首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A lot of seismic volcanic rocks and strong earthquake-induced thixotropic deformation structures in soft mud-sandy sediments(seismites)were identified from the Upper Cretaceous Shijiatun Member of the Hongtuya Formation for the first time in Jiaozhou City of the Zhucheng Sag, eastern China. Seismic volcanic rocks are volcanic rocks with co-seismic deformation structures which were produced by major earthquakes destroying volcano ejecta. Seismites are sediment layers with soft-sediment deformation structures formed by strong earthquake triggering saturated or semi-consolidated soft sediments to produce liquefaction, thixotropy, faults, cracks and filling and so forth. The Shijiatun Member of the Hongtuya Formation mainly consists of basaltic volcano rocks interbedded with mud-sandy(muddy sand and sandy mud)deposition layers of the river-lake facies. In the Shijiatun Member, main types of seismic volcanic rocks are shattered basalts with co-seismic fissures and seismic basaltic breccias. The thixotropic deformations of soft mud-sandy sediments mainly include thixotropic mud-sandy veins and thixotropic mud-sandy layers with tortuous boundaries. Under the strong earthquake action, saturated mud-sandy sediments could not be liquefied, instead resulting in thixotropy, i.e. their texture can be damaged and their flow-ability or rheology becomes strong. Because basaltic volcano rocks were damaged(shattered, seismic broken), a major earthquake can lead to thixotropic mud-sandy sediments flowing along seismic fissures in basalts, resulting in the formation of deformation structure of thixotropic veins, and boundaries between volcano rock and mud-sand layer became quite winding. Under the koinonia of gravity and vibration force, seismic breccia blocks sunk into thixotropic mud-sandy layers, resulting in the formation of inclusions of thixotropic mud-sandy sediments. Seismic intensity reflected by these strong earthquake records during the end stage of the Late Cretaceous was about Ⅶ to more than X degrees. The Shijiatun Member is mainly distributed in the south of the Baichihe fault in the northern Zhucheng Sag, and the fault has generated many strong tectonic and earthquake activities at the end of the late Cretaceous, also provided the channel for intrusion and eruption of basaltic magma then. At the end of the late Cretaceous, intermittent intrusion and eruption of basaltic magma took place along the Baichihe fault, meanwhile the volcano earthquakes took place or tectonic earthquakes were generated by the Baichihe fault which caused the deformation of the volcano lava and underlying strata of red saturated muddy-sand, resulting in the formation of various seismo-genesis deformations of volcanic rocks interbedded with mud-sandy sediment layers. Therefore, strong seismic events recorded by them should be responses to strong tectonic taphrogenesis of the Zhucheng Sag and intense activity of the Baichihe fault in the end of Late Cretaceous. In addition, these seismogenic deformation structures of rock-soil layers provide new data for the analysis of the failure effect produced by seismic force in similar rock-soil foundations.  相似文献   

2.
The Chisone Valley is located in the internal NW Alps, in the Pinerolese District, an area characterized by present low to medium seismicity. Fine-grained sediments (sand, silt and clay with interbedded gravel) crop out in the lower Chisone Valley: they were first interpreted as glaciolacustrine deposits, and then as a lacustrine infilling of the valley floor probably due to differential uplifting of the valley mouth. Review of this data, together with new field and palynological observations, lead us to refer the lacustrine deposits to approximately the Lower Pleistocene (Villafranchian). In many outcrops, the lacustrine deposits show strong soft-sediment deformation such as convolute laminations, water-escape structures and disrupted beds, some of them associated with folds and faults (cm to dm in size); only two sites show metric to decametric folds and faults trending E-W and N-S. Detailed structural analysis conducted along a recently exposed section (Rio Gran Dubbione site) shows several soft-sediment deformation features on the limbs of mesoscale folds. Because of their intimate structural association, the origin of these minor structures seems to be connected to synsedimentary activity on reverse and normal faults (m to dm in size) affecting the lacustrine deposits in the same locality. Soft-sediment deformation features can be interpreted as possible paleoseismites. If so, the present seismicity of the Pinerolese District, which is the major area of such activity in NW Italy, cannot be considered an isolated episode in the geological evolution of the region; even if there is no supporting evidence for continuous seismicity, the deformations in the lacustrine sediments of the Chisone Valley testify to Early Pleistocene seismic activity, probably related to the recent tectonic evolution of the internal side of the NW Alps.  相似文献   

3.
Earthquake is a disaster event resulting from rapid and intensive crustal vibration caused by fault activity, volcanic eruption, or block dilapidation. Heezen and Ewing[1] and Heezen and Dyke[2] were the first to note earthquake-related mass movement and associated deposits in connection to the turbidity currents and submarine slumps triggered by the Grand Bank Earthquake in 1929. Seilacher[3] defined redeposited sedimentary beds, disturbed and modified by earth- quakes, as seismite. Since t…  相似文献   

4.
Extended horizons of 0.5–2-m-thick soft-sediment deformation structures, which were earlier described as the effects of strong earthquakes in the Late Pleistocene, are studied in glaciolacustrine deposits of the Khibiny massif (central part of the Kola Peninsula). The unstructured horizon of coarse-fragmental inclusions is found everywhere over the folds, which makes it possible to consider these structures as the result of debris flow impact on consolidated bottom sediments probably caused by glacial mudflow. Despite intense and instantaneous crumpling of sediments, no liquefaction or fluidization phenomena typical of seismites are recognized in the deformation structures. Thus, the new data on the genesis of folded horizons in glaciolacustrine sediments in the Khibiny massif does not confirm the high seismic potential of this region.  相似文献   

5.
Due to its key position within the Africa–Europe convergence zone, Tunisia is marked by thrusting, folding, and faulting and has a major rupture zones associated with active faults. Consequently, most of Tunisian land is seismically active with significant active deformations, showing recent seismic events and their relative surface effects. This paper reports on several aspects of the seismotectonics, historical, and present-day seismicity and places them in the general tectonic and geodynamic framework of Tunisia. Field investigations, based on an integrated multidisciplinary approach, included (1) the identification of active faults, their motion and displacement, geomorphic aspects, and scarps and their relation with the general structural map of Tunisia and (2) an extensive analysis of brittle tectonic deformation affecting Quaternary deposits in several sites throughout Tunisia. The integration of field data within the existing data related to the seismic events that took place during the last decades allowed the establishment of an earthquake distribution map, as well as major seismic zones for better understanding of the seismicity database of Tunisia. To establish microzonation maps in seismic regions such as Gafsa and its surroundings, we have analyzed surface effects and secondary structures associated with active faults and correlated them with deformation rates, reconstructed for significant seismic events. Most faults exhibited typical left-stepping en-echelon with strike-slip component pattern suggesting that Tunisia is presently subjected to NNW–SSE compression. The focal mechanism of most Tunisia earthquakes combined with the existing tectonic and structural information and reconstruction of the Quaternary stress tensor allowed (a) better understanding of seismic zoning, (b) provided better assessment of the seismic hazard, and (c) facilitated the interpretation of the relationship between seismic zones and the geodynamic African–Eurasian plate boundary.  相似文献   

6.
More than 80 layers of seismites were recognized from the Early Cretaceous Dasheng Group in the Mazhan and Tancheng graben basins in the Tanlu Fault Zone, eastern China. The responsible seismic events took place about 110–100 Ma in the Early Cretaceous. The fault zone was affected at the time by strong tectonics, due to tension-related stretching and scattered squeezing by strike-slip faults. These tectonic activities induced a series of strong earthquakes with Richter magnitudes(M) of 5–8.5. The earthquakes affected saturated or semi-consolidated flood and lake sediments, and produced intra-layer deformations by several processes, including liquefaction, thixotropy, drop, faulting, cracking, filling and folding, which resulted in the formation of various soft-sediment deformation structures, such as dikes and veins of liquefied sand, liquefied breccias, liquefied homogeneous layers, load structures, flame structures, ball-and-pillow structures, boudinage, diapirs, fissure infillings, a giant conglomerate wedge, and syn-sedimentary faults. The seismites are new evidence of tectonic and seismic activities in the Tanlu Fault Zone during the Early Cretaceous; the series of strong seismic events that can be deduced from them must be considered as a response to the destruction of the North China Craton.  相似文献   

7.
The combined geological, geomorphologic, and geophysical study has significantly ascertained the spatial location of main seismogenerating structures in the region of Sochi. The research, which is aimed at identifying and thoroughly exploring all active faults in this area, was conducted in 2007–2009 in the territory between Adler and Krasnaya Polyana. It is found that the Monastyrskii and Krasnopolyanskii faults are the most important structures for seismic hazard assessment. Dramatic deformations of young deposits and prominent landforms are revealed, and seismogravitational features associated with these units are identified.  相似文献   

8.
9.
南海北部神狐海域是我国首次获取海洋天然气水合物实物样品的海域.然而,陆坡区深水水道和海底峡谷的侵蚀以及频发的沉积物失稳,将会加剧地层对比和沉积相识别的难度,导致目前该区域典型地震相-沉积相特征、沉积体类型、成因机制和空间匹配关系等方面还缺少精细的研究,特别是第四纪以来的沉积演化涉及较少,区域内水合物形成和分布的沉积地质条件尚不清晰.基于海底地形特征的描述、层序地层格架的对比和地震资料的综合解释,本次研究在第四纪以来的沉积充填序列中识别出5种典型的地震相类型,并分析了对应的沉积体类型:进积型的陆坡、第四纪早期发育的小型浊积水道、沉积物失稳(滑移和滑塌)、海底峡谷和伴生的沉积物变形、以及深海沉积-块体流沉积的复合体.通过沉积单元的空间匹配关系,将沉积演化划分为3个阶段:浊积水道侵蚀-沉积物再沉积阶段、陆坡进积-沉积物失稳阶段、海底峡谷的侵蚀-充填阶段.研究结果表明,受第四纪早期小型浊积水道的侵蚀,再沉积的沉积物将在中-下陆坡以"近源"的方式堆积下来,可能具有相对较好的物性条件,从而可被视为适于水合物赋存的有利沉积体.进积型陆坡带来的沉积物易于发生失稳,在研究区内广泛分布,因其具有较小的沉积物颗粒粒度和较好的垂向连续性,可被认为是水合物的区域盖层.大量发育的海底峡谷及伴生的沉积物变形,将会侵蚀和破坏先前沉积的有利沉积体,使其呈现为"斑状/补丁状"的平面展布特征,进而影响了神狐海域水合物的分布.因此,神狐海域第四纪以来的沉积演化是钻探区水合物不均匀性分布的关键控制因素之一.  相似文献   

10.
地震振动液化形变的研究   总被引:13,自引:0,他引:13  
冯先岳 《内陆地震》1989,3(4):299-307
多种地质作用可造成年青的松散沉积物发生变形。为了判别沉积形变中的地震振动液化形变形迹,着重讨论了振动液化形成机制、形变几何形态特征以及它们与融冻变形和准同生变形构造的区别。认为振动液化形变形迹可以作为鉴别古地震标志之一。  相似文献   

11.
Jijel has been hit by a strong earthquake in 1856 that triggered a destructive tsunami. Field geological investigations show that the marine terrace deposits (Tyrrhenian or likely Eutyrrhenian) exhibit several types of soft sediment deformation features including sismoslumps, thixotropic bowls, thixotropic wedges, and diapir-like structures. In addition, paleo-liquefaction features represented by neptunian and injection dikes have been observed in the sand dune deposits (Aterian or Würm). Furthermore, typical paleo-earthquake-induced ground failures including lateral spreading, paleo-landslides, and sand volcanoes have been observed in recent, likely, Holocene deposits. Such features, remarkably comparable to present-day earthquake-induced ground failures showing clearly repetitive occurrence of past events may constitute a precious material for future paleo-seismic investigation. The various features have been interpreted herein as seismites associated to strong earthquakes produced likely by the potentially active faults previously identified in the area.  相似文献   

12.
The results of a study of the macroseismic effects in the territory of Moscow of a remote deepfocus earthquake that occurred on May 24, 2013 in the Sea of Okhotsk are reported. On the surface of the earth and on the first floors of the buildings the seismic effect was not felt. The effect of the shock began to manifest itself at levels higher than the fifth floor of the buildings. The distribution of points on the map where the earthquake was felt is non-uniform. Points where tremor was felt do not appear to correspond with certain types of Quaternary deposits or with zones of different depth. There is also no significant correlation of the parts of the surface with high intensities of tremor and areas of ground-water flooding. Comparison between the surface manifestations of the seismic event and the tectonic features and deep structure of the metropolis was made. Based on the results of the implemented statistical estimation of distribution points where the earthquake was felt on the territory of the city it is visible that fault zones govern the largest number of points, while block structures characterize almost half of them. Thus, we can reasonably suggest a certain macroseismic increase of vibrations from earthquakes in the areas of large faults in the city. The study of deformations of the asphalt cover of walkways on the landslide-affected slope of Vorobyovy Hills showed that the tremor caused by the Okhotsk deep focus earthquake of May 24, 2013, caused the activation of a small landslide at all levels of the hillside.  相似文献   

13.
福建省龙海—漳浦沿海第四纪地壳运动特征与地震   总被引:1,自引:0,他引:1  
本文论述了福建龙海—漳浦沿海地区的第四纪地层及沉积结构、构造地貌、第四纪地壳运动特征及其与地震活动的关系。  相似文献   

14.
Soft-sediment structures are key to defining seismites. Two soft-sediment deformation horizons, bounded by undeformed carbonate strata, have been found in the Wumishan Formation in the Jumahe region, 175 km southwest of Beijing. One is in the lowest part of Wumishan Formation; and the other is in the uppermost part of Litho-member I. The soft-sediment structures in these two horizons fall into three categories: mould-and-sag structures, hydraulic shatterings and liquefaction dikes. The mould-and-sag structures are divided into two types: one developed in tidal-flat sediments, accompa-nied by many liquefaction-related structures and characterized by autochthonous post-earthquake sediments in sags, and the other type developed in deep-water environments, is not associated with liquefaction structures, and is overlain immediately by seismogenic tsunamites. The hydraulic shat-terings are composed of pockets of fluidization conglomerate, sand intrusions, and syndepositional faults. The liquefaction dikes fall into two categories: hydraulic-fracturing dikes and lateral-spreading dikes. The former are steep, planar, and pinch out upwards. The latter are snake-like and characterized by no diapir-related drag structures in surrounding rocks. Examination of the attitudes and strati-graphic positions of these structures suggests that these soft-sediment structures are seismogenic, and consequently, are seismites. Most seismites in the Wumishan Formation are developed near the former western, margin fault of Yanliao rift. This occurrence suggests that they could be related to movements on this fault. Other geological implications are discussed.  相似文献   

15.
川西地区地壳形变和断层位移活动   总被引:1,自引:0,他引:1  
大地测量资料的分析表明,川西地区的地壳形变和断层位移活动沿着已发展成为块体边界线的鲜水河断裂带—安宁河断裂带—则木河断裂带表现为最强,两侧块体内的断裂活动相对次之。区内的现今形变活动趋势仍继承着晚第四纪以来新构造活动的格局,地震形变是现今形变的最佳表现,断层位移活动具有显著的不均匀性。  相似文献   

16.
The traces of strong earthquakes in the territory of Fennoscandia have been recorded by many scientists already for several decades. The seismogenerating paleostructures, such as postglacial discontinuities in the crystalline basement accompanied by a complex of deformations in the loose deposits are found in the territories of Sweden, Norway, and Finland that border Russia, in which case the spatial correlation of the postglacial faults and modern seismicity is established. Such structures have not yet been discovered in Russia, though the traces of strong earthquakes in the form of rock deformations and postglacial sediments are found by different groups of researchers over the whole territory of Eastern Fennoscandia. The obtained data make it possible to identify the linear zones of concentration of paleoearthquakes (seismic lineaments) that also occur in the modern relief and modern seismicity. However, the problem of postglacial seismicity remains a subject for discussions concerning the localization of the foci, their genesis, and regime. A remaining issue is also distinguishing between seismogenic, cryogenic, and glaciodislocations. The important questions that need to be solved include parametrization of paleoearthquakes and determination of their nature, structures, age, and magnitude. One of the key segments is the area of Vottovaara Mountain in Middle Karelia, which is a part of the Vottovaara–Girvas seismic lineament, where seismic dislocations were found earlier. For studying this probable paleo-focal zone in detail, remote sensing data, field geological and geomorphological observations, and computational methods for estimating the peak values of paleoearthquake mass velocities are used. The typical zones of development of different types of seismic deformations are revealed. A potential seismogenerating fault related to the northwest-striking Vottovaara–Girvas seismic lineament is found; its probable shear kinematics is determined from the ratio of pulse displacements of rock blocks on different wings of the fault. The sequence of a few strong events which occurred here in the interglacial and postglacial periods is identified. The effects of interaction between the seismic activity and the glacial exaration on the formation of the modern image of the focal zone are established. Using alternative approaches to estimating shaking intensity by the macroseismic INQUA scale, the scale by F.F. Aptikayev, and the nomogram by M.V. Rodkin, the intensity of the recent strong Early Holocene seismic event, which occurred here at 8.9 ka according to A.D. Lukashov, is determined. According to the agreed estimates, the intensity reached 9–10 points at a probable magnitude of 7.5–8. This work carried out using a number of new approaches developed by the authors makes it possible to characterize paleoseismicity in more detail.  相似文献   

17.
本文给出了一种改进的模态pushover方法,对竖向不规则结构进行抗震性能评估。通过考虑不规则结构高振型的影响,利用模态pushover方法将结构简化为不同的等效单自由度体系,并对其进行弹塑性时程分析,将所得到的结果进行组合,得到原结构的楼层位移和层间位移等性能指标。由于结构处于屈服阶段与处于弹性阶段时的各节点变形的关系有显著区别,因此对于进入塑性阶段的振型,采用屈服后的各节点变形关系计算位移变形响应,将计算得到的各个振型结果组合得到整体结构的位移。通过四个算例分析,表明改进的方法所得到的结果更加接近于弹塑性时程分析的结果,证明此方法能够有效地应用于竖向不规则结构的抗震性能评估与计算。  相似文献   

18.
During severe seismic events, structures designed according to current standards yield and develop inelastic deformations. While the acceleration responses are limited by the yielding strength, these structures develop permanent deformations (and possible damage) due to such yielding. Spectra developed for inelastic structures can help in determining the desired yield levels and the associated inelastic deformations. Some structures made of special materials or equipped with innovative structural systems may yield, but can recover the deformation upon unloading and, thus, may avoid permanent deformations. These structures are known as nonlinear elastic. Often the post yielding excursions are very large and may exceed their toughness (or deformability). By introducing damping in form of supplemental devices, it is possible to control such deformations and keep them within acceptable limits. Spectra for such nonlinear elastic structures and inelastic structures are developed herein, by considering both inherent and supplemental damping. The difference between the two types of damping is addressed both theoretically and numerically. Design examples of several simple structures using the newly developed spectra are presented, which illustrate the importance of lower strength and damping in these nonlinear elastic or inelastic systems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
In this work, we reappraise the seismogenic potential of the geologic structures in the western Tell Atlas of Algeria, considered active host to moderate to low magnitude earthquakes. The direct identification of active faults is generally a difficult task in northern Algeria. The active tectonics in the Oran Plio-Quaternary age basin (Northwestern Algeria) is analyzed and characterized through a morpho-structural study combining topographic, geomorphologic, geological, and neotectonic data. Folds and fault scarps affecting Quaternary deposits show that the region is affected by compressional deformation still active nowadays, as shown by the recorded seismic activity. Our new observations enable a better understanding of the present seismotectonic context of the Oran region, particularly with regard to the magnitude and source of the 1790 Oran damaging event. The obtained result helps to shed some light on the elusive active tectonics characterizing this coastal area, and to assess regional seismic hazard, particularly in coastal zones where large seismogenic areas straddle the onshore–offshore zones.  相似文献   

20.
At present, there is less theoretical research and practical experience in the aspect of ultra-shallow seismic exploration to the target layers at depths of only tens of meters both at home and abroad. Seismic exploration plays an important role in the location of faults and active structures, but the depth dozens of meters below the ground surface is the blind area of any kind of deep and shallow seismic exploration. Starting from the point of view of detecting urban active faults, and using related theories and methods of geology, geophysics and mathematics, the paper discusses the preconditions for acquiring efficient ultra-shallow seismic survey results in complicated geological backgrounds in Qingdao. Taking the Qingdao area as an example in this paper, we study the depth condition of Quaternary deposits, and apply 4-8 stacking folds to satisfy the requirement to get the exploration results with high-resolution and high-SNR. Preliminary results reveal that selecting a proper surveillance layout is one of the keys to acquire authentic exploration results in ultra-shallow P-wave reflection exploration. Our results also show that ultra-shallow seismic reflection method in detecting faults in the Qingdao area has good application prospects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号