板内地震基本特征,提出引入大陆动力学理论完善工程区域稳定性理论基础,构建基于板块学说、地质力学和大陆动力学理论的相互补充的工程区域稳定性评价体系;对活断层与地震活动性预测提出见解,强调仅仅从活断层的存在及其活动强度来预测地震活动性与强度是远远不够甚至是错误的,必须将下地壳、中地壳和上地壳结构作为一个整体加以研究和判别;提出工程区域地壳稳定性评价指标体系,指出了大陆内部安全岛划分应采用的核心指标。  相似文献   

20.
A method of seismic zonation based on deterministic modeling of rupture plane is presented in this work. This method is based on the modeling of finite rupture plane along identified lineaments in the region using the semi-empirical technique, of Midorikawa [(1993) Tectonophysics 218:287–295]. The modeling procedure follows ω2 scaling law, directivity effects, and other strong motion parameters. The technique of zonation is applied for technoeconomically important NE part of Brahmaputra valley that falls in the seismic gap region of Himalaya. Zonation map prepared for Brahmaputra valley for earthquakes of magnitude M > 6.0 show that approximately 90,000 km2 area fall in the highly hazardous zone IV, which covers region that can have peak ground accelerations of order more than 250 cm/s2. The zone IV covers the Tezu, Tinsukia, Dibrugarh, Ziro, North Lakhimpur, Itanagar, Sibsagar, Jorhat, Golaghat, Wokha, Senapati, Imphal, and Kohima regions. The Pasighat, Daring, Basar, and Seppa region belong to zone III with peak ground accelerations of the order 200–250 cm/s2. The seismic zonation map obtained from deterministic modeling of the rupture is consistent with the historical seismicity map and it has been found that the epicenter of many moderate and major earthquakes fall in the identified zones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号