首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Halogen ratios (Br/Cl and I/Cl) and concentrations provide important information about how sedimentary formation waters acquire their salinity, but the possible influence of organic Br derived from sedimentary wall-rocks is rarely quantified. Here, it is demonstrated that Br/Cl versus I/Cl mixing diagrams can be used to deconvolve organic Br contributions; that organic matter has a limited range of Br/I ratios; and that organic Br is a more significant component in Zn–Pb deposit ore fluids than previously recognised. The significance of these findings is illustrated for the Lennard Shelf Zn–Pb deposits of Western Australia.Fluid inclusions related to Lennard Shelf Zn–Pb mineralisation have variable salinity and hydrocarbon contents. The halogen data from these fluid inclusions require mixing of three fluid end-members: (1) an evaporated seawater bittern brine (30 wt.% NaCl equiv.) with greater than seawater Br/Cl ratio; (2) a lower salinity pore fluid (?5 wt.% NaCl equiv.) with moderately elevated Br/Cl and I/Cl; and (3) fluids with Br/Cl ratios of ~5 times seawater and extremely elevated I/Cl ratios of ~11,500 times seawater. The first two fluids have 40Ar/36Ar of 300–400 and greater than air saturated water 36Ar concentrations that are typical of fluid inclusions related to Zn–Pb mineralisation. The third ‘organic-rich’ fluid has the highest 40Ar/36Ar ratio of up to 1500 and a depleted 36Ar concentration.Mineralisation is interpreted to have resulted from mixing of Zn-rich evaporitic brines and H2S present in hydrocarbons. It is suggested that aqueous fluids acquired organic Br and I from hydrocarbons, and that hydrocarbons exsolving from the aqueous fluid removed noble gases from solution. Interaction of variably saline brines and hydrocarbons could account for the variable Br/Cl and I/Cl composition, and 36Ar concentrations, recorded by Lennard Shelf fluid inclusions. The distinct 40Ar/36Ar signature of the fluid with the highest I/Cl ratio suggests the hydrocarbons and brines were sourced independently from different parts of the sedimentary basin. These data indicate the complementary nature of halogen and noble gas analysis and provide new constraints on important mixing processes during sediment-hosted Zn–Pb mineralisation.  相似文献   

2.
Fluid inclusion microthermometry, Raman spectroscopy and noble gas plus halogen geochemistry, complemented by published stable isotope data, have been used to assess the origin of gold-rich fluids in the Lachlan Fold Belt of central Victoria, south-eastern Australia. Victorian gold deposits vary from large turbidite-hosted ‘orogenic’ lode and disseminated-stockwork gold-only deposits, formed close to the metamorphic peak, to smaller polymetallic gold deposits, temporally associated with later post-orogenic granite intrusions. Despite the differences in relative timing, metal association and the size of these deposits, fluid inclusion microthermometry indicates that all deposits are genetically associated with similar low-salinity aqueous, CO2-bearing fluids. The majority of these fluid inclusions also have similar 40Ar/36Ar values of less than 1500 and 36Ar concentrations of 2.6–58 ppb (by mass) that are equal to or much greater than air-saturation levels (1.3–2.7 ppb). Limited amounts of nitrogen-rich fluids are present at a local scale and have the highest measured 40Ar/36Ar values of up to 5,700, suggesting an external or distinct source compared to the aqueous fluids. The predominance of low-salinity aqueous–carbonic fluids with low 40Ar/36Ar values, in both ‘orogenic’ and ‘intrusion-related’ gold deposits, is attributed to fluid production from common basement volcano-sedimentary sequences and fluid interaction with sedimentary cover rocks (turbidites). Aqueous fluid inclusions in the Stawell–Magdala deposit of western Victoria (including those associated with N2) preserve mantle-like Br/Cl and I/Cl values. In contrast, fluid inclusions in deposits in the eastern structural zones, which contain more abundant shales, have elevated molar I/Cl ratios with maximum values of 5,170 × 10−6 in the Melbourne Zone. Br/I ratios in this zone range from 0.5 to 3.0 that are characteristic of fluid interaction with organic-rich sediments. The maximum I/Cl and characteristic Br/I ratios provide evidence for organic Br and I released during metamorphism of the shales. Therefore, the regional data provide strong evidence for the involvement of sedimentary components in gold mineralisation, but are consistent with deeper metamorphic fluid sources from basement volcano-sedimentary rocks. The overlying sediments are probably involved in gold mineralisation via fluid–rock interaction.  相似文献   

3.
Primary multiphase brine fluid inclusions in omphacite and garnet from low‐ to medium‐temperature eclogites have been analysed for Cl, Br, I, F, Li and SO4. Halogen contents and ratios provide information about trapped lower crustal fluids, even though the major element (Na, K, Ca) contents of inclusion fluids have been modified by fluid–mineral interactions and (step‐) daughter‐crystal formation after trapping. Halogens in the inclusion fluids were analysed with crush–leach techniques. Cl/Br and Cl/I mass ratios of eclogite fluids are in the range 31–395 and 5000–33 000, respectively. Most fluids have a Cl/Br ratio lower than modern seawater and a Cl/I ratio one order of magnitude lower than modern seawater. Fluids with the lowest Cl/Br and highest Cl/I ratios come from an eclogite that formed by hydration of granulite facies rocks, and may indicate that Br and I are fractionated into hydrous minerals. Reconstructions indicate that the inclusion fluids originally contained 500–4000 ppm Br, 1–14 ppm I and 33–438 ppm Li. Electron microprobe analyses of eclogite facies amphibole, biotite, phengite and apatite indicate that F and Cl fractionate most strongly between phengite (F/Cl mass ratio of 1469 ± 1048) and fluid (F/Cl mass ratio of 0.008), and the least between amphibole and fluid. The chemical evolution of Cl and Br in pore fluids during hydration reactions is in many ways analogous to Cl and Br in seawater during evaporation: the Cl/Br ratio remains constant until the aH2O value is sufficiently lowered for Cl to be removed from solution by incorporation into hydrous minerals.  相似文献   

4.
豫陕小秦岭脉状金矿床三期流体运移成矿作用   总被引:30,自引:27,他引:30  
位于豫陕交界处的小秦岭脉状金矿是我国第二大黄金产出集中地。流体包裹体研究表明,脉状金矿床石英及碳酸盐矿物中流体包裹体主要有富CO2包裹体、CO2-H2O包裹体和H2O溶液包裹体等三种类型,各热液阶段形成的脉体内有不同的流体包裹体组合。脉状金矿体的形成经历了三期流体成矿作用,第一期形成乳白色石英大脉,它构成了矿脉的主体,流体的性质为富H2O热液,但无金的成矿;第二期(成矿期)流体为中低盐度CO2-H2O-NaCl热液,它叠加在了石英大脉之上,形成(块状)黄铁矿-浅色石英矿体和(网脉状)多金属硫化物-烟灰色石英矿体,成矿期内热液的温度、压力及流体组成的变化是金沉淀成矿的原因;第三期热液又转成低盐度的富水流体,形成石英-碳酸盐脉体,金矿化微弱。  相似文献   

5.
胶东三甲金矿床流体包裹体特征   总被引:14,自引:6,他引:8  
三甲金矿是胶东牟平-乳山金成矿带内重要的石英脉型金矿,金主要产于黄铁矿和多金属硫化物石英脉中。流体包裹体研究表明,三甲金矿蚀变岩石和各成矿阶段金矿石中的流体包裹体主要有三种类型:H2O-CO2包裹体、富CO2包裹体和H2O溶液包裹体。早期乳白色石英中主要赋存原生的H2O-CO2包裹体;成矿期黄铁矿石英脉和多金属硫化物石英脉中的富CO2包裹体主要为原生,随机分布,气液比变化较大,常与早期H2O溶液包裹体共生且均一温度接近,显示不混溶流体包裹体组合特征;在成矿晚期的石英和方解石中主要发育原生H2O溶液包裹体。显微测温结果显示,成矿前(第1阶段)H2O-CO2包裹体的完全均一温度(Tb.TOT,至液相)为280℃至416℃,成矿期(第Ⅱ和Ⅲ阶段)富CO2包裹体的完全均一温度为210—330℃,同期的H2O溶液包裹体均一温度为253~377℃,成矿后(第Ⅳ阶段)H2O溶液包裹体的均一温度为176—207℃。成矿流体为低盐度的CO2-H2O-NaCl型热液,成矿应力场转变导致的流体减压沸腾作用可能是三甲金矿金沉淀成矿的主要原因。  相似文献   

6.
In the Sanandaj-Sirjan zone of metamorphic belt of Iran, the area south of Hamadan city comprises of metamorphic rocks, granitic batholith with pegmatites and quartz veins. Alvand batholith is emplaced into metasediments of early Mesozoic age. Fluid inclusions have been studied using microthermometry to evaluate the source of fluids from which quartz veins and pegmatites formed to investigate the possible relation between host rocks of pegmatites and the fluid inclusion types. Host minerals of fluid inclusions in pegmatites are quartz, andalusite and tourmaline. Fluid inclusions can be classified into four types. Type 1 inclusions are high salinity aqueous fluids (NaCleq >12 wt%). Type 2 inclusions are low to moderate salinity (NaCleq <12 wt%) aqueous fluids. Type 3 and 4 inclusions are carbonic and mixed CO2-H2O fluid inclusions. The distribution of fluid inclusions indicate that type 1 and type 2 inclusions are present in the pegmatites and quartz veins respectively in the Alvand batholith. This would imply that aqueous magmatic fluids with no detectable CO2 were present during the crystallization of these pegmatites and quartz veins. Types 3 and 4 inclusions are common in quartz veins and pegmatites in metamorphic rocks and are more abundant in the hornfelses. The distribution of the different types of fluid inclusions suggests that CO2 fluids generated during metamorphism and metamorphic fluids might also contribute to the formation of quartz veins and pegmatites in metamorphic terrains.  相似文献   

7.
Fluid inclusions were studied in quartz samples from early (stage I) gold-poor quartz veins and later (stage II) gold- and sulphide-rich quartz veins from the Wenyu, Dongchuang, Qiangma, and Guijiayu mesothermal gold deposits in the Xiaoqinling district, China. Fluid inclusion petrography, microthermometry, and bulk gas analyses show remarkably consistent fluid composition in all studied deposits. Primary inclusions in quartz samples are dominated by mixed CO2-H2O inclusions, which have a wide range in CO2 content and coexist with lesser primary CO2-rich and aqueous inclusions. In addition, a few secondary aqueous inclusions are found along late-healed fractures. Microthermometry and bulk gas analyses suggest hydrothermal fluids with typically 15–30 mol% CO2 in stage I inclusions and 10–20 mol% CO2 in stage II inclusions. Estimates of fluid salinity decrease from 7.4–9.2 equivalent wt.% NaCl to 5.7–7.4 equivalent wt.% NaCl between stage I and II. Primary aqueous inclusions in both stages show consistent salinity with, but slightly lower Th total than, their coexistent CO2-H2O inclusions. The coexisting CO2-rich, CO2-H2O, and primary aqueous inclusions in both stage I and II quartz are interpreted to have been trapped during unmixing of a homogeneous CO2-H2O parent fluid. The homogenisation temperatures of the primary aqueous inclusions give an estimate of trapping temperature of the fluids. Trapping conditions are typically 300–370 °C and 2.2 kbar for stage I fluids and 250–320 °C and 1.6 kbar for stage II fluids. The CO2-H2O stage I and II fluids are probably from a magmatic source, most likely devolatilizing Cretaceous Yanshanian granitoids. The study demonstrates that gold is largely deposited as pressures and temperatures fall accompanying fluid immiscibility in stage II veins. Received: 15 May 1997 / Accepted: 10 June 1998  相似文献   

8.
Gold mineralization in the Kolar schist belt of the Dharwar craton occurs dominantly in the form of a sulfide-poor Au-quartz lode (the Champion lode exposed in the Mysore and other mines) and sulfide-rich auriferous lodes (from the Nundydroog mine). Fluid inclusion microthermometric experiments were conducted on primary inclusions in quartz intimately associated with Au-mineralization. Homogenization studies on aqueous-biphase (L + V), aqueous polyphase (L + V+ halite) and aqueous-carbonic (LCO2± VCO2 + Laq) inclusions from the Champion lode furnish a temperature range of 120 to 420 °C. Freezing of aqueous biphase inclusions and dissolution of halite in the aqueous polyphase inclusions provide salinity of 5 to 50 wt.% NaCl equivalent. Fluid inclusion thermobarometry from the total homogenization of aqueous-carbonic inclusions and from intersecting isochores of coeval pure-carbonic (LCO2± VCO2) and pure-aqueous inclusions constrain the P-T path of evolution of the fluid in the Champion lode. Gold precipitation was likely to have been brought about in response to a sharp fall in pressure with attendant unmixing of liquid-CO2 from the parent H2O-CO2 fluid of possible metamorphic origin. This would imply transportation of gold by some pressure-sensitive complex such as the Au-carbonyl. Fluid characteristics are different in the sulfide-rich auriferous lodes, as indicated by the virtual absence of the CO2-bearing and the halite-bearing inclusions. The fluid evolution path, as evident from the crude positive colinearity of temperature and salinity, is due to mixing of a low (≤200 °C) temperature-low saline (≤7 wt.% NaCl equivalent) fluid with a high temperature (≥400 °C)-high saline (≥50 wt.% NaCl equivalent) fluid. The lack of CO2 and association of Au with sulfides indicate a different mode of gold transport, as chloride or bisulfide complexing, deposition of which was possibly brought about by fluid mixing. Received: 17 April 1997 / Accepted: 30 June 1998  相似文献   

9.
Analyses of fluid-inclusion leachates from ore deposits show that Na/Br ratios are within the range of 75 - 358 and Cl/Br 67 - 394, respectively, and this variation trend coincides with the seawater evaporation trajectory on the basis of the Na/Br and Cl/Br ratios. The average Cl/Br and Na/Br ratios of mineralizing fluids are 185 and 173 respectively, which are very close to the ratios ( 120 and 233 ) of the residual evaporated seawater past the point of halite precipitation. It is suggested that the original mineralizing brine was derived from highly evapo-rated seawater with a high salinity. However, the inclusion fluids have absolute Na values of 69.9—2606.2 mmol kg^-1 and Cl values of 106.7 — 1995.5 mmol kg^-1. Most of the values are much less than those of seawater: Na, 485 mmol kg^-1 and Cl, 566 mmol kg^-1 , respectively; the salinity measured from fluid inclusions of the deposits ranges from 2.47 wt% to 15.78 wt% NaCl equiv. The mineralizing brine has been diluted. The δ ^18O and δD values of ore-forming fluids vary from -8.21‰ to 9.51‰ and from -40.3‰ to -94.3‰, respectively. The δD values of meteoric water in this region varied from - 80‰ to - 100‰ during the Jurassic. This evidenced that the ore-forming fluids are the mixture of seawater and meteoric water. Highly evaporated seawater was responsible for leaching and extracting Pb, Zn and Fe, and mixed with and diluted by descending meteoric water, which resulted in the formation of ores.  相似文献   

10.
Fluid inclusion and structural studies were carried out at the Guarim gold deposit in the Palaeoproterozoic Tapajós province of the Amazonian craton. Guarim is a fault-hosted gold deposit cutting basement granitoids. It consists of a quartz vein, which is massive in its inner portions, grading laterally either to a massive or to cavity-bearing quartz vein associated with hydrothermal breccias. The wallrock alteration comprises chlorite, carbonate, white mica and sulphide minerals, with free gold occurring within quartz grains and spatially associated with sulphide mineral grains. Petrographic, microthermometric and Laser Raman investigations recognised CO2-rich, mixed H2O–CO2, and H2O fluid inclusions. The coexisting CO2 and H2O–CO2 inclusions were interpreted as primary immiscible fluids that formed the gold-bearing vein. The H2O inclusions were considered a product of later infiltration of fluids unrelated to the mineralising episode. The mineralising fluid has CO2 ranging typically from 5–10 mol%, contains traces of N2, has salinities of ∼5 wt% NaCl equiv., and densities varying between 0.85 and 0.95 g/cm3. The P–T estimations bracket gold deposition between 270–320 °C and 0.86–2.9 kb; ƒO2–ƒS2–pH estimates suggest a reduced, near-neutral character for the fluid. Variations in the physico-chemical properties, as demonstrated by the fluid inclusion study, resulted from a combination of fluid immiscibility and pressure fluctuation. This interpretation, combined with textural and structural evidence, suggests the emplacement of the mineralised vein in an active fault and at a rather shallow level (4–7 km). The geological and structural setting, deposit-scale textures and structures, wallrock alteration and physico-chemical fluid properties are compatible with those of epizonal to mesozonal orogenic lode gold deposits. Received: 3 March 2000 / Accepted: 21 October 2000  相似文献   

11.
The Osborne iron oxide–copper–gold (IOCG) deposit is hosted by amphibolite facies metasedimentary rocks and associated with pegmatite sheets formed by anatexis during peak metamorphism. Eleven samples of ore-related hydrothermal quartz and two pegmatitic quartz–feldspar samples contain similarly complex fluid inclusion assemblages that include variably saline (<12–65 wt% salts) aqueous and liquid carbon dioxide varieties that are typical of IOCG mineralisation. The diverse fluid inclusion types present in each of these different samples have been investigated by neutron-activated noble gas analysis using a combination of semi-selective thermal and mechanical decrepitation techniques. Ore-related quartz contains aqueous and carbonic fluid inclusions that have similar 40Ar/36Ar values of between 300 and 2,200. The highest-salinity fluid inclusions (47–65 wt% salts) have calculated 36Ar concentrations of approximately 1–5 ppb, which are more variable than air-saturated water (ASW = 1.3–2.7 ppb). These fluid inclusions have extremely variable Br/Cl values of between 3.8 × 10−3 and 0.3 × 10−3, and I/Cl values of between 27 × 10−6 and 2.4 × 10−6 (all ratios are molar). Fluid inclusions in the two pegmatite samples have similar 40Ar/36Ar values of ≤1,700 and an overlapping range of Br/Cl and I/Cl values. High-salinity fluid inclusions in the pegmatite samples have 2.5–21 ppb 36Ar, that overlap the range determined for ore-related samples in only one case. The fluid inclusions in both sample groups have 84Kr/36Ar and 129Xe/36Ar ratios that are mainly in the range of air and air-saturated water and are similar to mid-crustal rocks and fluids from other settings. The uniformly low 40Ar/36Ar values (<2,200) and extremely variable Br/Cl and I/Cl values do not favour a singular or dominant fluid origin from basement- or mantle-derived magmatic fluids related to A-type magmatism. Instead, the data are compatible with the involvement of metamorphic fluids that have interacted with anatectic melts to variable extents. The ‘metamorphic’ fluids probably represent a mixture of (1) inherited sedimentary pore fluids and (2) locally derived metamorphic volatilisation products. The lowest Br/Cl and I/Cl values and the ultra-high salinities are most easily explained by the dissolution of evaporites. The data demonstrate that externally derived magmatic fluids are not a ubiquitous component of IOCG ore-forming systems, but are compatible with models in which IOCG mineralisation is localised at sites of mixing between fluids of different origin. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorised users.  相似文献   

12.
Abstract. Denggezhuang gold deposit is an epithermal gold‐quartz vein deposit in northern Muru gold belt, eastern Shandong, China. The deposit occurs in the NNE‐striking faults within the Mesozoic granite. The deposit consists of four major veins with a general NNE‐strike. Based on crosscutting relationships and mineral parageneses, the veins appear to have been formed during the same mineralization epochs, and are further divided into three stages: (1) massive barren quartz veins; (2) quartz‐sulfides veins; (3) late, pure quartz or calcite veinlets. Most gold mineralization is associated with the second stage. The early stage is characterized by quartz, and small amounts of ore minerals (pyrite), the second stage is characterized by large amounts of ore minerals. Fluid inclusions in vein quartz contain C‐H‐O fluids of variable compositions. Three main types of fluid inclusions are recognized at room temperature: type I, two‐phase, aqueous vapor and an aqueous liquid phase (L+V); type II, aqueous‐carbonic inclusions, a CC2‐liquid with/without vapor and aqueous liquid (LCO2+VCC2+Laq.); type III, mono‐phase aqueous liquid (Laq.). Data from fluid inclusion distribution, microthermometry, and gas analysis indicate that fluids associated with Au mineralized quartz veins (stage 2) have moderate salinity ranging from 1.91 to 16.43 wt% NaCl equivalent (modeled salinity around 8–10 wt% NaCl equiv.). These veins formatted at temperatures from 80d? to 280d?C. Fluids associated with barren quartz veins (stage 3) have a low salinity of about 1.91 to 2.57 wt% NaCl equivalent and lower temperature. There is evidence of fluid immiscibility and boiling in ore‐forming stages. Stable isotope analyses of quartz indicate that the veins were deposited by waters with δO and δD values ranging from those of magmatic water to typical meteoric water. The gold metallogenesis of Muru gold belt has no relationship with the granite, and formed during the late stage of the crust thinning of North China.  相似文献   

13.
Recent O-isotope and fluid inclusion studies have provided evidence on the nature of the fluids associated with the late-Alpine quartz-gold deposits of the Monte Rosa district. The most abundant inclusions in quartz from these deposits contain a low salinity aqueous fluid (about 2% to 10% wt. NaCl eq.), and a CO2 phase (usually less than 20% mol), in places with minor methane. CO2 densities and total homogenization temperatures vary widely throughout the district, reflecting diverse conditions of trapping (P = 1 to 3 kb, T = 300° to 450°C). At Miniera dei Cani, unmixing between CO2-rich and H2O-rich fluids possibly occurred. A second type of inclusion contains an aqueous brine without recognizable CO2, and is especially abundant at Val Toppa. O-isotope studies suggest that fluids were largely equilibrated in a metamorphic environment. It is concluded that the gold-related fluids in the district were mainly of a metamorphic nature; at Val Toppa, both isotopic and fluid inclusion data point to contributions of unexchanged meteoric waters. Mechanisms of gold transport and precipitation are less contrained. A possible model involves transport of gold as bisulfide complexes, and precipitation due to one or more of the following processes: decrease of sulfur activity due to precipitation of sulfides, wall-rock reaction, cooling/dilution, and/or fluid unmixing.  相似文献   

14.
Naturally re-equilibrated fluid inclusions have been found in quartz crystals from alpine fissures of the Western Carpathians. Re-equilibration textures, such as planar arrangement of the decrepitation clusters as well as the quartz c- and a-axis oriented fracturing indicate explosion of fluid inclusions. The extent of fracturing, which is dependent on inclusion diameters, suggests inclusion fluid overpressures between 0.6–1.9 kb. Microthermometry data are controversial with the textures because of indicating roughly fixed initial fluid composition and density during re-equilibration, although inclusion volumes have been sometimes substantially reduced by crystallization of newly-formed quartz. It is concluded that fluid loss from re-equilibrated inclusions must have been compensated for by replacing equivalent quartz volume from cracks into parent inclusion. Such a mechanism has operated in a closed system and the re-equilibration related cracks have not been connected with mineral surface. The compositional and density differences between aqueous inclusions in decrepitation clusters and CO2-rich parent inclusions cannot be interpreted in terms of classical fluid immiscibility. Moreover, monophase liquid-filled aqueous inclusions and coexisting monophase CO2 vapour-filled inclusions in the decrepitation clusters are thermodynamically unacceptable under equilibrium metamorphic conditions. The effect of disjoining pressure resulting from structural and electrostatic forces in very thin fractures is suspected to have caused density and compositional inconsistencies between parent and cluster inclusions, as well as the unusual appearance of cluster inclusions. In high-grade metamorphic conditions, the re-equilibration probably leads to boundary layer-induced immiscibility of homogeneous H2O–CO2–NaCl fluids and to formation of compositionally contrasting CO2-rich and aqueous inclusions.  相似文献   

15.
A combined oxygen‐isotope and fluid‐inclusion study has been carried out on high‐ and ultrahigh‐pressure metamorphic (HP/UHPM) eclogites and garnet clinopyroxenite from the Dabie‐Sulu terranes in eastern China. Coesite‐bearing eclogites/garnet clinopyroxenite and quartz eclogites have a wide range in whole‐rock δ18OVSMOW, from 0 to 11‰. The high‐T oxygen‐isotope fractionations preserved between quartz and garnet preclude significant retrograde isotope exchange during exhumation, and the wide range in whole‐rock oxygen‐isotope composition is thought to be a presubduction signature of the precursors. Aqueous fluids with variable salinities and gas species (N2‐, CO2‐, or CH4‐rich), are trapped as primary inclusions in garnet, omphacite and epidote, and in quartz blebs enclosed within eclogitic minerals. In high‐δ18O HP/UHPM rocks from Hujialin and Shima, high‐salinity brine and/or N2 inclusions occur in garnet porphyroblasts, which also contain inclusions of coesite, Cl‐rich blue amphibole and dolomite. In contrast, in low‐δ18O eclogites from Qinglongshan and Huangzhen, the Cl concentrations in amphibole are very low, < 0.2 wt.%, and low‐salinity aqueous inclusions occur in quartz inclusions in epidote porphyroblasts and in epidote cores. These low‐salinity fluid inclusions are believed to be remnants of meteoric water, although the fluid composition was modified during pre‐ and syn‐peak HP/UHPM. Eclogites at Houshuichegou and Hetang contain CH4‐rich fluid inclusions, coexisting with high‐salinity brine inclusions. Methane was probably formed under the influence of CO2‐rich aqueous fluids during serpentinisation of mantle‐derived peridotites prior to or during plate subduction. Remnants of premetamorphic low‐ to high‐salinity aqueous fluid with minor N2 and/or other gas species preserved in the Dabie‐Sulu HP/UHPM eclogites and garnet clinopyroxenite indicate a great diversity of initial fluid composition in the precursors, implying very limited fluid–rock interaction during syn‐ and post‐peak HP/UHPM.  相似文献   

16.
朴寿成  张博文  师磊  于泽新 《物探与化探》2007,31(2):120-123,128
在小塔子沟金矿,Ba、As、Sb、Hg、Pb为前缘元素,Mo、Co、Ni为尾晕元素,Bi、Ag、Cu、Zn为主要伴生元素.随着矿脉深度的加深,Na2O逐渐变大,TFeO逐渐变小,利用根据这种关系拟合成的线性方程可预测矿脉的深度.在有规模的矿脉中,石英流体包裹体的均一温度变化区间比较宽(160~400 ℃),流体的盐度变化范围大(0~9%);而在规模较小的矿脉中,温度比较高(280~400 ℃),盐度比较低(<5%).在矿脉的深部,成矿流体的温度比较高,盐度比较低,包裹体数量明显减少.根据上述找矿标志,1号脉19中段以下的深部出现有规模工业矿体的可能性不太大;2号脉的成矿前景可能好于5、6号脉;距北大山二长花岗岩南1~3 km范围是寻找新的平行富矿体的最有利地段.  相似文献   

17.
Gold mineralization at Jonnagiri, Dharwar Craton, southern India, is hosted in laminated quartz veins within sheared granodiorite that occur with other rock units, typical of Archean greenstone–granite ensembles. The proximal alteration assemblage comprises of muscovite, plagioclase, and chlorite with minor biotite (and carbonate), which is distinctive of low- to mid-greenschist facies. The laminated quartz veins that constitute the inner alteration zone, contain muscovite, chlorite, albite and calcite. Using various calibrations, chlorite compositions in the inner and proximal zones yielded comparable temperature ranges of 263 to 323 °C and 268 to 324 °C, respectively. Gold occurs in the laminated quartz veins both as free-milling native metal and enclosed within sulfides. Fluid inclusion microthermometry and Raman spectroscopy in quartz veins within the sheared granodiorite in the proximal zone and laminated auriferous quartz veins in inner zone reveal the existence of a metamorphogenic aqueous–gaseous (H2O–CO2–CH4 + salt) fluid that underwent phase separation and gave rise to gaseous (CO2–CH4), low saline (~ 5 wt.% NaCl equiv.) aqueous fluids. Quartz veins within the mylonitized granodiorites and the laminated veins show broad similarity in fluid compositions and P–T regime. Although the estimated P–T range (1.39 to 2.57 kbar at 263 to 323 °C) compare well with the published P–T values of other orogenic gold deposits in general, considerable pressure fluctuation characterize gold mineralization at Jonnagiri. Factors such as fluid phase separation and fluid–rock interaction, along with a decrease in f(O2), were collectively responsible for gold precipitation, from an initial low-saline metamorphogenic fluid. Comparison of the Jonnagiri ore fluid with other lode gold deposits in the Dharwar Craton and major granitoid-hosted gold deposits in Australia and Canada confirms that fluids of low saline aqueous–carbonic composition with metamorphic parentage played the most dominant role in the formation of the Archean lode gold systems.  相似文献   

18.
《Ore Geology Reviews》2010,37(4):333-349
Gold mineralization at Jonnagiri, Dharwar Craton, southern India, is hosted in laminated quartz veins within sheared granodiorite that occur with other rock units, typical of Archean greenstone–granite ensembles. The proximal alteration assemblage comprises of muscovite, plagioclase, and chlorite with minor biotite (and carbonate), which is distinctive of low- to mid-greenschist facies. The laminated quartz veins that constitute the inner alteration zone, contain muscovite, chlorite, albite and calcite. Using various calibrations, chlorite compositions in the inner and proximal zones yielded comparable temperature ranges of 263 to 323 °C and 268 to 324 °C, respectively. Gold occurs in the laminated quartz veins both as free-milling native metal and enclosed within sulfides. Fluid inclusion microthermometry and Raman spectroscopy in quartz veins within the sheared granodiorite in the proximal zone and laminated auriferous quartz veins in inner zone reveal the existence of a metamorphogenic aqueous–gaseous (H2O–CO2–CH4 + salt) fluid that underwent phase separation and gave rise to gaseous (CO2–CH4), low saline (~ 5 wt.% NaCl equiv.) aqueous fluids. Quartz veins within the mylonitized granodiorites and the laminated veins show broad similarity in fluid compositions and P–T regime. Although the estimated P–T range (1.39 to 2.57 kbar at 263 to 323 °C) compare well with the published P–T values of other orogenic gold deposits in general, considerable pressure fluctuation characterize gold mineralization at Jonnagiri. Factors such as fluid phase separation and fluid–rock interaction, along with a decrease in f(O2), were collectively responsible for gold precipitation, from an initial low-saline metamorphogenic fluid. Comparison of the Jonnagiri ore fluid with other lode gold deposits in the Dharwar Craton and major granitoid-hosted gold deposits in Australia and Canada confirms that fluids of low saline aqueous–carbonic composition with metamorphic parentage played the most dominant role in the formation of the Archean lode gold systems.  相似文献   

19.
The Jinwozi lode gold deposit in the eastern Tianshan Mountains of China includes auriferous quartz veins and network quartz veins that are exemplified by the Veins 3 and 210, respectively. This paper presents H‐, O‐isotope compositions and gas compositions of fluid inclusions hosted in sulfides and quartz, and S‐, Pb‐isotope compositions of sulfide separates collected from the principal Stage 2 ores in Veins 3 and 210. Fluid inclusions trapped in quartz and sphalerite are pseudo‐secondary and primary. They were trapped from the fluids during the successive or alternate precipitation of quartz with sulfides. H‐ and O‐isotope compositions of fluid inclusion of three pyrite and one quartz separates from Vein 210 plot within the field of degassed melt, which is evidence for the incorporation of magmatic fluid as well with some possibility of contribution of metamorphic water to the hydrothermal system since the two datasets show a higher oxygen isotopic ratio than those of degassed melt. However, δD and δ18O values of fluid inclusions hosted in sulfides and quartz from Vein 3 are distinctly lower than those from Vein 210. In addition, salinities of fluid inclusion from Vein 3, approximately 3 to 6 wt% NaCl equivalent, are considerably lower than those from Vein 210, which are approximately 8 to 14 wt% NaCl equivalent. Ore‐forming fluids of Veins 3 and 210 have migrated through the relatively high and low levels in the imbricate‐thrust column where rock deformation is characterized by dilatancy or ductile–brittle transition, respectively. Therefore, the ore‐forming fluid of Vein 3 is interpreted to have mixed with greater amounts of meteoric‐derived groundwater than that of Vein 210. Fluid inclusions hosted in sulfides contain considerably higher abundances of gaseous species of CO2, N2, H2S, and so on, than those hosted in quartz. Many of these gaseous species exhibit linear correlations with H2O. These linear trends are interpreted in terms of mixing between magmatic fluid and groundwater. The relative enrichment of gaseous species in fluid inclusions hosted in sulfides, coupled with the banded ore structure, suggests that the magmatic fluid was involved with the ore‐forming fluid in pulsation. Lead isotope compositions of 21 pyrite and galena separates form a linear trend, suggesting mixing of metallic materials from diverse reservoirs. The δ34S values of pyrite and galena range from +5.6‰ to +7.9‰ and from +3.1‰ to +6.3‰, respectively, indicating sulfur of the Jinwozi deposit has been leached mainly from the granodiorite and partly from the Jinwozi Formation by the circulating ore‐forming fluid.  相似文献   

20.
We analyzed 85 fluid inclusions from seven samples from the porphyry Cu–Mo deposit in Butte, MT, using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The Butte deposit formed at unusually great depth relative to most porphyry deposits, and fluid inclusions in deep veins trapped a low-salinity, CO2-bearing, magmatically derived, supercritical fluid as a single aqueous phase. This fluid is interpreted to be the parent fluid that cooled, decompressed, unmixed, and reacted with wall rock to form the gigantic porphyry Cu deposit at Butte. Few previous analyses of such fluids exist.Low-salinity, aqueous fluids from the earliest veins at Butte are trapped in deep veins with biotite-rich alteration envelopes (EDM veins). These veins, and the Butte quartz monzonite surrounding them, host much of the Butte porphyry Cu mineralization. Twenty fluid inclusions in one EDM quartz vein are dominated by Na, K, Fe (from 0.1 to 1 wt.%) and contain up to 1.3 wt.% Cu. These inclusions contain only small amounts (tens of ppm) of Pb, Zn, and Mn, and typically contain Li, B, Ca, As, Mo, Ag, Sn, Sb, Ba, and W in less than detectable quantities. The abundance of Cu in early fluids indicates that a low-salinity, Cu-rich, aqueous ore fluid can be directly produced by aqueous fluid separation from a granitic magma. Similar inclusions (eight) in an early deep quartz–molybdenite vein with a K-feldspar selvage have similar compositions but contain significantly less Cu than most inclusions in the biotite-altered vein. Analyzed inclusions in both veins contain less than detectable concentrations of Mo even though one is molybdenite-bearing.Low-salinity, CO2-bearing aqueous fluids are also trapped in pyrite–quartz veins with sericitic selvages. These veins cut both of the above vein types and contain inclusions that were trapped at lower pressure and temperature. Thirty-nine inclusions in two such veins have compositions similar to early fluids, but are enriched by up to a factor of 10 in Mn, Pb, and Zn relative to early fluids, and are slightly depleted in Fe. Many of these inclusions contain as much or more Cu than early fluids, although little chalcopyrite is found in or around pyrite–quartz veins.Eighteen halite-bearing inclusions from three veins from both chalcopyrite-bearing and barren veins with both K-silicate and sericitic selvages were analyzed as well. Halite-saturated inclusions are dominated by Na, K, Fe, and in some inclusions Ca. Whereas these inclusions are significantly enriched in Ca, Mn, Fe, Zn, and Pb, fluids in all three veins contain significantly less Cu than early, high temperature, low-salinity inclusions.Analyses of all inclusion types show that whereas bulk-salinity of the hydrothermal fluid must be largely controlled by the magma, fluid–rock interactions have a significant role in controlling fluid compositions and metal ratios. Cu concentrations range over an order of magnitude, more than any other element, in all four samples containing low-salinity inclusions. We infer that variations are the result of fluid trapping after different amounts of fluid–rock reaction and chalcopyrite precipitation. Enrichment, relative to early fluids, of Mn, Pb, and Zn in fluids related to sericitic alteration is also likely the result of fluid–rock reaction, whereby these elements are released from biotite and feldspars as they alter to sericite. In halite-bearing inclusions, concentrations of Sr, Ca, Pb, and Ba are elevated in inclusions from the pyrite–quartz vein with sericitic alteration relative to halite-bearing inclusions from unaltered and potassically altered samples. Such enrichment is likely caused by the breakdown of plagioclase and K-feldspar in the alteration envelope, releasing Sr, Ca, Pb, and Ba.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号